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Questo libro vuole essere una introduzione ragionevolmente sintetica ai fondamenti di geometria, algebra e statistica
necessari alla comprensione e all’utilizzo delle tecniche più avanzate di visione artificiale. Come si vedrà, sono stati inseriti
diversi elementi non propriamente di elaborazione di immagini ma che risultano utili a chi interessa sviluppare applicazioni
complesse basate sull’elaborazione di immagini, coinvolgendo concetti come il tracking o la fusione sensoriale di alto livello.
Per non appesantire la trattazione ho cercato, ove possibile, di non entrare nelle dimostrazioni dei diversi teoremi ma, con
lo scopo di stimolare la curiosità, ha lasciato la loro trattazione al lettore. L’obiettivo originale di questo libro infatti non è
mai stato quello di realizzare una trattazione rigorosa ed esaustiva dove spesso ci si perde in calcoli e dimostrazioni con il
rischio di stancare il lettore e distogliere l’attenzione verso invece alcuni concetti importanti. Allo stesso modo non mi sono
posto come obiettivo quello di voler parlare di ogni qualsiasi argomento relativo all’elaborazione di immagini e alla visione
artificiale ma mi sono limitato di fatti a quei soli argomenti inerenti alle sperimentazioni che ho direttamente affrontato nelle
mie attività di ricerca, di cui sono più confidente e su cui posso dare un minimo di contributo. La stesura di questo libro
è stata infatti fortemente influenzata dalle mie aree di ricerca le quali riguardano principalmente applicazioni della Visione
Artificiale alla percezione di robot e allo sviluppo e controllo di veicoli autonomi.

La Computer Vision è un campo della scienza estremamente stimolante, anche per i non addetti ai lavori. Il fatto stesso
che nella visione artificiale geometria, statistica, ottimizzazione sono argomenti cos̀ı strettamente correlati ne fa un ambito
di studio completo e degno di interesse anche ad esterni alla materia. Questa ampia correlazione tra gli argomenti tuttavia
non ha aiutato l’attività di divisione in capitoli di questo libro e di conseguenza i rimandi tra un capitolo e gli altri, come si
vedrà, sono ampiamente diffusi.

Le citazioni inserite nel testo sono molto ridotte e faccio riferimento solo a testi che io ritengono fondamentali e, quando
possibile, ho citato i primi che hanno proposto l’idea alla base della teoria: la lettura degli articoli citati in bibliografia è
caldamente consigliata.

Ho introdotto, quando possibile, il termine inglese corrispondente al termine italiano non per anglofilia ma per suggerire
le eventuali parole chiave da cercare su internet in modo da individuare argomenti collegati a quello trattato.

Per l’organizzazione di questo volume ho tratto spunto da diversi libri, libri di cui consiglio la lettura, tra cui “Multiple
View Geometry” [HZ04] di Hartley e Zisserman, “Pattern Recognition and Machine Learning” [Bis06] e “Emerging Topics In
Computer Vision” [MK04] redatto da Medioni e Kang. Per tematiche più strettamente legate all’elaborazione delle immagini,
un ottimo libro, disponibile anche online, può essere “Computer Vision: Algorithms and Applications” di Szeliski [Sze10].

Per ultima cosa, sottolineo che questo libro è stato scritto negli ultimi 20 anni e alcune cose potrebbero essere molto
outdated (sopratutto a valle della rivoluzione del machine learning avvenuta a metà del decennio scorso) ma mi piace tenerle
per motivi storici.

La sintassi matematica che verrà usata è minimalista:

� le matrici verranno indicate con lettere in grassetto maiuscolo A mentre i vettori in grassetto minuscolo x;

� la trasposta dell’inversa di una matrice A, ovvero
(
A−1

)>
=
(
A>
)−1

, si scriverà A−>;

� negli ambiti statistici, la sintassi x̂ indica il valore stimato della quantità x;

� salvo indicazioni differenti, la sintassi bRa indica una matrice di cambiamento di base che trasforma il sistema di
riferimento a nel sistema di riferimento b mentre av indica un vettore espresso nel sistema di riferimento a.

Rimando infine all’appendice B per avere una breve carrellata sul significato dei simboli usati in questo libro.
È possibile trovare l’ultima versione di questo documento a http://www.ce.unipr.it/medici. Tutto il materiale di

“Elementi di analisi per Visione Artificiale” è rilasciato sotto licenza Creative Commons 4.0. Il testo completo della licenza
è disponibile, in inglese, alla pagina https://creativecommons.org/licenses/by-nc-sa/4.0/.

This document is a brief introduction to the fundamentals of geometry, algebra and statistics needed to understand and
use computer vision techniques. You can find the latest version of this document at http://www.ce.unipr.it/medici. This
manual aim to give technical elements about image elaboration and artificial vision. Demonstrations are usually not provided
in order to stimulate the reader and left to him. This work may be distributed and/or modified under the conditions of the
Creative Commons 4.0. The latest version of the license is in https://creativecommons.org/licenses/by-nc-sa/4.0/.
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Capitolo 1

Elementi

Questo primo capitolo espone diversi argomenti di analisi matematica e geometria analitica necessari alla comprensione e
utilizzo degli algoritmi di algebra, di statistica e, ovviamente, di visione delle macchine che verranno discussi poi nei capitoli
successivi.

1.1 Sistemi lineari sovradimensionati

Analizzando sistemi reali è facile imbattersi nel problema di dover ricavare la “soluzione” di un sistema lineare sovradimen-
sionato.

L’importanza di questo argomento è evidente: quando si eseguono osservazioni su un sistema reale questo risulta na-
turalmente affetto da rumore, appunto, di osservazione. Questo rumore chiaramente compromette il risultato della singola
osservazione ma, fortunatamente, è normalmente possibile acquisire molte più osservazioni che incognite ottenendo cos̀ı un
sistema sovradimensionato. In queste condizioni, per ottenere una soluzione al problema che minimizzi l’errore, è richiesto
l’utilizzo di una tecnica di regressione numerica, per esempio, ai minimi quadrati. In questa prima sezione sono presenta-
te tecniche matematiche ampiamente utilizzate in tutto il libro: per ulteriori dettagli riguardo queste tecniche si può fare
riferimento al capitolo 3 incentrato totalmente su questo argomento.

Si abbia pertanto un sistema lineare sovradimensionato (overdetermined)

Ax = y (1.1)

dove A è una matrice rettangolare m × n e con m ≥ n. Tale matrice, essendo rettangolare, non ammette inversa ma
è comunque possibile definire per ogni possibile soluzione x ∈ Rn un valore dell’errore, detto anche residuo, che questa
eventuale soluzione comporterebbe. Non esiste una soluzione generale per un sistema sovradimensionato ma solo soluzioni
che minimizzano il residuo sotto una particolare metrica.

Definiamo1 come metrica dell’errore il modulo del residuo

ε(x) = ‖Ax− y‖2 (1.2)

La soluzione cosiddetta “ai minimi quadrati” di un sistema lineare (1.1) è rappresenta dal vettore x che minimizza la distanza
euclidea del residuo (1.2) ovvero cercare la soluzione ottima del sistema, nei sensi di una regressione ai minimi quadrati,
equivale a trovare il minimo di tale funzione errore al variare di x.

Se si moltiplica l’equazione (1.1) per A> si ottiene un sistema lineare “tradizionale” che ammette come soluzione

A>Ax = A>y (1.3)

Questo è un primo metodo risolutivo per sistemi sovradimensionati e viene indicato in letteratura come tecnica delle equazioni
perpendicolari (normal equations): il problema originale viene ricondotto a un sistema lineare classico dove la matrice dei
coefficienti è quadrata e pertanto invertibile con tecniche classiche. Tuttavia la soluzione proposta in equazione (1.3) è
numericamente instabile in quanto cond ≈ A2. Dettagli ulteriori sul condizionamento delle matrici e sulla propagazione dei
disturbi nella soluzione dei sistemi lineari ben dimensionati o sovradimensionati saranno presentati in sezione 2.7.

Se il sistema è ben condizionato, la tecnica più stabile per risolvere un problema alle normal equations è la fattorizzazione
di Cholesky.

Si può dimostrare che una soluzione x, meglio condizionata e che minimizza la funzione (1.2), esiste e vale:

Ax = y
A>Ax = A>y

x =
(
A>A

)−1
A>y

(1.4)

1la motivazione di questa scelta verrà discussa nei dettagli nel capitolo sullo studio dei modelli.
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Per costruzione x è una soluzione del sistema (1.1) ed è anche il vettore che minimizza la funzione (1.2). Viene indicata
con A+ la matrice pseudoinversa (pseudoinverse matrix ) di A e vale

A+ =
(
A>A

)−1
A> (1.5)

Questa soluzione del sistema è detta pseudoinversa di Moore-Penrose.
La pseudoinversa ha le seguenti proprietà

� La pseudoinversa di una matrice esiste se esiste l’inversa di A>A;

� La pseudoinversa di una matrice quadrata coincide con la sua inversa;

� La pseudoinversa di una matrice, se esiste, è unica.

È necessario precisare fin da subito che nel minimizzare la quantità (1.2) non si è fatta nessuna ipotesi sulla distribuzione
del rumore all’interno delle varie componenti di cui la matrice è composta: senza tale informazione non c’è garanzia che
la soluzione sarà ottima dal punto di vista statistico. Senza ipotesi sulla distribuzione del rumore, la soluzione ottenuta
con questa minimizzazione è infatti una soluzione puramente algebrica che minimizza appunto un errore algebrico (algebraic
error).

È possibile ottenere una soluzione leggermente migliore dal punto di vista statistico quando il rumore è gaussiano bianco
a media nulla e si conosce il valore della varianza del rumore su ogni osservazione. In questo caso è possibile assegnare ad
ogni equazione del sistema pesi differenti, moltiplicando ogni riga del sistema per un opportuno peso in modo da pesare in
maniera differente ogni dato acquisito. Discussione più approfondita su questo argomento si trova in sezione 3.2 e in generale
nel capitolo 2 si affronterà il caso generale dove si conosce il modo con cui l’errore sui dati osservati incide sulla stima dei
parametri.

Esistono invece delle tecniche stabili basate su fattorizzazioni che permettono di ricavare la soluzione partendo diretta-
mente dalla matrice A.

Usando per esempio la fattorizzazione QR, algoritmo notoriamente stabile dal punto di vista numerico, della matrice A
il problema originale (1.1) si trasforma nel problema QRx = y e la soluzione si può ricavare da Rx = Q>y, sfruttando
l’ortogonalità della matrice Q. Nella fattorizzazione QR vige la relazione R>R = A>A ovvero R è fattorizzazione di
Cholesky di A>A: attraverso questa relazione si può ricavare infine la pseudoinversa in maniera esplicita.

