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Abstract— Place recognition based on landmarks or features
is an important problem occurring in localization, mapping,
computer vision and point cloud processing. In this paper, we
present GLAROT-3D, a translation and rotation invariant 3D
signature based on geometric relations. The proposed method
encodes into a histogram the pairwise relative positions of
keypoint features extracted from 3D sensor data. Since it
relies only on geometric properties and not on specific feature
descriptors, it does not require any prior training or vocabulary
construction and enables lightweight comparisons between
landmark maps. The similarity of two point maps is computed
as the distance between the corresponding rotated histograms
to achieve rotation invariance. Histogram rotation is enabled
by efficient orientation histogram based on sphere cubical
projection. The performance of GLAROT has been assessed
through experiments with standard benchmark datasets.

I. INTRODUCTION

Robot localization and mapping rely on the recognition
of already visited regions and places from sensor measure-
ments, after travelling long paths. This important operation is
known as loop closure and enables to recover consistency in
environment representation. Seminal loop closure techniques
have been originally developed for planar range finder mea-
surements either in the form of occupancy grid maps [1]–
[3] or, more recently, keypoint features [4]–[6]. In computer
vision [7], [8] and 3D perception [9] keypoint features are
commonly used to build landmark maps. Although keypoint
features may fail in specific contexts like underwater envi-
ronments [10], they enable compact keypoint landmark map
representation.

Several SLAM systems [11]–[13] operating with cameras
and RGBD sensors adopt landmark map representations.
Images and point clouds have large memory footprints
and their direct manipulation is computationally complex.
Most SLAM tools have developed a standard structure to
efficiently manage the resulting large maps. Raw sensor data
can be replaced by a collection of points and, possibly, of
descriptors, enabling lightweight and efficient representation
of environment. The keypoint features extracted from one or
more consecutive measurements are usually collected in a
local map associated to a keyframe. Keyframes are selected
frames of robot or sensor sampled during scene exploration.
The relations among keyframes are encoded by a pose graph
that is periodically optimized, when new measurements have
been collected.

Given this formulation, place recognition is achieved by
comparing local maps of keypoints, where each local map is
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associated to a keyframe. In principle each keypoint feature
could be used as an independent landmark in a global map.
However, direct feature-to-feature association is not reliable
over large collections of points, and, moreover, is computa-
tionally demanding. The implicit hierarchical organization
into submaps allows a two-step loop closure procedure.
First, the candidate matching keyframes are selected on
the whole map. Thereafter, point-to-point association and
frame transformation estimation are performed for each
candidate pair. Selection of candidate matching keyframes is
important for efficient loop closure and is usually performed
by computing a signature for each keyframe. Signatures
enable lightweight comparison of keyframes before the more
accurate association between the landmark sets. Several
signatures, generally based on bag-of-word (BoW) [14], have
been proposed. Some implementations of BoW achieves real-
time and efficient selection of candidates using additional
criteria like covisibility graph [13]. Although efficient and
effective in place recognition, this approach depends on
specific feature descriptors and on dictionaries obtained from
training sets.

In this paper, we present GLAROT-3D, a novel rotation-
invariant signature based on geometric landmark relations,
which enables data association between collections of 3D
landmark points. This signature is inspired by the planar
signatures GLARE [15] and GLAROT [6], originally pro-
posed to associate keypoint features extracted from planar
laser scans. GLAROT-3D computes a histogram by encoding
the pairwise relative positions of the keypoints belonging to
a local map. The relative positions are expressed in polar
form through their distances and orientations. Unlike BoW
approaches, the proposed signature provides an effective
description of a point map based only on geometric informa-
tion instead of a dictionary. Candidate matching maps can
be detected by comparing their corresponding GLAROT-3D
histograms through rotation invariant metric. In our proposal,
histogram bin rotations are efficiently handled through a
cubical grid partition of orientations inspired by Cubemap
sphere [16]. This approach has been assessed through ex-
periments with standard benchmark datasets and compared
with the state-of-the-art loop closure detection algorithm of
ORB-SLAM2 [17].

The paper is organized as follows. Section II reviews the
state of the art of 3D mapping systems and data association.
Section III illustrates GLAROT-3D and its application to
the selection of loop candidates. Section IV reports the
experimental results. Section V concludes the work.



II. RELATED WORKS

A. Place Recognition in Planar Range Data
The most popular maps with range finder are occu-

pancy grid maps and data association is performed using
correlation-based techniques [1], [3]. The recent proposal of
keypoint features for planar range finders enabled adaptation
of pairing methods designed for features and landmarks.
Tipaldi and Arras [4] proposed FLIRT, the first keypoint fea-
ture explicitly designed for planar laser scans. The FALKO
algorithm [5] efficiently detects more stable keypoints from
a laser scan through the selection of neighbors in the
scan and the computation of a cornerness score. Moreover,
such keypoint features are endowed with descriptors, which
encode the local distribution of neighbor points and can
be potentially exploited for data association. Geometrical
FLIRT phrases (GFPs) [18] extend the BoW techniques,
popular in computer vision, to planar range finders using
FLIRT descriptors. Deray et al. [19] improved the BoW
association and the weak geometric check using Viterbi
algorithm. However, descriptors extracted from range data
are often unreliable due to the limited discrimination of the
descriptors. Geometric LAndmark RElations (GLARE) [15]
are based on geometric invariants in a keypoint set like pair-
wise distances and angles. While effective in many contexts,
they are not orientation invariant. GLAROT [6] is a variant of
GLARE comparing all possible orientations. Techniques like
GFP, GLARE and GLAROT can be classified as signatures
that can be used to efficiently select loop candidates. To
validate the candidates and to compute the transformation,
point-to-point association methods like joint compatibility
test [20] or maximum clique techniques [21] are required.

B. Landmark Data Association in Computer Vision and 3D
Processing

Several solutions to place recognition have been proposed
in computer vision and visual SLAM. The most notable ap-
proach includes appearance-based and BoW methods, which
represent the features extracted from an image using an a
priori vocabulary. FAB-MAP [22] is one of the most pop-
ular appearance-only algorithm using SURF features [23].
DBoW2 [14] extends the BoW approach to the more efficient
binary features like ORB [24]. These techniques are often
integrated into complete SLAM systems like PTAM [11] and
ORB-SLAM [13]. Different versions of these tools have been
developed to operate with monocular cameras, but also with
stereo vision and with depth cameras [17]. Stereo and depth
cameras provide 3D geometric information that is exploited
for keyframe registration and tracking, but not for place
recognition since BoW approach exploits only visual feature
descriptors detected in images. Moreover, the vocabulary and
the word-based encoding used in BoW are dependent on the
choice of the specific keypoint features.

An alternative approach to feature-based mapping is rep-
resented by direct methods, which perform registration,
tracking and frame-to-frame association by directly compar-
ing pixel intensities. LSD-SLAM [25] is the current state-
of-the-art implementation of direct approach. Loop-closure

candidates are found using OpenFABMAP [26] and, then,
validated by direct image alignment. Thus, direct approach
is insufficient when dealing with large scale maps and require
the most robust appearance-based data association.

III. SIGNATURE FOR 3D LANDMARKS

In this section, we present GLAROT-3D, a signature for
3D landmarks based on geometric relations. We discuss the
geometric properties of a point set used by the signature
and how they are encoded in a histogram. The cubical
mapping has been adopted for the 3D orientation histogram
in order to properly compare signatures. Finally, signatures
are compared using a translation and orientation invariant
metric.

A. Geometric Landmark Relations in 3D Space

In place recognition problems, each point set P represents
the landmarks detected in raw measurements. Such measure-
ments are acquired by a sensor and, hence, the coordinates of
the points are given w.r.t. the sensor frame. The same place
can be observed from different viewpoints and an effective
place signature must be translation and rotation invariant to
allow comparison.