Attraverso invece la Decomposizione ai Valori Singolari Singular Value Decomposition (SVD), la matrice sovradimensio-
nata A viene scomposta in 3 matrici dalle proprietà interessanti. Sia A = USV∗ la decomposizione ai valori singolari (SVD)
di A. U è una matrice unitaria di dimensioni m × n (a seconda del formalismo usato, complete SVD o economic SVD, le
dimensioni delle matrici possono cambiare, e U diventare m×m), S è una matrice diagonale che contiene i valori singolari
(gli autovalori della matrice AA>, di dimensioni, a seconda del formalismo, n×n o m×n) e V∗ è una matrice ortonormale,
trasposta coniugata, di dimensioni n× n.

Attraverso un procedimento puramente matematico si ottiene che la pseudoinversa di A equivale a

A+ = VS+U∗ (1.6)

dove la pseudoinversa di una matrice diagonale S+ equivale alla sua inversa ovvero una matrice diagonale costituita dai
reciproci dei rispettivi valori.

Riassumendo, i modi per risolvere un sistema lineare sovradimensionato sono

� Usando le normal-equations (A>A)x = A>b ovvero la pseudo-inversa di Moore-Penrose x = (A>A)−1A>b (siccome
(A>A) è semidefinita positiva si può usare Cholesky come risolutore);

� La decomposizione QR A = QR→ x = R−1Q>b;

� la decomposizione SVD A = UΣV > → x = A+b = V Σ+U>b;

� La decomposizione di Cholesky A>Ax = U>Ux = A>b → x = U−1
(
U−>A>b

)
(essendo U la matrice triangolare

superiore U−1 e U−> sono facili da calcolare);

Dal punto di vista del calcolo numerico si può ridurre il numero di condizione della matrice da invertire scalando le colonne
di A.

Dettagli ulteriori sulla pseudoinversa di Moore-Penrose possono essere trovati in molti libri, per esempio in [CM09] o nel
testo fondamentale di calcolo numerico [GVL96].

Esaminiamo ora il caso in cui il sistema lineare da risolvere sia invece omogeneo.
Un sistema lineare omogeneo ha la forma

Ax = 0 (1.7)

e normalmente la soluzione ovvia x = 0, che è si ottiene anche attraverso l’equazione (1.4), non risulta utile ai fini del
problema. In questo caso è necessario trovare, sempre ai sensi di una regressione ai minimi quadrati, un x ∈ Rn, non nullo,
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rappresentate un sottospazio vettoriale ovvero il kernel di A. Il vettore generatore del sottospazio è conosciuto a meno di uno
o più fattori moltiplicativi (a seconda della dimensione del sottospazio nullo). Per ottenere una soluzione unica è necessario
imporre un vincolo aggiuntivo, per esempio |x| = 1, tale da poter cos̀ı formalizzare

x̂ = arg min
x

‖Ax‖2 (1.8)

con il vincolo |x| = 1 ovvero realizzando una minimizzazione vincolata.
Anche in questo caso la SVD si dimostra una tecnica estremamente efficace e computazionalmente stabile: le basi del

kernel di A infatti sono esattamente le colonne di V associate ai valori singolari (autovalori) nulli della matrice diagonale
S. In genere, a causa della presenza di rumore, non esisterà un valore singolare esattamente nullo ma deve essere scelta la
colonna associata al minimo valore singolare.

Gli autovettori associati a valori singolari nulli della matrice S rappresentano pertanto il kernel della matrice stessa e il
numero di autovalori nulli rappresenta la dimensione del kernel stesso. Va notato come nell’equazione (1.6) la presenza di zeri
nella matrice diagonale S fosse problematica: ora si capisce che tale presenza è sintomo del fatto che una delle componenti
del problema è totalmente incorrelata con la soluzione e, in quanto tale, potrebbe essere trascurata: tale risultato infatti sarà
utilizzato nella sezione 2.10.1 nella trattazione dell’agoritmo PCA.

La soluzione del sottospazio di A è pertanto

x =

N∑
i=1

βivi (1.9)

dove vi sono le colonne della matrice V, vettori singolari “destri”, di A corrispondenti ad N valori singolari, autovalori di 0
della matrice A>A.

La decomposizione SVD risulta una delle tecniche più stabili e versatili sviluppata negli ultimi anni per la risoluzione di
sistemi lineari e, in tutto questo libro, si farà larghissimo uso di tale tecnologia.

1.2 Autovalori e Autovettori

Gli autovalori e autovettori sono stati già anticipati nella sezione precedente. In questa verrà fatta una trattazione minimale
per poterli usare in maniera proficua.

Definizione 1 Data una matrice quadrata A di ordine n, un numero (reale o complesso) λ e un vettore non nullo x sono
detti rispettivamente autovalore e autovettore di A se vale la relazione

Ax = λx (1.10)

x è anche detto autovettore associato all’autovalore λ.

Un autovettore è un vettore x 6= 0 che non cambia direzione a seguito della trasformazione (applicazione) lineare geometrica
A ma cambia solo il modulo di un fattore λ detto autovalore.

Riscrivendo il sistema (1.10) usando la matrice identità I, segue che autovalore e autovettore associato si ottengono come
soluzione del sistema omogeneo:

(A− λI)x = 0 (1.11)

Se x è un autovettore di A associato all’autovalore λ e t 6= 0 un numero (reale o complesso), allora anche tx è un
autovettore di λ.

In generale l’insieme dei vettori x associati a un autovalore λ di A forma un sottospazio di Rn chiamato autospazio. La
dimensione di questo sottospazio è detta molteplicità geometrica dell’autovalore.

Definizione 2 Il polinomio caratteristico di A nella variabile x è il polinomio definito nel modo seguente:

p(x) = det(A− xI) (1.12)

Dalla definizione (1.11) si evince che λ è un autovalore se e solo se p(λ) = 0. Le radici del polinomio caratteristico sono
gli autovalori di A e di conseguenza il polinomio caratteristico ha grado pari alla dimensione della matrice. Le matrici 2× 2
e 3× 3 hanno polinomi caratteristici notevoli.

Proprietà degli Autovalori e Autovettori

� A e A> hanno gli stessi autovalori;

� Se A è non singolare, e λ è un suo autovalore, allora λ−1 è autovalore di A−1;

� Se A è ortogonale, allora |λ| = 1;
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� λ = 0 è autovalore di A se e solo se det(A) = 0;

� Gli autovalori di matrici diagonali e triangolari (superiori e inferiori) sono gli elementi della diagonale principale;

� La somma degli elementi diagonali è uguale alla somma degli autovalori ovvero trace A =
∑
λi;

� Il determinante di una matrice è uguale alla produttoria dei propri autovalori ovvero det A =
∏
λi;

� Le matrici simmetriche hanno autovalori reali e autovettori ortogonali pertanto l’insieme corrispondente di autovettori
unitari {vi} è un insieme di vettori ortonormali;

� Una matrice quadrata A può essere espressa in termine della matrice degli autovalori D = diag (λ1, . . . , λn) e autovalori
V nella forma

A = VDV−1 (1.13)

� Una matrice quadrata simmetrica A può essere espressa in termine dei suoi autovalori λi reali e autovalori {vi} nella
forma

A = VDV> =

n∑
i=1

λiviv
>
i (1.14)

detta decomposizione spettrale di A.

1.3 Parametrizzazioni alternative nello spazio e nelle varietà

I punti nei vari spazi Rn possono essere descritti con coordinate diverse da quelle cartesiane. In questa sezione vengono
presentate alcune parametrizzazioni utili che verranno usate nel resto del libro.

Introduciamo la seguente definizione:

Definizione 3 Sn è la sfera unitaria in Rn tale che:

Sn :=
{
x ∈ Rn : ‖x‖2 = 1

}
(1.15)

Siccome una generica parametrizzazione su Sn avrà n+ 1 componenti e 1 solo vincolo questa deve possedere per definizione
n gradi di libertà (DOF).

Nel caso n = 0 la “sfera” unitaria S0 = {−1,+1} è formata da solo 2 punti e perciò non è una varietà connessa.

Con n = 1 la varietà è esattamente la stessa di SO(2) ovvero con la parametrizzazione S1 =

{[
cosα
sinα

]
;α ∈ R

}
.

La sfera S2 (la superficie della sfera o una direzione in R3) invece è una 2-varietà che non ha struttura di gruppo. Può
essere parametrizzata da due parametri (ad esempio le coordinate polari come vedremo tra poco) ma presenterà sempre delle
singolarità.

1.3.1 Coordinate Polari

Dando per assodate le coordinate cartesiane, in questa sezione vengono introdotte le coordinate polari e in particolare
verranno mostrate le relazioni che legano le coordinate cartesiane a quelle polari.

x

y p

ϑ

ρ

Figura 1.1: Corrispondenza tra coordinate polari e cartesiane.

Per un punto nello spazio bidimensionale la relazione che lega questi due sistemi di coordinate si scrive come:

x = ρ cosϑ
y = ρ sinϑ

(1.16)

La trasformazione inversa, da cartesiane a polari, è

ρ =
√
x2 + y2

ϑ = atan2(y, x)
(1.17)
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Un punto su una sfera non ha invece una rappresentazione univoca: per lo stesso motivo, come verrà sottolineato più
volte in appendice, esistono infinite rappresentazioni di una rotazione nello spazio tridimensionale.

Una scelta molto diffusa sono le coordinate polari sferiche (sperical coordinate system).

x

y

z

p

ρ

ϑ

ϕ

Figura 1.2: Coordinate polari in 3 dimensioni: coordinate sferiche.

Con questa convenzione la relazione tra le coordinate cartesiane e quelle polari si scrive

x = ρ sinϑ cosϕ
y = ρ sinϑ sinϕ
z = ρ cosϑ

(1.18)

dove ϑ è definito come zenit mentre ϕ è chiamato azimuth.
La trasformazione inversa, da coordinate cartesiane a polari, si ottiene come

ρ =
√
x2 + y2 + z2

ϕ = atan2(y, x)

ϑ = atan2(
√
x2 + y2, z) = arccos(z/ρ);

(1.19)

1.3.2 Proiezione Stereografica

Una alternativa abbastanza comune per parametrizzare la sfera Sn è usare la proiezione stereografica per trasformare
coordinate dallo spazio della varietà Rn (spazio parametri) a Rn+1 (spazio cartesiano) e viceversa.

x, y

z

(0, 0, 1)>

(u, v)>

p

Figura 1.3: Proiezione stereografica.

Nella sfera tridimensionale S2, è possibile definire una funzione ϕ+3 come proiezione stereografica dallo spazio U+3 :=

S2/ [0, 0, 1]
>

a R2:
ϕ+3 : U+3 7→ R2

ϕ+3

(
[x, y, z]

>
)

=
1

1− z

[
x
y

]
(1.20)

insieme alla sua inversa

ϕ−1
+3

(
[u, v]

>
)

=
1

1 + u2 + v2

 2u
2v

−1 + u2 + v2

 (1.21)

avendo indicato con [0, 0, 1]
>

il “polo nord” della sfera. ϕ+3 e ϕ−1
+3 sono continue in U+3 e dunque la proiezione stereografica

è un omeomorfismo. In questa proiezione si crea una relazione tra il punto (u, v, 0) sul piano z = 0 e il punto sulla sfera
(x, y, z) intersezione tra il raggio proiettivo che unisce l’origine (0, 0, 1)> (unico punto di singolarità) con il punto del piano
e la sfera di raggio unitario, come mostrato in figura 1.3.