The original GLARE algorithm [15] computes a signature
that encodes the pairwise distances and angles of a point
set. This method only requires the coordinates of the input
points and no other information like descriptor values often
provided by keypoint features. In particular, the signature
G[P] of the point set P is a polar histogram that associates
to each relative pairwise position an integer or real counter
value. For each pair of points pi,pj ∈ P , their relative
position is given by the difference vector rij = pi − pj .
The difference vector can be represented in polar coordinates,
which in the planar case are the angle θij ∈ S1 and the range
ρij = ‖pi − pj‖ ∈ R+. The histogram G is defined over a
partition of 2D polar domain S1 × R+. The histogram bin
Giθ,iρ corresponding to point rij is given by the two index
functions

iθ(rij) =

⌊
(atan2 (rij,y, rij,x) + 2π) mod 2π

∆θ

⌋
(1)

iρ(rij) =

⌊
‖rij‖
∆ρ

⌋
(2)

where ∆θ and ∆ρ are respectively the angular and range
resolutions of the grid. The discussion of the signature and
index function for 3D points is post-poned to focus on
general aspects of geometric signatures. Since there are two
possible difference vectors for each point pair, i.e. rij and
rji, the polar histogram can be updated either by adding
both the difference vector contribution or by choosing only
one between rij and rji. The GLARE considers only rij
with pi,y > pj,y to restrict the size of polar histogram. The
similarity between a source point set PS and a target one PT
is measured by the distance between the respective signatures
GS = G[PS ] and GT = G[PT ] according to L1 norm.

The original signature GLARE satisfies invariance only
to translation, but not to rotation. The solutions proposed to
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Fig. 1: Cubical grids on sphere with different number of face cells l.

f label df uf vf
0 x+ x+ y+ z+

1 x− x− z− y−

2 y+ y+ z+ y+

3 y− y− x− z−

4 z+ z+ x+ y+

5 z− z− y− x−

TABLE I: Faces of cubemap with their index f , label, orthogonal
axis df and parallel axes uf and vf .

achieve complete invariance to isometry include GSR [27]
and GLAROT [6]. The first approach assesses the relative
orientation between the two point sets using the original
raw measurements to estimate the normal directions to the
points. While rotational invariant, the computation of GSR
is expensive due to the processing of raw measurement of a
grid and is less general. GLAROT achieves same or better
results by comparing the target signature GT to signature
RGS , where R ∈ R ⊆ SO(2) is one of the nθ = 2π/∆θ
rotations shifting an orientation bin to another one. This
approach requires nθ evaluations of L1 norm for each shifted
histogram.

The discussion of geometry-based signature shows the
main issues to be addressed to define GLAROT-3D. The
first issue is the structure of the GLAROT-3D histogram G
implicitly defined by index functions like eq. (1)-(2). While
the range index iρ is trivially extended to 3D domain, a
different orientation index function iS2 must be used instead
of iθ. The subdivision of sphere S2 induced by iS2 must
correspond to bins with equal or nearly equal areas. The
second issue is the comparison procedure, which must be
independent from the reference frames of the point sets.
In particular, GLAROT-3D must handle histogram rotations
to define a metric invariant to the frame orientation. These
problems are discussed in the following.

B. Cubical Orientation Grid

The definition of a signature for 3D landmarks requires a
proper histogram for the polar values of pairwise relative
position of landmarks. The main issue is the orientation
histogram formally defined by angular index function iS2
mapping a point of R3 to the histogram bin indices. The
angular bin ∫i ⊆ S2 corresponding to index i is a subset of

unit sphere surface s.t.

∫i = {u ∈ S2|iS2(u) = i} (3)

The bins constitute a partition of the solid angle which must
satisfy some convenient requirements:

1) the solid angle is partitioned into equal angular bins,
i.e. the areas |∫i| = |∫j | for all i, j;

2) for all bins ∫i and ∫j , there is a rotation R ∈ R ⊆
SO(3) s.t.

R∫i = {Ru|u ∈ ∫i} = ∫j (4)

and R∫i = R∫j implies i = j.
The first requirement implies that there is no privileged
orientation. Clearly, the standard altitude and azimuth param-
eters do not lead to uniform partition of sphere. The second
requirement enables efficient comparison of signatures by
reducing all possible rotations to a discrete set of bin-to-
bin comparisons. Planar rotations of GLAROT signatures are
reduced to circular shifts preserving the adjacency relations
among bins.