Allo stesso modo possono essere definiti degli spazi U±i := S2/ ±ei dove gli ei sono i versori unitari dentro i quali definire
6 parametrizzazioni simili (ognuna con la sua diversa singolarità) e questo permette di scegliere la parametrizzazione più
opportuna in modo da operare nel punto più distante dalla singolarità di quella specifica formula.
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1.4 Coordinate Omogenee

In questa sezione vengono introdotte le coordinate omogenee, un artificio matematico che risulta molto utile per la discussione
del problema della geometria proiettiva ma anche di diversi formalismi affrontati in diversi capitoli di questo libro.

Chiameremo coordinate omogenee (homogeneous coordinates) di un punto del piano p = (x, y) ∈ R2 una qualsiasi terna

ordinata p̃ = (x′, y′, w′) ∈ R3 di numeri reali tali che w′ 6= 0, x′

w′ = x e y′

w′ = y. Allo stesso modo coordinate omogenee di un

punto p = (x, y, z) ∈ R3 saranno una quadrupla di numeri p̃ = (x′, y′, z′, w′) ∈ R4 tali che w′ 6= 0 e x′

w′ = x, y′

w′ = y e z′

w′ = z.
Il punto p̃ espresso in coordinate omogenee equivale al punto reale p (inhomogeneous):

p̃ = (x′, y′, w′) = w′(
x′

w′
,
y′

w′
, 1) = w′(x, y, 1) = w′p

Il vettore (x, y, 1) è chiamato augmented vector .
Le coordinate omogenee hanno le seguenti proprietà:

� Le coordinate omogenee sono definite a meno di un coefficiente di proporzionalità. Ad esempio, la terna (x, y, 1) ed
ogni suo multiplo λ 6= 0, ovvero (x, y, 1) ∼= (λx, λy, λ), sono coordinate omogenee dello stesso punto dello spazio (x, y);

� I punti in coordinate omogenee con coordinata w = 0 sono detti impropri, points at infinity o ideal points, e non hanno
nessun significato geometrico nello spazio cartesiano, ma possono rappresentare un punto all’infinito, nella direzione
del vettore (x, y).

In coordinate omogenee c’è pertanto distinzione tra vettore (w = 0) e punto (w 6= 0), cosa che non accade con le
coordinate euclidee. L’insieme costituito da tutte le terne/quaterne non nulle forma uno spazio proiettivo bidimensiona-
le/tridimensionale.

Le coordinate omogenee permettono di rappresentare punti all’infinito e consentono di esprimere tutte le trasformazioni
di coordinate geometriche usate in visione artificiale in forma matriciale. L’uso di coordinate omogenee è usato in computer
graphics per la proprietà di rappresentare, esattamente come nel caso cartesiano, le trasformazioni affini attraverso l’uso di
matrici ed in più permettono di rappresentare con lo stesso formalismo anche le proiezioni prospettiche.

1.5 Linee, Piani e Iperpiani

In questa sezione viene fatto un breve riassunto delle equazioni delle rette e, per estensione, degli iperpiani. Una retta è un
insieme di punti che separa il piano cartesiano in due parti, il piano è l’insieme di punti che separa lo spazio tridimensionale
in due parti e, generalizzando, l’iperpiano è quell’insieme di punti che separa lo spazio Rn in due parti. Questa definizione
tornerà utile quando si parlerà in seguito di classificazione.

1.5.1 Retta

Esistono diverse formulazioni per esprimere il concetto di retta.
Nel caso più generale, quello multidimensionale, una retta, luogo dei punti x ∈ Rn di dimensione 1, assume la forma

x = p + tv (1.22)

dove p ∈ Rn è un generico punto di origine, v ∈ Rn è il vettore direzione e t ∈ R è uno scalare. In questo caso si parla di
raggio parametrico (parametric ray).

In buona parte delle applicazioni la retta è un concetto tipico dello spazio bidimensionale. In questo spazio, trascurando
l’equazione della retta scritta in forma esplicita y = mx+ q in quanto presenta singolarità, dedichiamo l’attenzione alla retta
scritta in forma implicita. L’equazione della retta scritta in forma implicita è:

ax+ by + c = 0 (1.23)

Tale rappresentazione è molto utile perché permette di considerare sia rette orizzontali che verticali senza singolarità alcuna.
Il parametro c vale zero quando la retta passa per l’origine e, ovviamente, la retta passa per un punto (x′, y′) quando
c = −ax′ − by′.

Nel caso bidimensionale l’equazione del raggio parametrico (1.22) si riduce all’equazione della retta implicita di parametri

(a, b) · v = 0 c = −(a, b) · p (1.24)

Dalla prime delle equazioni (1.24) si vede come il vettore formato dai parametri (a, b) e il vettore direttrice siano ortogonali
tra loro. Il vettore generatore dalla retta è infatti proporzionale per esempio a v ∝ (−b, a) o v ∝ ( 1

a ,−
1
b ). Il vettore v′

ortogonale alla retta data è semplicemente v′ ∝ (a, b) e la retta ortogonale a quella data ha una equazione implicita scritta
nella forma

bx− ay + c′ = 0 (1.25)
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dove c′ si ottiene selezionando il punto della retta originale in cui deve passare la perpendicolare.
I parametri della retta scritta in forma implicita sono omogenei (l’equazione (1.23) viene infatti chiamata equazione

omogenea della retta) ovvero rappresentano un sottospazio vettoriale di R3: qualunque multiplo di tali parametri rappresenta
la medesima retta. Tali parametri sono pertanto definiti a meno di un fattore moltiplicativo. Questa considerazione suggerisce
un ulteriore modo per rappresentare una retta e un generico iperpiano.

Le rette, scritte in forma omogenea implicita, devono soddisfare l’equazione (prodotto scalare):

l>x = 0 (1.26)

con x ∈ R3 punto in coordinate omogenee e l = (a, b, c)> i parametri della retta. Per le coordinate omogenee si veda la
precedente sezione 1.4 mentre si veda per le implicazioni di questa scrittura, sul dualismo punto-retta, il paragrafo 1.5.7.

Siccome la retta implicita è conosciuta a meno di un fattore moltiplicativo, esistono infiniti modi di esprimere la medesima
retta. Una possibile normalizzazione della retta si ottiene dividendo i parametri per la lunghezza

√
a2 + b2. In tal caso si

ottiene una soluzione particolare della retta in quanto i parametri sono quelli di una retta scritta in coordinate polari nella
stessa forma di equazione (1.46) e conseguentemente con questa normalizzazione il parametro c rappresenta la minima
distanza tra la retta e l’origine degli assi.

Infine, essendo la retta un iperpiano in 2 dimensioni, la sua equazione può essere scritta come in equazione (1.49).

1.5.2 Retta passante per due punti

Per due punti (x0, y0) e (x1, y1) dello spazio cartesiano R2 passa una retta implicita di equazione

(y1 − y0)x− (x1 − x0)y − y1x0 + x1y0 = 0 (1.27)

dove è ben visibile il fatto che non esistano singolarità e tutti i valori sono ammissibili. Indicando con (dx, dy) la differenza
tra i due punti, la retta passante per un punto (x0, y0) e diretta lungo il vettore (dx, dy) ha equazione

dyx− dxy + y0dx − x0dy = 0 (1.28)

Generalizzando al caso n-dimensionale, l’equazione della retta in Rn, passante per due punti p e q scritti in forma
omogenea, è il luogo dei punti x ∈ Rn tale che

x = (1− t)p + tq = p + t(q− p) (1.29)

equazione del raggio parametrico con t ∈ R valore scalare. I valori di x associati a valori t ∈ [0, 1] sono punti interni al
segmento (p,q).

Usando invece le coordinate omogenee, limitatamente al caso cartesiano bidimensionale, si ottiene il seguente risultato
notevole: la retta di parametri l = (a, b, c)>, passante per i punti x1 e x2, si ottiene come

l = x1 × x2 (1.30)

in quanto, un qualsiasi punto x, per appartenere alla retta deve soddisfare l’equazione (1.26).

1.5.3 Distanza punto-retta

La distanza di un punto (x′, y′) da una retta retta (line-point distance), intesa come distanza ortogonale, ovvero distanza tra
il punto dato e il punto più vicino sulla retta, vale:

d =
|ax′ + by′ + c|√

a2 + b2
(1.31)

Nel caso n-dimensionale il punto x appartenente alla retta di equazione (1.22) più vicino a un punto m è quel punto per
il quale lo scalare t assume il valore

t = (m− p) · v (1.32)

proiezione scalare sulla direttrice v del segmento m− p.
Questa versione risulta molto interessante nel caso si voglia misurare la distanza tra un punto m e un segmento (p,q)

sfruttando la retta generata come in equazione (1.29). In questo caso un valore di t compreso tra [0, 1] sta ad indicare che il
punto più vicino a m cade all’interno del segmento, in quanto proiezione scalare del segmento (p,m) sul segmento (p,q).

Infine nella sezione 1.5.10, in equazione (1.54), verrà mostrato come trovare il punto su un iperpiano più vicino a un
generico punto. Tale formulazione si può applicare anche alle rette scritte in forma di iperpiano e di conseguenza il punto
(x, y) appartenente alla retta (a, b, c) più vicino al punto (x′, y′) è

(x, y) =

(
x′ − aax

′ + by′ + c

a2 + b2
, y′ − bax

′ + by′ + c

a2 + b2

)
(1.33)
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1.5.4 Vicinanza punto-segmento

In diversi problemi è necessario conoscere la distanza tra un punto p e una polilinea formata da molteplici segmenti. Il peso
computazionale di questo problema cresce linearmente con il numero di punti con cui è formata la retta: per poter eseguire
queste analisi è necessario che il confronto con il singolo punto sia pertanto molto veloce.

In questa sezione verrà definito come segmento come quella parte di retta limitata tra i punti a e b. Il punto p e il
segmento possono relazionarsi in 3 modi: il punto più vicino è a, il punto più vicino è b o il punto più vicino è un punto
compreso tra i due estremi. Da un punto di vista prettamente computazionale calcolare queste 3 distanze richiederebbe
9 moltiplicazioni, 6 somme e una divisione, oltre ai necessari 3 confronti. Questa sezione mostra come si può migliorare
computazionalmente il confronto facendo uso del prodotto scalare.

Senza perdita di generalità si può supporre che a = (0, 0)>. Dalla definizione di prodotto scalare

p · b = cosα‖p‖‖b‖ (1.34)

e della lunghezza della proiezione ortogonale di p su b

cosα‖p‖ =
p · b
‖b‖

(1.35)

è possibile calcolare la distanza punto-segmento in maniera più efficiente. Il punto più vicino a p è a se e solo se α > π/2
ovvero p · b < 0, mentre il punto più vicino è b se e solo se la proiezione di p su b è maggiore di ‖b‖ ovvero p · b > ‖b‖2.
In questo caso per ottenere la sola informazione della vicinanza bastano 4 moltiplicazioni e 2 somme. Se e solo se il punto
vicino risulta interno si potrà procedere con la tradizionale distanza punto-retta.

1.5.5 Rette in R3

Si può vedere una generica retta in uno spazio Rn come interpolazione di due punti dello stesso spazio:

x = λp + (1− λ)q (1.36)

Nel caso specifico di R3 queste equazioni richiedono 6 parametri da stimare (una “bounded 3D line” ha in effetti 6 gradi di
libertà).

Una retta nello spazio Rn può essere vista come un punto più un versore:

x = x0 + tv̂ (1.37)

Nel caso specifico di R3 queste equazione richiedono 5 parametri (in quanto un versore può essere descritto da solo 2 variabili).
In questo caso il luogo dei punti si può ricavare moltiplicando per ×v̂:

x× v̂ = x0 × v̂ = n (1.38)

Il vettore x0 × v̂ descrive ovviamente un vettore ortogonale agli altri due ma la cui lunguezza è importante. Questa
rappresentazione è identica a quella che si ottiene usando il sistema di coordinate Pluckeriane.

Nello spazio R3 la retta è il luogo di punti dell’intersezione di 2 piani (di cui uno potenzialmente passante per l’origine).
Anche in questo caso parliamo di almeno 5 parametri da stimare.

Tuttavia in R3 le rette hanno solo 4 gradi di libertà: possiamo infatti vedere che ogni linea è tangente a una sfera di
raggio r, intersecante nel punto m = (r, θ, φ) in coordinate sferiche. L’ultimo parametro è un angolo di rotazione γ intorno
al vettore m per indicare la direzione della linea (questa parte richiede un paio di condizioni ulteriori per evitare singolarità).

1.5.6 Incrocio di due rette

Siano ora `1 e `2 due rette di parametri l1 e l2 intersecanti nel punto x espresso in coordinate omogenee. Per ottenere il
punto di incontro è necessario risolvere un sistema, omogeneo, nella forma{

l>1 x = 0
l>2 x = 0

(1.39)

Il sistema, del tipo Ax = 0, può anche essere esteso al caso di n rette intersecanti, con n > 2, ottenendo un sistema
sovradimensionato risolvibile con la tecnica della decomposizione SVD o QR. La soluzione del problema sovradimensionato,
affetto da rumore, rappresenta il punto che minimizza il residuo algebrico di equazione (1.39).

Nel caso di due sole rette, il sistema (1.39) fornisce direttamente la soluzione. L’intersezione tra due rette l1 e l2, scritte
in forma implicita (1.23), è il punto x = l1 × l2 espresso in coordinate omogenee, dove × è il prodotto vettoriale.

È da notare che, siccome le coordinate omogenee possono rappresentare punti all’infinito, questo particolare formalismo
ammette anche il caso in cui le due rette siano parallele.
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1.5.7 Principio di Dualità

Un concetto che tornerà utile di seguito è il principio di dualità punto-retta. Tale principio si basa sulla proprietà commutativa
del prodotto scalare applicata all’equazione della retta scritta in forma implicita dove i luoghi dei punti della retta sono espressi
sotto forma di coordinate omogenee:

l>x = x>l = 0 (1.40)

È pertanto possibile ottenere formazioni duali quando ai parametri di una retta l si sostituisce quelli di un suo punto x.
Da questa considerazione nasce il principio di dualità (Duality Principle) che garantisce che la soluzione del problema

duale, dove il significato di retta e punto vengono scambiati, è anche soluzione del problema originale.
Per esempio, come si è visto nelle sezioni precedenti, dati due punti p e q è possibile definire una linea l = p×q passante

per essi mentre date due linee l e m è possibile definire un punto x = l×m come loro intersezione.

1.5.8 Distanza tra rette in R3

Nello spazio R3, e in generale in tutti gli spazi di dimensione superiore, due rette l1 e l2 possono non incrociarsi in nessun
punto anche se non sono parallele. Tali rette si definiscono sghembe (skew lines). Per queste particolari rette un parametro
di interesse è la loro distanza minima e, conseguentemente, i punti sulle due rette che rappresentano tale minimo.

Siano due rette formate da punti x1 e x2 di equazione

x1 = p1 + t1v1

x2 = p2 + t2v2
(1.41)

dove p1 e p2 sono due generici punti appartenenti alle rette, v1 e v2 sono i vettori direzione, e t1, t2 ∈ R sono valori scalari,
incognite del problema.

La “distanza” tra due generici punti sulle due rette è

d = x2 − x1 = (p2 + t2v2)− (p1 + t1v1) = r + t2v2 − t1v1 (1.42)

avendo definito r = p2 − p1. La quantità da minimizzare è ‖d‖2, funzione di t1 e t2, il cui gradiente si annulla in

v1 · v1t1 − v1 · v2t2 = v1 · r
v2 · v1t1 − v2 · v2t2 = v2 · r

(1.43)

Questo è un sistema lineare in t1 e t2 facilmente risolvibile e, con tale soluzione, si possono ricavare i due punti di minimo
p1 e p2.

Esiste anche una formulazione alternativa al risolvere il sistema lineare giungendo allo stesso risultato attraverso consi-
derazioni puramente geometriche. Si può dimostrare che la distanza tra le due rette in R3 vale

d =
|r · n|
‖n‖

(1.44)

avendo definito n = v1×v2. Il vettore n, prodotto vettoriale, è per definizione ortogonale ad entrambe le rette e la distanza
è la proiezione del segmento r lungo tale vettore. Si vede bene che quando le linee sono parallele (n = 0) non è possibile
stabilire un valore ragionevole per la triangolazione.

Il piano formato dalla traslazione della seconda retta lungo n interseca la prima retta nel punto di minima distanza

t1 = r·v2×n
v1·v2×n

t2 = r·v1×n
v2·v1×n

(1.45)

Indipendentemente dal formalismo scelto, mettendo questi valori dentro le equazioni 1.41 si ricavano le coordinate
tridimensionali dei punti tra loro più vicini delle rette.

1.5.9 Retta in coordinante polari

Le rette viste finora tendono ad avere una rappresentazione sovradimensionata rispetto ai gradi di libertà. La retta sul piano
R2 infatti ha solo 2 gradi di libertà mentre la retta scritta in forma implicita dipende da ben 3 parametri, conosciuti a meno
di un fattore moltiplicativo e senza un significato geometrico ben visibile. Dall’altra parte, l’equazione esplicita della retta a
due parametri y = mx+ q presenta la singolarità delle rette verticali.

Una soluzione al problema è cambiare parametrizzazione e sfruttare le coordinate polari. Usando le coordinate polari
risulta possibile esprimere una retta in uno spazio bidimensionale senza singolarità e usando solo 2 parametri:

x cos θ + y sin θ = ρ (1.46)
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x

y

ρ

n̂

θ

l

Figura 1.4: Retta espressa in coordinate polari.

dove ρ è la distanza tra la retta e il punto (0, 0) e θ è l’angolo che forma tale segmento distanza (ortogonale alla retta)
e l’asse delle ascisse (figura 1.4). Si confronti tale rappresentazione con quella espressa in equazione (1.49). Sotto questa
formulazione il legame tra questi due parametri e l’equazione della retta diventa non lineare.

Tale equazione è comunemente usata nella trasformata di Hough per le rette (sezione 3.11) per poter sfruttare uno spazio
dei parametri bidimensionale e limitato.

Con questa particolare forma, la distanza tra un punto dello spazio (xi, yi) e la retta si scrive in maniera molto compatta
come

d = |xi cos θ + yi sin θ − ρ| (1.47)

1.5.10 Piani

z

y

x

n̂

Figura 1.5: Esempio di piano in R3.

È possibile generalizzare il discorso delle rette a piani ed iperpiani nello spazio Rn. Come per le rette infatti esiste
una forma implicita e omogenea dell’equazione di un piano intesa come luogo dei punti espressi dalla coordinata x̃ ∈ Rn+1

omogenea a x ∈ Rn:

m>x̃ = 0 (1.48)

Il prodotto scalare tra coordinate omogenee codifica sempre degli iperpiani.
Le coordinate omogenee sono conosciute a meno di un fattore moltiplicativo e pertanto si può forzare un vincolo opzionale:

come per le rette si può pensare che i primi n parametri della coordinata omogenea formino un vettore di lunghezza unitaria.
Un generico piano, o iperpiano, è dunque il luogo dei punti x ∈ Rn che soddisfano la condizione

x · n− ρ = 0 (1.49)

dove n ∈ Rn è la normale al piano e ρ = 0 se e solo se il piano passa per l’origine. Nel caso di ρ 6= 0 una scrittura alternativa
del piano è

1

ρ
p · n = 1 (1.50)

e un’altra scrittura dell’equazione (1.49) che si può trovare in letteratura è

(x− x0) · n = 0 (1.51)

con x0 ∈ Rn un generico punto del piano da cui si può ricavare la corrispondenza ρ = x0 · n.
Bisogna ricordare che i gradi di libertà sono comunque sempre e solo n.
Quando introdotto, il vincolo di normalizzazione |n̂| = 1 rappresenta un caso particolare: sotto questa condizione, come

nel caso delle rette, ρ assume il significato di minima distanza euclidea tra il piano e l’origine.
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Se il piano (o l’iperpiano) è normalizzato, la distanza tra un generico punto p e il piano si misura come

d = |p · n̂− ρ| (1.52)

altrimenti, come nel caso delle rette, è necessario dividere la distanza per ‖n‖.
Il punto x più vicino a un generico punto p appartenente all’iperpiano si trova nell’intersezione tra la retta di direzione

n passante per p e il piano stesso: {
p + tn = x
x · n = ρ

(1.53)

ovvero in

x = p− p · n− ρ
|n|2

n (1.54)

Tale formulazione è applicabile anche alle rette come si è già visto.
Per quanto riguarda i vari metodi per la generazione, nella sezione 3.6.3 verrà mostrato come ottenere la regressione ai

minimi quadrati di un insieme di punti all’equazione di piano.
Come nel caso della retta, anche i parametri del piano in R3 possono essere espressi attraverso l’uso di 3 coordinate polari

(azimuth, zenith e ρ):
x sinϑ cosϕ+ y sinϑ sinϕ+ z cosϑ = ρ (1.55)

equazione del piano espressa in coordinate polari sferiche (1.18).