Unfortunately, there is no trivial and general way to
partition the solid angle into regular regions. The only regular
sphere tessellations with congruent regions and equal arc
lengths are modelled on the five inscribed platonic solids.
The symmetry groups of platonic solids enable correct face-
to-face and, thus, bin-to-bin comparisons. Since there are
only five tessellations with these properties, the bin number
cannot be adapted to arbitrary resolution of orientation.
Cubemap [16] is a popular projection used in computer
graphics for visualization and represents a trade-off between
such requirements, simplicity and efficiency. The idea is
to divide the sphere S2 into six regions according to the
projection of cube faces onto the inscribed sphere. These
spherical regions are also called faces and each face is further
divided into l2 parts, where l is the number of face grid cells.
The total number of bins of this orientation histogram is 6l2.
The cube satisfies the octahedral symmetry, which allows
comparisons between face grids. Figure 1 shows examples
of this partition of sphere.

The six faces of cubemap are orthogonal to an axis and
are identified either by the axis label (e.g. x+, x−, etc.) or
by an index f from 0 to 5. The orthogonal axis to face is



nr rotation
x+ x− y+ y− z+ z−

1 x+ x− y+ y− z+ z−

2 x− x+ y− y+ z+ z−

3 y− y+ x+ x− z+ z−

4 y+ y− x− x+ z+ z−

5 x− x+ y+ y− z− z+

6 x+ x− y− y+ z− z+

7 y+ y− x+ x− z− z+

8 y− y+ x− x+ z− z+

9 x− x+ z+ z− y+ y−

10 x+ x− z− z+ y+ y−

11 z+ z− x+ x− y+ y−

12 z− z+ x− x+ y+ y−

13 x+ x− z+ z− y− y+

14 x− x+ z− z+ y− y+

15 z− z+ x+ x− y− y+

16 z+ z− x− x+ y− y+

17 y+ y− z+ z− x+ x−

18 y− y+ z− z+ x+ x−

19 z− z+ y+ y− x+ x−

20 z+ z− y− y+ x+ x−

21 y− y+ z+ z− x− x+

22 y+ y− z− z+ x− x+

23 z+ z− y+ y− x− x+

24 z− z+ y− y+ x− x+

TABLE II: List of 24 discrete rotations R corresponding to the
orientation-preserving symmetries of cube.

referred as df , while the other two axes parallel to the face
are called uf and vf . The vectors uf and vf are also used to
compute the indices of a point projection into the face grid.
Table I shows the list of faces with their respective indices f ,
labels, orthogonal axis df and parallel axes uf and vf . The
same symbol is used both for labels and, in bold font, for the
corresponding vectors, e.g. x+ is the axis vector orthogonal
to face x+. The orientation of a point rij ∈ R3 is described
on the cubical orientation histogram through its projection
on the grid. The face corresponding to such point is found
as

f = argmax
f

d>f rij (5)

The indices of the grid cell on face f are computed w.r.t. the
axes of the face uf and vf as

u =

⌊
l

(
2

π
arctan

(
u>f rij

d>f rij

)
+

1

2

)⌋
(6)

v =

⌊
l

(
2

π
arctan

(
v>f rij

d>f rij

)
+

1

2

)⌋
(7)

Indices u and v have values between 0 and l− 1 and locate
the specific bin on the square grid of the face. Thus, the
orientation index function is the combination of the above
indices into a unique identifier

iS2(u) = f · l2 + u · l + v (8)

number of face cells l
The proposed cubical histogram encodes the angular dis-

tribution of pairwise relative positions of landmarks. As
anticipated before, it does not perfectly satisfy the second

(y-, y+, x+, x-, z+, z-)

x+x-

y+

y-

z+ z-

x+

x-

y+y- z+ z-

Fig. 2: Example of cubemap rotation (nr = 3 in Table II):
the reference face labels and axes are in blue, the rotated
faces and axes are in red.

requirement, since comparisons are performed on faces in-
stead of bins. Table II shows the discrete rotation set R
corresponding to the 24 orientation-preserving symmetries
of cube. The notation for rotations is similar to the standard
notation used for permutation. For example, rotation nr = 3
maps face x+ to y−, x− to y+, y+ to x+, etc. Figure 2
illustrates the face mapping after rotation. Observe that the
order of adjacent faces w.r.t. a given face is unchanged by the
rotation, since the transformation is orientation-preserving.
However, while comparing two overlapping face grids, the
orientation grid should be rotated according to its axes uf
and vf . For example, face y− lies on face x− (respectively
red and blue in Figure 2) and its axes are rotated by 3×90◦

counterclockwise w.r.t. x− axes. These rotations can be pre-
computed for each discrete rotation of R.