1.5.11 La divisione del piano

La retta (iperpiano) separa il piano (lo spazio) in due parti e all’interno di ognuna di queste parti la funzione m>x assume
il medesimo segno. Attraverso questa considerazione è possibile facilmente scoprire se un insieme di punti si trovano tutti
dallo stesso lato rispetto a una retta/iperpiano o meno.

Per esempio, nel caso della retta, a seconda di come è orientato il vettore generatore, è possibile capire in quale dei due
semipiani (sinistro, destro) cade un generico punto, attraverso lo studio di s = axi + byi + c: quando s < 0 il punto si trova
a sinistra della retta, s > 0 il punto si trova alla destra e infine quando s = 0 il punto è sulla retta.

Questa considerazione, ovvero che l’equazione di un piano permette in maniera molto efficiente di individuare in quale
semipiano cade un generico punto, verrà utilizzata nel capitolo sui classificatori: la semplice equazione di una retta o di un
piano può essere usata come classificatore se lo spazio delle categorie, generato da opportune n caratteristiche misurabili
dell’immagine, è separabile da una superficie lineare.

1.6 Coniche

La conica è una curva algebrica luogo dei punti ottenibili come intersezione tra un cono a base circolare e un piano. L’equazione
di una conica scritta in forma implicita è

ax2 + bxy + cy2 + dx+ ey + f = 0 (1.56)

È da notare che i parametri della conica sono conosciuti a meno di un fattore moltiplicativo.
L’equazione (1.56) mostra l’equazione della conica scritta in coordinate cartesiane tradizionali, inomogenee. L’uso di

coordinate omogenee permette la scrittura di equazioni quadratiche in forma matriciale.
Se al posto delle coordinate cartesiane vengono usate le coordinate omogenee, applicando la sostituzione x = x1/x3 e

y = x2/x3, si può ottenere l’equazione della conica espressa in forma omogenea:

ax2
1 + bx1x2 + cx2

2 + dx1x3 + ex2x3 + fx2
3 = 0 (1.57)

In questo modo è possibile rappresentare l’equazione (1.56) in forma matriciale

x>Cx = 0 (1.58)

dove C è la matrice simmetrica 3× 3 dei parametri e x è il luogo dei punti (espresso in coordinate omogenee) della conica.
Essendo espressa da rapporti omogenei questa matrice è definita a meno di un fattore moltiplicativo. La conica è definita da
5 gradi di libertà ovvero dai 6 elementi della matrice simmetrica meno il fattore di scala.

Per il dualismo punto-retta, la linea l tangente a una conica C nel punto x è semplicemente l = Cx.
La scrittura della conica in equazione (1.58) ha la forma di una curva definita da un luogo di punti e perciò è anche

chiamata point conic perché definisce l’equazione della conica usando punti dello spazio. Usando il teorema di dualità è
anche possibile esprimere una conica C∗ ∝ C−1, duale della C, in funzione, questa volta, di rette: una linea tangente l alla
conica C soddisfa l>C∗l = 0.

Nella sezione 3.6.7 verranno presentate tecniche atte a stimare i parametri che codificano una conica dati i punti.
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1.7 Prodotto Vettoriale

Nello spazio R3 è possibile trasformare l’operatore prodotto vettoriale in una applicazione lineare, ovvero dare una rappre-
sentazione matriciale al prodotto vettoriale, tale che [x]×y = x× y.

Nel testo verrà indicata con [x]× la matrice 3×3 associata al prodotto vettoriale. La forma di tale matrice, antisimmetrica,
è

[x]× =

 0 −x2 x1

x2 0 −x0

−x1 x0 0

 (1.59)

dove x = (x0, x1, x2)>. Questa matrice ha il determinante nullo e rango massimo 2.

1.8 Trasformazioni geometriche

Le trasformazioni geometriche dei punti del piano sono trasformazioni biunivoche che ad ogni punto del piano associano uno
ed un solo punto del piano stesso.

Le trasformazioni geometriche si possono classificare in

Affinità Nel piano cartesiano la trasformazione affine è una applicazione biettiva che associa il punto p al punto p′

attraverso una funzione del tipo

p′ = Ap + t (1.60)

Una affinità gode delle seguenti proprietà:

� trasforma rette in rette;

� conserva la colinearità tra i punti;

� conserva il parallelismo e incidenza tra rette;

� in generale non conserva la forma ne gli angoli.

Essendo biettiva la trasformazione affine è invertibile, e l’inversa è anche essa una trasformazione affine di parametri

p = A−1p′ −A−1t = A′p′ + t′ (1.61)

Similitudine Una similitudine è una trasformazione affine che preserva il rapporto tra le dimensioni e gli angoli.

La forma dell’equazione è uguale a quella trasformazione affine (1.60) ma può rappresentare solo cambiamenti di scala, ri-
flessioni, rotazioni e traslazioni. A seconda del segno del determinante di A le similitudini si dividono in dirette (determinante
positivo) che preservano l’orientazione o inverse (determinante negativo) dove l’orientazione risulta ribaltata.

Isometria Le isometrie sono trasformazioni simili che conservano le distanze:

‖f(x)− f(y)‖ = ‖x− y‖ (1.62)

per ogni x, y ∈ Rn.

Le isometrie tra spazi euclidei si scrivono come in equazione (1.60) dove però A, condizione necessaria e sufficiente perché
sia una isometria, deve essere una matrice ortogonale.

Essendo ortogonale la matrice A deve avere determinante ±1. Come per le similitudini, se det A = 1 si dice che l’isometria
è diretta, mentre se det A = −1 l’isometria è inversa.

Sono per esempio isometrie

� traslazioni;

� rotazioni;

� simmetrie centrali ed assiali.
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1.9 Posa relativa tra sensori

Introduciamo per nomenclatura, le relazioni che intercorrono tra vari sistemi di riferimento e che verrà usata all’interno di
questo libro. Ulteriore nomenclatura sui sistemi di coordinate si troverà poi nella futura sezione 8.2 a cui bisogna in parte
far riferimento per alcuni termini.

Sia wx ∈ R3 un punto espresso in coordinate “globali”, “mondo” (world coordinates) e sia sx lo stesso punto espresso però
in coordinate “locali”, “sensore” (o body nel caso generico di un sistema in movimento rispetto a un altro). La coordinata
sx rappresenta una informazione spaziale rilevata dal mero sensore: tale coordinata pertanto non possiede la conoscenza
di come il sensore sia posizionato e orientato nello spazio mondo. Anche se rappresentanti il medesimo punto fisico, le
coordinate espresse dai due punti sono infatti differenti in quanto sono rappresentate in due sistemi di riferimento differenti:
uno rappresenta una posizione intesa come assoluta (il mondo), mentre il secondo rappresenta il punto visto dal sensore,
dove il sensore è al centro del sistema di riferimento allineato rispetto agli assi.

Definizione 4 La relazione che lega le coordinate mondo a quelle sensore è

wx = wRs
sx + wt (1.63)

con wRs matrice di rotazione che permette di trasformare un punto da coordinate sensore a coordinate mondo e t posizione
del sensore rispetto all’origine del sistema di riferimento.

Siano ora, indicati con i numeri 1 e 2, due generici sensori legati al comune sistema di riferimento mondo w attraverso i
parametri (wR1,

wt1) e (wR2,
wt2) rispettivamente, espressi come in definizione 4.

Sia (1R2,
1t2,1) la posa “relativa” del sensore 2 rispetto al sensore 1, posa che permette di convertire un punto dal sistema

di riferimento sensore 2 al sistema di riferimento sensore 1:

1x = 1R2
2x + 1t2,1 (1.64)

La matrice 1R2, che rappresenta l’orientazione del sensore 2 rispetto al sensore 1, trasforma le coordinate sensore mentre
1t2,1 è la posa del sensore 2 rispetto al sensore 1 espressa nel sistema di riferimento 1.

I parametri della posa relativa si ricavano dalle pose dei singoli sensori, pose espresse rispetto ad un terzo sistema di
riferimento (il sistema mondo), attraverso le relazioni:

1R2 = R−1
1 R2

1t2,1 = R−1
1 (t2 − t1)

(1.65)

D’ora in poi, per alleggerire la notazione, sottintendiamo il sistema di riferimento mondo w e pertanto, quando non indicato,
le coordinate sono riferite a questo sistema e il cambiamento di base porta anche esso verso quest’ultimo.

La posa relativa opposta (2R1,
2t1,2), che trasforma dal sistema 2 al sistema 1, si può ottenere da (1R2,

1t2,1) come

2R1 = R−1
2 R1 = 1R−1

2 = 1R>2
2t1,2 = −R−1

2 (t2 − t1) = − 1R>2
1t2,1

(1.66)

Data la conoscenza della posa relativa tra i sensori e della posa assoluta di uno dei due (in questo caso per semplicità il
sensore 1) è possibile ricavare la posa assoluta del secondo sensore attraverso la trasformazione

R2 = R1
1R2

t2 = R1
1t2,1 + t1

(1.67)

1.9.1 Stima delle rotazioni e traslazioni

Ci sono diverse tecniche per ottenere una stima ottima della trasformazione di rotazione e traslazione rigida tra punti
appartenenti al medesimo spazio. Per stima ottima si intende la stima alla massima verosimiglianza, dove il rumore di
osservazione ξi è totalmente additivo nello spazio Rn in cui vivono i punti.

Siano pertanto due insiemi di punti
{

1xi
}

e
{

2xi
}

tali che siano messi in relazione da

2xi = 2R1
1xi + 2t + ξi (1.68)

come in equazione (1.64) ma con il vettore rumore ξi.

Per risolvere il problema ottimo (R̂, t̂) che trasforma tutti i punti da x1 a x2 è richiesto un criterio ai minimi quadrati
che ottimizzi una funzione costo del tipo

S =
∑
i

wi‖
(

2R1
1xi + 2t

)
− 2xi‖2 (1.69)
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dove wi sono eventuali prior associati ad ogni campione. La soluzione ai minimi quadrati in forma non lineare chiaramente
ha problemi di minimi locali.

Un risultato notevole che riguarda il vettore traslazione si ricava applicando le classiche derivate 0 = ∂S/∂t all’equazio-
ne (1.69) che si annulla in

t̂ = 2̄x− R̂1̄x (1.70)

e pertanto data R è immediato trovare la traslazione in forma ottima o viceversa è sufficiente ricavare la sola rotazione R̂
per risolvere il problema delle pose. A questo risultato si arriva anche da un punto di vista intuitivo: il centroide delle due
serie di punti a seguito di una trasformazione rigida deve seguire la relazione di equazione (1.68).

La rotazione R ottima deve minimizzare pertanto

S =
∑
i

wi‖ 2R1
1pi − 2pi‖2 (1.71)

avendo definito pi = xi − x̄. Pertanto qualunque problema di registrazione di pose in n dimensioni si riduce sempre ad un
problema a n DOF.