C. Computation and Comparison of Signatures

The histogram G of GLAROT-3D can be computed using
the previously illustrated index functions iS2(rij) and iρ(rij).
The total number of G bins is equal to 6l2nρ, where l is the
number of face grid cells and nρ is the number of range grid
cells. The range size nρ is chosen according to the range
resolution ∆ρ and the expected maximum pairwise distance
of two landmarks. If the signature histogram is vectorized,
the signature bin index for a points rij is iS2(rij) nρ+iρ(rij).

The computation of the histogram of a landmark set P
is straightforward. For all the point pairs pi,pj ∈ P with
i 6= j, the pairwise positions rij = pi − pj and rji = −rij
are computed. Then, the bins corresponding to rij and rji
are incremented by one unit. Contrary to GLARE [15],
GLAROT-3D considers both the two pairwise relative po-
sitions of landmarks. Moreover, the counter values of G
are integer instead of real values sampled from Gaussian
functions. These straightforward design solutions are more
suitable to the complex structure of 3D domain.

As anticipated, the distance between two GLAROT-3D
signatures GT and GS is computed according to a variant
of L1 norm. The cubical orientation grid efficiently handles



the rotations R belonging to discrete set R of octahedral
symmetries. The rotated histogram RGS is obtained by the
order-preserving permutation of its face grids and the relative
rotation of face axes as previously illustrated. The rotated L1

norm is defined as

RL1(GS ,GT ) = min
R∈R

‖GT −RGS‖1 (9)

Although the computation of RL1(·, ·) requires 24 evalua-
tions of L1 norm, all the operations involved are lightweight,
and consists of integer arithmetic operations and histogram
access.

IV. EXPERIMENTS

In this section we present the experimental setup and
the results obtained in loop candidate detection using
GLAROT-3D and DBoW2 algorithm [14] designed for bi-
nary descriptors like ORB. Six sequences have been used:
fr3 structure texture far, fr2 desk and fr3 long office from
from TUM RGB-D Benchmark [28], and stereo vision
sequences kitti 00, kitti 05 and kitti 06 from KITTI visual
odometry dataset [29]. Sequences fr3 structure texture far,
fr2 desk and fr3 long office consist of RGB and depth im-
ages that have been acquired indoor by a hand-held RGB-
D camera. In the first sequence fr3 structure texture far the
operator performs limited translation and significant rotation
motions, whereas in fr2 desk and fr3 long office the depth
camera performs a loop about 20 m long in an office
environment. Sequences kitti 00, kitti 05 and kitti 06 are
collected by stereo cameras mounted on a car executing one
or more closed 2− 3 km long paths. ORB-SLAM2 [17] has
been used to build a global map consisting of smaller ORB
features maps.

The coordinates of features are referred to the keyframe
of the local map, i.e. the reference frame of the sensor from
where the features were observed. The detected ORB features
along with the BoW weight vector of each features have been
exported to file. We adopted the ORB vocabulary distributed
with ORB-SLAM2.

GLAROT-3D signature is computed by exploiting only
the coordinates of ORB keypoints. The corresponding de-
scriptors are used to compute the DBoW2 vector according
to the adopted dictionary. Table III presents the number
of keyframes nframes, the average number of points per
keyframe npoints and the size of GLAROT-3D histograms.
The average and maximum pairwise point distances are
respectively about 0.5 m and 5.0 m in TUM sequences,
whereas about 10.0 m and 17.0 m in KITTI sequences.
The parameters nρ and ∆ρ must be chosen according to
the keypoint distribution obtained by perception in a given
enviroment. Trials with different reasonable values of such
range parameters achieve similar results, when the range
domain is covered (nρ ·∆ρ greater than maximum pairwise
landmark distance) and ∆ρ enables accurate distance distri-
bution. The number of face grid cells l is less sensitive to
scale differences of environments.