Una prima tecnica per calcolare la rotazione fa uso delle componenti principali (si veda sezione 2.10.1). Le componenti
principali estratte da ogni insieme di punti separatamente sono una base dello spazio. È possibile determinare una rotazione
che le fa combaciare tali basi in quanto ricavate le matrici degli autovettori colonna R1 e R2 si ottiene direttamente
R = R2 (R1)

>
. Possono esistere tuttavia più soluzioni (e ognuna andrebbe verificata) e a causa del rumore ricavare gli

assi attraverso PCA può diventare estremamente inaffidabile (ad esempio se la distribuzione risultasse circolare risulterebbe
impossibile qualsiasi stima).

La cosa migliore per minimizzare (1.71) consiste nel minimizzare o meglio massimizzare:

arg minR

∑
i wi‖

2R1
1pi − 2pi‖2

= arg minR

(
−2
∑
i wip

>
i,2Rpi,1

)
= arg maxR

(∑
i wip

>
i,2Rpi,1

)
= arg maxR trace

(
WP>2 RP1

)
= arg maxR trace

(
RP1WP>2

) (1.72)

ovvero minimizzare il sistema di equazioni (1.69) è equivalente a massimizzare la traccia della matrice R̂H dove H è la
matrice di correlazione tra le due nuvole di punti definita come

H = cov(1x, 2x) =
∑
i

(
1xi − 1̄x

) (
2xi − 2̄x

)>
(1.73)

Si dimostra che la matrice R̂ che massimizza la traccia di R̂H è

R̂ = VU> (1.74)

avendo decomposto a valori singolari H = UΣV>. Questo algoritmo per la prima volta viene descritto in [Kab76], riscoperto

in [AHB87], ma sicuramente migliorato in [Ume91] (in particolare il caso det R̂ = −1) e normalmente viene chiamato
algoritmo di Kabsch-Umeyama.

Questa soluzione, molto più stabile di quella basata su PCA e sempre valida per n > 3, richiede una attenzione particolare
nei soli casi bidimensionali e tridimensionali per gestire eventuali riflessioni (in tal caso infatti il determinante della matrice
risultante potrebbe risultare negativo).

Lo “svantaggio” della tecnica basata su SVD rispetto a quella basata su PCA è la richiesta che le associazioni tra i punti
delle due distribuzioni siano corrette.

L’unione delle due tecniche insieme ad un approccio iterativo prende il nome di Iterative Closest Point (ICP).

1.10 Trasformazioni omografiche

Le coordinate omogenee (sezione 1.4) permettono di rappresentare uno spettro molto ampio di trasformazioni unificando
sotto lo stesso formalismo sia trasformazioni lineari (affini, rotazioni, traslazioni) che trasformazioni prospettiche.

Dati due piani distinti Πi e Πj si dice che essi sono riferiti a una trasformazione omografica (homographic transformation)
quando esiste una corrispondenza biunivoca tale che:

� ad ogni punto o a ogni retta di Πi corrisponde un solo punto e una sola retta di Πi

� ad ogni fascio di rette di Πj corrisponde un fascio proiettivo su Πj
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Sia il piano Π osservato da due viste differenti. Nello spazio R2 l’omografia (la trasformazione omografica) è rappresentata
da equazioni del tipo:

uj =
h0ui + h1vi + h2

h6ui + h7vi + h8

vj =
h3ui + h4vi + h5

h6ui + h7vi + h8

(1.75)

dove (ui, vi) sono coordinate dei punti appartenenti al piano Πi, mentre (uj , vj) sono punti del piano Πj .
Per la sua particolare forma tale trasformazione è descrivibile attraverso una trasformazione lineare usando le coordinate

omogenee (sezione 1.4): ujvj
1

 = HΠ
ij

uivi
1

 (1.76)

avendo definito

HΠ
ij =

h0 h1 h2

h3 h4 h5

h6 h7 h8

 (1.77)

Nello spazio R2 le omografie sono codificate da matrici 3×3 (omografie 2D): allo stesso modo è possibile definire trasformazioni
omografiche per spazio di dimensione maggiore. Per compattezza e per mantenere il riferimento a una rappresentazione in
memoria row-major, come in C, la matrice HΠ

ij è stata espressa usando i coefficienti h0 . . . h8 piuttosto che la classica sintassi
per indicare gli elementi della matrice.

Viene definita matrice omografica HΠ
ij la matrice che converte punti omogenei xi appartenenti al piano Πi della immagine

i in punti xj omogenei dell’immagine j con la relazione

xj = HΠ
ijxi (1.78)

Essendo una relazione tra grandezze omogenee il sistema è definito a meno di un fattore moltiplicativo: qualunque
multiplo dei parametri della matrice omografica definisce la medesima trasformazione perché qualunque multiplo dei vettori
di ingresso o uscita soddisfa ugualmente la relazione (1.75). Come conseguenza di ciò i gradi di libertà del problema non sono
9, come in una generica trasformazione affine in R3, ma 8 in quanto è sempre possibile fissare un vincolo aggiuntivo sugli
elementi della matrice. Esempi di vincoli usati spesso sono h8 = 1 o ‖H‖F = 1. È da notare che h8 = 1 non è generalmente
un vincolo ottimo dal punto di vista computazionale in quanto l’ordine di grandezza che assume h8 può essere molto diverso
da quello degli altri elementi della matrice stessa e potrebbe generare singolarità, oltre al caso limite in cui h8 potrebbe essere
zero. Il vincolo alternativo ‖H‖F = 1, soddisfatto gratuitamente dell’uso di risolutori basati su fattorizzazioni SVD o QR, è
invece computazionalmente ottimo.

Figura 1.6: Esempio di trasformazione Omografica: l’omografia mette in relazione piani in prospettiva con piani non in
prospettiva.

Le applicazioni che coinvolgono trasformazioni omografiche sono molteplici. Verranno in dettaglio affrontante nel capito-
lo 8 della camera pin-hole, ma in sintesi tali trasformazioni permettono la rimozione della prospettiva da piani in immagine,
la proiezione di piani in prospettiva e associare i punti di piani osservati da punti di vista differenti. Un modo per ottenere
delle trasformazioni prospettiche è mettere in relazione punti tra i piani che si vogliono trasformare e determinare in questo
modo i parametri della matrice omografica (1.75) anche in maniera sovradimensionata, per esempio attraverso il metodo dei
minimi quadrati. Un modo per ricavare i coefficienti sarà mostrato nell’equazione (8.52). Va ricordato che tale trasforma-
zione, che lega punti di piani tra due viste prospettiche, vale solo e solamente per i punti dei piani considerati: l’omografia
mette in relazione punti di piani tra loro, ma solo quelli. Qualsiasi punto non appartenente al piano verrà riproiettato in una
posizione errata.
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Figura 1.7: Esempio di trasformazione Omografica: l’omografia mette in relazione piani “virtuali” tra loro.

È facile vedere che ogni omografia è sempre invertibile e l’inversa della trasformazione è una trasformazione omografica
anche essa: (

HΠ
ij

)−1
= HΠ

ji (1.79)

Una possibile forma per l’inversa dell’omografia (1.75) è

ui =
(h5h7 − h4h8)uj + (h1h8 − h2h7)vj + h4h2 − h1h5

(h4h6 − h3h7)uj + (h0h7 − h1h6)vj + h1h3 − h4h0

vi =
(h3h8 − h5h6)uj + (h2h6 − h0h8)vj + h0h5 − h2h3

(h4h6 − h3h7)uj + (h0h7 − h1h6)vj + h1h3 − h4h0

(1.80)

e, essendo conosciuta a meno di un fattore moltiplicativo, non è stato fatto uso di divisioni nel ricavare i parametri della
trasformazione inversa (unnormalized inverse homographic matrix ).

È da segnalare che quando i due piani messi in relazione sono paralleli, allora h6 = 0∧h7 = 0, la trasformazione omografica
si riduce ad una trasformazione affine (affine transformation) rappresentata dalle classiche equazioni

uj = h0ui + h1vi + h2

vj = h3ui + h4vi + h5
(1.81)

già incontrate in precedenza.

1.10.1 Omografia e Rette

Esistono applicazioni interessanti dell’omografia in diversi ambiti.
Una trasformazione omografica trasforma generalmente rette in rette. In casi particolari però può trasformare rette in

punti, come ad esempio nella proiezione prospettica di elementi all’orizzonte: le coordinate omogenee infatti rappresentano
diversamente punti e vettori, e quando una retta si riduce a un punto, la sua coordinata omogenea diventa 0.

La trasformazione omografica applicata a una retta (effetto del dualismo punto-retta) è esattamente la trasformazione
inversa di quella che trasforma i punti corrispondenti tra gli spazi: la trasformazione Hij che trasforma punti xi dall’immagine
i a punti xj dell’immagine j trasforma equazioni delle rette dall’immagine j all’immagine i:

xj = Hijxi
li = H>ijlj

(1.82)

Esaminando punti e rette all’infinito (esempio all’orizzonte) si vede come un punto all’infinito abbia coordinate (x, y, 0)>.
Esiste pertanto una linea speciale l∞ = (0, 0, 1)> che congiunge tutti questi punti.
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Il principio di dualità permette di spiegare come, data una trasformazione M (proiettiva o omografica), la trasformazione
che trasforma un punto x in x′ si scriva

x′ = Mx (1.83)

mentre la trasformazione che trasforma una retta l diventi invece

l′ = M−>l (1.84)

1.10.2 Omografia e Coniche

Una conica si trasforma attraverso una trasformazione omografica x′ = Hx in una conica. Infatti consegue che

x>Cx = x′>H−>CH−1x′ (1.85)

che è ancora una forma quadratica C′ ≡ H−>CH−1. L’uso del simbolo di equivalenza ≡ è necessario in quanto la conica è
conosciuta a meno di un fattore moltiplicativo.

Questo risultato notevole permette di dimostrare che una conica vista in prospettiva è ancora una conica.

1.11 Punti dentro triangoli e quadrilateri

Si consideri il problema di verificare se un punto è all’interno di poligoni relativamente semplici come i triangoli o i quadrilateri.
La trattazione del caso di poligono generico è più complessa e viene lasciata al lettore (e opzionalmente riconducibile al caso
triangolo/quadrilatero).

Nel caso di triangoli e quadrilateri gli approcci che saranno mostrati risultano molto efficienti nel caso in cui sia necessario
eseguire confronti tra un singolo poligono verso un numero elevato di punti in quanto tali tecniche permettono l’utilizzo di
precalcoli: l’idea base infatti è quella di sfruttare una trasformazione dello spazio delle coordinate del poligono in uno spazio
dove risulti più facile eseguire il confronto.

Per esempio, un parallelogramma formato da due vettori generatori può sempre essere trasformato in un quadrato
unitario (0, 0)− (1, 1) attraverso una trasformazione affine p 7→ (X,Y ). Un punto p cade all’interno del parallelogramma se
0 < X(p) < 1 e 0 < Y (p) < 1. La stessa trasformazione vale anche per i triangoli formati dagli stessi vettori generatori, con
però il confronto 0 < X(p) < 1 e 0 < Y (p) < 1−X(p). Per valutare se un punto cade all’interno del parallelogramma sono
necessarie appena 4 moltiplicazioni e 6 somme. Il costo di creazione della trasformazione affine è più elevato ma se il numero
di confronti è alto tale peso, costante, risulta trascurabile.

Per trasformare quadrilateri generici in un quadrato unitario (0, 0)−(1, 1) si deve usare invece la trasformazione omografica
(si veda la sezione 1.10). A scapito di un costo iniziale elevato di creazione della trasformazione, il controllo se un punto
appartiene o meno alla figura geometrica è relativamente semplice

0 < h0px + h1py + h2 < h6px + h7py + h8

0 < h3px + h4py + h5 < h6px + h7py + h8
(1.86)

limitato pertanto a 6 moltiplicazioni, 6 somme e 4 confronti.

1.12 Trasformazioni tra immagini e Look Up Table

src dst

(u, v)
(u′, v′)

f

f−1

Figura 1.8: Trasformazione diretta e inversa tra immagini.

Essendo un argomento abbastanza delicato che potrebbe portare alcune ambiguità conviene dedicare una sezione a come
in pratica vengono applicate le trasformazioni tra immagini.

Sia f una generica trasformazione biettiva

f : R2 → R2 (1.87)
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tale che trasformi il punto (u, v)> appartenente all’immagine sorgente nel punto (u′, v′)> dell’immagine destinazione, ovvero

(u′, v′)> = f(u, v) (1.88)

Questa trasformazione verrà chiamata Forward Warping .
Essendo le immagini non continue ma quantizzate in pixel, la trasformazione f non è usabile direttamente nelle applicazioni

reali perché potrebbe sia lasciare dei buchi nella seconda immagine sia proiettare più volte lo stesso punto della prima. Per
queste ragioni quando un immagine viene processata, si lavora sempre con la trasformazione inversa f−1 che, per ogni punto
dell’immagine destinazione (u′, v′)>, restituisce il punto dell’immagine sorgente (u, v) da cui estrarre il colore, ovvero:

(u, v)> = f−1(u′, v′) (1.89)

Questa trasformazione verrà indicata con Inverse Warping .
È chiaro che anche l’immagine sorgente è composta da pixel, ma la conoscenza del punto (u, v)> permette in maniera

molto semplice l’utilizzo di tecniche, quali l’interpolazione lineare, per ricavare il valore del pixel.
Se la funzione f−1 è molto complicata e si vuole applicare la medesima trasformazione a più immagini, per risparmiare

tempo computazionale si può creare una Look Up Table (LUT) di elementi (u, v)> grande come l’immagine destinazione dove
memorizzare per ogni elemento il risultato della trasformazione (1.89).

1.13 Accuratezza Sub-Pixel

Ogni quantità, informazione, caratteristica, che può essere estratta da un immagine è limitata dalla quantizzazione in pixel
dell’immagine stessa. Tuttavia, esaminando un intorno del punto da estrarre, è possibile fornire una stima, approssimata,
della posizione della caratteristica con precisione inferiore al pixel. Questi approcci sono tutti basati sul tentativo di modellare
localmente la funzione immagine, quantizzata, cercando di ricostruire l’informazione distrutta dalla quantizzazione spaziale.

Ogni problema ha una sua tecnica specifica per estrarre tale informazione. In questa sezione ne verranno esaminate
alcune.

1.13.1 Minimi e Massimi in 1D

Figura 1.9: Costruzione del modello a parabola e individuazione del massimo con precisione sub-pixel.

Se il punto da esaminare è il massimo o il minimo di una sequenza monodimensionale, si può approssimare il primo
vicinato del punto con una quadrica di equazione ax2 + bx+ c = y. La quadrica è il grado di funzione minimo che permetta
l’individuazione di minimi o massimi locali.

Siano pertanto y−1, y0 e y+1 i valori della funzione con scostamento di −1, 0 e +1 rispetto al minimo/massimo individuato
con precisione del pixel. L’equazione della quadrica passante per questi 3 punti assume la forma notevole

a =
y+1 − 2y0 + y−1

2
b =

y+1 − y−1

2
c = y0 (1.90)

Tale curva ha il punto di massimo/minimo, notevole, in

δ̂x = − b

2a
= − y+1 − y−1

2(y+1 − 2y0 + y−1)
(1.91)

δ̂x è da intendersi come scostamento rispetto al punto di massimo/minimo precedentemente individuato ovvero rappresenta
solamente la sua parte sub-pixel.

Questa equazione fornisce anche un ulteriore risultato notevole: se y0 è un punto di massimo/minimo locale significa che
tale valore sarà, per definizione, minore/maggiore sempre sia di y+1 che di y−1. Grazie a questa considerazione, si dimostra

facilmente che δ̂x è sempre compreso tra −1/2 e 1/2.
Esiste una formulazione alternativa: chiamando δ+ = y+1 − y0 e δ− = y−1 − y0 l’equazione della parabola diventa

a =
δ+ + δ−

2
b =

δ+ − δ−
2

(1.92)
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e il minimo si trova in

δ̂x = − δ+ − δ−
2(δ+ + δ−)

(1.93)

dove si vede bene che la posizione del minimo è ovviamente indipendente da y0 ma solamente funzione dei delta.

1.13.2 Minimi e Massimi in più dimensioni

In due dimensioni, ma lo stesso discorso vale per qualunque dimensione, bisogna estendere il problema di ricerca del massimo
a funzioni via via sempre più complesse.

La soluzione più immediata è analizzare il punto lungo ogni direzione spaziale in maniera indipendente: in questo modo
il problema si riconduce totalmente al caso monodimensionale.

Se si vuole sfruttare invece un intorno più ampio, il successivo modello più semplice da utilizzare è il paraboloide, quadrica
scritta nella forma

m0x
2 +m1x+m2y

2 +m3y +m4 = z (1.94)

dove i punti (x, y) sono sempre da intendersi come scostamenti rispetto al punto da modellare e z è il valore che assume
la funzione in quel determinato punto. Rispetto alla soluzione con gli assi totalmente separati, con questa equazione anche
i punti non sugli assi contribuiscono attivamente alla soluzione del problema. Chiaramente se nel sistema si inseriscono
solamente i 5 punti lungo gli assi, la soluzione sarà esattamente la stessa del caso visto nella sezione precedente.

Ogni elemento del problema fornisce pertanto un vincolo nella forma

m · xi = zi (1.95)

e tutti i vincoli insieme generano un sistema lineare potenzialmente sovradimensionato. In questo caso non esistono risultati
notevoli con cui ottenere in forma chiusa la soluzione ma la cosa più semplice da fare è precalcolare una fattorizzazione
del sistema formato dagli elementi xi, rappresentante un particolare intorno di (0, 0), in modo da velocizzare la successiva
risoluzione nel momento in cui i valori zi saranno conosciuti.

L’equazione (1.94) assume gradiente nullo nel punto(
− m1

2m0
,− m3

2m2

)
(1.96)

esattamente come per il caso monodimensionale, in quanto le due componenti, quella lungo la x e quella lungo la y, rimangono
comunque separate in fase di valutazione. Tale risultato è estendibile a casi n-dimensionali.

1.13.3 Minimi, Massimi e Punti di Sella

Per come è scritto, il modello presentato in precedenza vale sia per punti di minimo/massimo ma anche punti di sella. Tale
modello non tiene tuttavia conto di eventuali rotazioni che localmente può la funzione. Se per punti di minimo e massimo
tale rotazione è comunque in prima approssimazione ininfluente, nel caso dei punti di sella questa può assumere una certa
rilevanza.

La versione dell’equazione (1.94) che tiene conto di eventuali rotazioni degli assi è

m0x
2 +m1x+m2y

2 +m3y +m4xy +m5 = z (1.97)

Il sistema è totalmente compatibile con quello mostrato nella sezione precedente con l’unica differenza che ora le incognite
sono 6 e perciò è necessario processare almeno 6 punti nell’intorno del minimo/massimo/punto di sella. Anche in questo caso
non esistono soluzioni notevoli, ma conviene fattorizzare la matrice dei termini noti.

Il gradiente della funzione (1.97) si annulla nel punto corrispondente alla soluzione del sistema lineare{
2m0x+m4y = −m1

m4x+ 2m2y = −m3
(1.98)

risolvibile facilmente con la regola di Cramer.
I punti di sella possono essere utili per esempio per trovare con precisione subpixel marcatori a forma di scacchiera.

1.14 L’immagine Integrale

Sia I una generica immagine a toni di grigio. Il valore del pixel (x, y) dell’immagine integrale I rappresenta la somma dei
valori di ogni pixel dell’immagine sorgente contenuti all’interno del rettangolo (0, 0)− (x, y):

I(x, y) =

y∑
v=0

x∑
u=0

I(u, v) (1.99)
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I =
∑
v

∑
u I

v

u

c d

ba

S

S = I(d) + I(a)− I(b)− I(c)

Figura 1.10: Costruzione dell’immagine integrale e utilizzo per calcolare aree.

Con questa definizione è da notare che gli estremi del rettangolo sono compresi nella sommatoria (figura 1.10).
L’artificio computazione di usare l’immagine integrale permette di ottimizzare diversi algoritmi mostrati in questo libro

in particolare SURF (sezione 5.4) e l’estrazione delle feature di Haar (sezione 6.1).
Grazie all’immagine integrale è possibile, ad un costo computazionale costante di 4 somme, ottenere la sommatoria di

una qualunque sottoparte rettangolare dell’immagine I:∑y1
y=y0

∑x1

x=x0
I(x, y) =

I(x1, y1) + I(x0 − 1, y0 − 1)− I(x1, y0 − 1)− I(x0 − 1, y1)
(1.100)

Il valore cos̀ı ottenuto rappresenta la somma degli elementi dell’immagine originale all’interno del rettangolo (estremi
inclusi).

Oltre a poter calcolare velocemente la sommatoria di una qualsiasi sottoparte dell’immagine, è possibile ottenere facilmente
convoluzioni con kernel di forma particolare in maniera molto agevole e sempre con prestazioni invarianti rispetto alla
dimensione del filtro. Esempi di maschere di convoluzione si possono vedere in sezione 6.1.



Capitolo 2

Elementi di Statistica

La visione artificiale si pone come obiettivo quello di permettere la percezione del mondo attraverso gli occhi di un calcolatore.
Tuttavia, ogni qualvolta si voglia esaminare una quantità reale osservabile e ricondurla ad un modello matematico, bisogna
confrontarsi con la statistica. Per questa ragione, in questo secondo capitolo verranno mostrate alcune tecniche di statistica,
fondamentali per chi sviluppa algoritmi di visione delle macchine.