The loop closure procedure used in the experiments is the
following.

dataset nframes npoints l nρ ∆ρ [m]
fr3 structure texture far 24 409.9 2 70 0.05
fr2 desk 179 273.1 2 70 0.05
fr3 long office 191 344.4 2 70 0.05
kitti 00 1515 471.5 2 200 0.10
kitti 05 898 461.7 2 200 0.10
kitti 06 465 461.6 2 200 0.10

TABLE III: Parameters of the datasets (number of keyframes
nframes, average number of points per keyframe npoints) and of
GLAROT-3D signature (number of face cells l, number of range
cells nρ and range resolution ∆ρ) used in the experiments.

1) Given a query local map Pq , ORB-SLAM2 provides
an initial list of potentially matching local maps Pm
based on co-visibility between them and the query one.
To avoid trivial matches between consecutive maps,
we exclude from the candidate list all the Pm with
|m− q| < 5.

2) A subset of k = 10 candidates Pm are selected ac-
cording either to GLAROT-3D or DBoW2. GLAROT-
3D scores each Pm by comparing the corresponding
signature Gm and the signature of query map Gq .
In particular, the k selected maps are the k-nearest
neighbors measured according to the rotated signature
metric RL1(Gq,Gm). Similarly, DBoW2 scores the
candidate according to the BoW vectors and L1 norm.

3) Point-to-point association and registration between Pq
and each Pm. The candidate loop closure is accepted, if
a sufficiently high number of correspondences is found
after registration. In particular, the number of mutual
nearest point pairs of the transformed Pq and Pm must
be greater then the acceptance threshold.

The correctness of each association is assessed by comparing
the estimated relative poses after the registration. If the
relative location between the two frames is close to the
groundtruth value, the closure is marked as a true positive,
otherwise as a false positive. The maximum allowed position
and angular errors are respectively 0.5 m and 10◦ for TUM
and 4.0 m and 10◦ for KITTI datasets.

Figure 3 illustrates the precision-recall curves of
fr3 structure texture far, fr2 desk, fr3 long office, kitti 00,
kitti 05 and kitti 06 obtained from the procedure described
above. Each point of the curve corresponds to a different
threshold on the number of point-to-point correspondences.
GLAROT-3D performs clearly better than DBoW2 in all the
scenarios except for kitti 06. In this sequence, the bag-of-
word approach discriminates more accurately the k nearest
candidates, when the acceptance threshold on the number of
corresponding points is low. The average time for comparing
two GLAROT-3D signatures is 2 ms for TUM and 32 ms for
KITTI sequences, whereas DBoW2 requires less than 1 ms
in all cases using a Intel i7-3630QM CPU @ 2.40GHz, 8
GB RAM. Thus, DBoW2 is faster than GLAROT-3D, but
seems to achieve less accurate loop closure detection.

V. CONCLUSION

In this paper, we have presented GLAROT-3D, a novel
rotation-invariant geometric signature for loop closure candi-
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Fig. 3: Precision-recall curves of loop closure based on GLAROT-3D and DBoW2 in datasets fr3 structure texture far,
fr2 desk, fr3 long office, kitti 00, kitti 05 and kitti 06.

date selection. The signature is a histogram encoding length
and orientation of the pairwise relative positions obtained
from a landmark map. It is easy to implement and does not
require any prior training stage like bag-of-words and other
approaches, since it is based only on geometric relations.
GLAROT-3D is invariant to translation and rotation of the
reference frame of the local map. To achieve invariance, the
algorithm is able to efficiently rotate the signature histogram
by exploiting the support of a cubical grid partition of
3D orientations. In experiments with standard benchmark
datasets, GLAROT-3D has been able to find loop closure
candidates with similar or better accuracy than state-of-
the-art approaches. In future works, we expect to integrate

the proposed algorithm into a state-of-the-art 3D SLAM
system in order to better assess its performance on large
scale datasets and to compare with other state-of-the-art
techniques.
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