2.1 Media e Varianza

È facile supporre che la nozione della media tra numeri sia un concetto conosciuto a tutti, almeno da un punto di vista
puramente intuitivo. In questa sezione ne viene comunque fatto un breve riassunto, ne vengono date le definizioni e verranno
sottolineati alcuni aspetti interessanti.

Per n campioni di una quantità osservata x la media campionaria sample mean si indica x̄ e vale

x̄ =
1

n

n∑
i=1

xi (2.1)

La media campionaria, per definizione, è una quantità empirica.
Se si potessero campionare infiniti valori di x, x̄ convergerebbe al valore teorico, atteso (expected value). Questa è la legge

dei grandi numeri (Law of Large Numbers).
Il valor medio atteso (expectation, mean) di una variabile casuale X si indica con E[X] o µ e si può calcolare da variabili

aleatorie discrete attraverso la formula

E[X] = µx =

+∞∑
−∞

xipX(xi) (2.2)

e per le variabili continue attraverso

E[X] = µx =

∫ +∞

−∞
xpX(x)dx (2.3)

data la conoscenza della distribuzione di probabilità pX(x).
Introduciamo ora il concetto di media di una funzione di variabile aleatoria.

Definizione 5 Sia X una variabile aleatoria con funzione di probabilità pX(x) e g(x) una generica funzione misurabile in
x. Se assolutamente convergente l’integrale

E[g(X)] =

+∞∑
−∞

g(xi)pi E[g(X)] =

∫ +∞

−∞
g(x)pX(x)dx (2.4)

prende il nome di “valor medio della variabile aleatoria Y = g(X)”.

Esistono alcune funzioni la cui media assume un significato notevole. Quando g(x) = x si parla di statistiche di primo
ordine (first statistical moment), e in generale quando g(x) = xk si parla di statistiche di k-ordine. Il valor medio è pertanto
la statistica di primo ordine e un’altra statistica di particolare interesse è il momento di secondo ordine:

E[X2] =

∫ +∞

−∞
x2pX(x)dx (2.5)

Tale statistica è importante perché permette di stimare la varianza di X.

23
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La varianza è definita come il valore atteso del quadrato della variabile aleatoria X a cui viene tolto il suo valor medio,
ovvero momento di secondo ordine della funzione g(X) = X −E[X]:

var(X) = σ2
X = E[(X −E[X])2] (2.6)

e, supponendo X e E[X] processi indipendenti, si ottiene la forma più semplice e ampiamente usata della varianza

var(X) = σ2
X = E[X2]−E[X]2 (2.7)

La radice quadrata della varianza è conosciuta come deviazione standard (standard deviation) e ha il vantaggio di avere
la stessa unità di misura della grandezza osservata:

σX =
√

var(X) (2.8)

Estendiamo i concetti visti finora al caso multivariabile. Il caso multivariabile può essere visto come estensione a più
dimensioni dove ad ogni dimensione è associata una diversa variabile.

La matrice delle covarianze Σ è l’estensione a più dimensioni (o a più variabili) del concetto di varianza. È costruita come

Σij = cov(Xi, Xj) (2.9)

dove ogni elemento della matrice contiene la covarianza tra le varie componenti del vettore aleatorio X. La covarianza indica
come le differenti variabili aleatorie che compongono il vettore X sono tra loro legate.

I possibili modi di indicare la matrice di covarianza sono

Σ = E
[
(X −E[X])(X −E[X])>

]
= var(X) = cov(X) = cov(X,X) (2.10)

La notazione della cross-covarianza è invece univoca

cov(X,Y ) = E
[
(X −E[X])(Y −E[Y ])>

]
(2.11)

generalizzazione del concetto di matrice delle covarianze. La matrice di cross-covarianza Σ ha come elementi nella posizione
(i, j) la covarianza tra la variabile aleatoria Xi e la variabile Yj :

Σ =

 cov(X1, Y1) · · · cov(Xn, Y1)
...

...
cov(X1, Ym) · · · cov(Xn, Ym)

 (2.12)

La matrice di covarianza cov(X,X) è conseguentemente simmetrica.
La matrice di covarianza, descrivendo come le variabili sono tra di loro in relazione e di conseguenza quanto sono tra

loro slegate, è anche chiamata matrice di dispersione (scatter plot matrix ). L’inversa della matrice di covarianza si chiama
matrice di concentrazione o matrice di precisione.

La matrice di correlazione r(X,Y ) è la matrice di cross-covarianza normalizzata rispetto alle matrici di covarianza:

r(X,Y ) =
cov(X,Y )√

var(X)var(Y )
(2.13)

Questa matrice ha valori sempre nell’intervallo [−1, 1] o [−100%, 100%].

2.2 La distribuzione Gaussiana

La distribuzione Gaussiana è una delle distribuzioni di probabilità più diffuse nei problemi pratici in quanto modella buona
parte della distribuzione di probabilità in eventi reali. In questo documento in particolare è usata nei filtri (sezione 2.12) e
nei classificatori Bayesiani (sezione 4.2), in LDA (sezione 4.3).

Definizione 6 La distribuzione gaussiana standard che si indica con il simbolo N (0; 1), è quella di densità

p(x) =
1√
2π
e

(
−

1

2
x2

)
(2.14)

Definizione 7 La distribuzione gaussiana generale N (µ;σ2), con µ, σ ∈ R, σ2 > 0, è quella che si ottiene dalla distribuzione
standard con la trasformazione x 7→ σx+ µ.
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Figura 2.1: Distribuzione gaussiana

Nel caso univariabile (gaussiana univariata) la gaussiana ha la seguente funzione di distribuzione:

p(x) =
1

σ
√

2π
e
−

1

2

(
x− µ
σ

)2

(2.15)

dove µ è il valor medio e σ2 è la varianza. All’interno di ±σ da µ si concentra il 68% della probabilità, in ±2σ il 95% e in
±3σ il 99.7%.

La distribuzione gaussiana multivariabile (gaussiana multidimensionale) è data da un vettore µ di dimensione n, rappre-
sentante il valor medio delle varie componenti, e da una matrice di covarianza Σ di dimensioni n× n:

p(x) =
1

(2π)
n
2

√
|Σ|

e−
1
2 (x−µ)>Σ−1(x−µ) (2.16)

distribuzione normale di valor medio µ = [µ1, µ2, . . . µn]
T

e covarianza Σ =

σ11 · · · σ1n

...
. . .

...
σn1 · · · σnn

.

Si può anticipare che la quantità a esponente dell’equazione (2.16) è la distanza di Mahalanobis (sezione 2.4) tra x e µ.

Quando le variabili aleatorie sono tra loro indipendenti e di varianza uguale, la matrice Σ è una matrice diagonale con
valori tutti uguali a σ2 e la distribuzione di probabilità normale multivariata si riduce a

p(x) =
1

(2πσ2)n/2
e
−
|x− µ|2

2σ2 (2.17)

2.2.1 Gaussiana campionata

In applicazioni pratiche di elaborazione di segnali discreti, dove la gaussiana viene usata come filtro convolutivo, anche essa
deve essere rappresentata a passi discreti gk. La gaussiana viene normalmente campionata a passo uniforme ma, siccome ha
supporto infinito, vengono presi tanti campioni per solo 3 o 4 volte la deviazione standard della gaussiana:

gk =

{
ce−

k2

2σ2 |k| < 3σ
0 otherwise

(2.18)

con c fattore di normalizzazione scelto in modo tale che
∑
k gk = 1.

È possibile estendere la gaussiana al caso multidimensionale in modo molto semplice come:

gk1,k2,...,kn = gk1 · gk2 . . . gkn (2.19)

2.3 Modelli a Miscela

I modelli a miscela sono un tipo di modello di densità costituito da certo numero di funzioni di densità, solitamente gaussiane
(Gaussian Mixture Models) e queste funzioni sono unite per fornire una densità multimodale. I modelli a miscela permettono
di rappresentare distribuzioni di probabilità in presenza di sottopopolazioni. Possono, per esempio, essere impiegate per
modellare i colori di un oggetto e sfruttare tale informazione per eseguire il tracking o la segmentazione basata sul colore.
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Il mixture model è un formalismo matematico sufficiente per modellare una distribuzione di probabilità come somma di
distribuzioni parametriche. In termini matematici

pX(x) =

n∑
k=1

akh(x|λk) (2.20)

dove pX(x) è la funzione distribuzione modellata, n è il numero di componenti nel modello, e ak è il fattore di proporzione
del componente k. Per definizione 0 < ak < 1 ∀k = 1, . . . , n e a1 + · · ·+ an = 1. h(x|λk) è una distribuzione di probabilità
parametrizzata da un vettore (in generale) λk. Nel caso di modelli a miscela di gaussiane, il vettore dei parametri è formato
da media e varianza delle singole componenti.

I mixture models sono spesso utilizzanti quando si conosce h(x), si può campionare pX(x) e si vuole solo determinare
i parametri ak e λk. Un esempio di situazione pratica dove tale formalismo è impiegato, è quando si vuole analizzare una
popolazione formata da distinte sottopopolazioni.

2.4 La distanza di Mahalanobis

Un problema molto diffuso è quello di capire quanto un elemento x possa appartenere o meno a una distribuzione di proba-
bilità, permettendo di fornire una stima approssimativa se tale elemento sia un inlier, ovvero appartenga alla distribuzione,
o un outlier, ovvero esserne esterno.

La distanza di Mahalanobis [Mah36] permette di ottenere la misura di una osservazione normalizzata rispetto alla varianza
della stessa e per questo motivo viene anche indicata come “distanza generalizzata”.

Definizione 8 La distanza di Mahalanobis di un vettore x rispetto a una distribuzione di valor medio µ e matrice di
covarianza Σ è definita come

d(x) =
√

(x− µ)>Σ−1(x− µ) (2.21)

distanza generalizzata del punto rispetto alla media.

Tale distanza può venir estesa (generalized squared interpoint distance) al caso di due vettori x e y realizzazioni della
medesima variabile aleatoria con distribuzione di covarianza Σ:

d(x,y) =
√

(x− y)>Σ−1(x− y) (2.22)

Nel caso particolare di matrice covarianza diagonale, si riottiene la distanza euclidea normalizzata, mentre quando la
matrice di covarianza è esattamente la matrice identità (ovvero le componenti della distribuzione fossero di fatto incorrelate
tra loro) la formulazione sopra si ricondurrebbe alla classica distanza euclidea.

La distanza di Mahalanobis permette di misurare distanze su campioni di cui non si conoscono le unità di misura,
assegnando di fatto un fattore di scala automatico ai dati.

2.4.1 Standard Score

Una formulazione alternativa alla distanza di Mahalanobis è la Standard Score. Una variabile casuale X viene standardizzata,
usando le sue statistiche empiriche, applicando la trasformazione

Z =
X − µ
σ

(2.23)

con µ media e σ deviazione standard di X. La nuova variabile casuale Z ha, per definizione, media nulla e varianza unitaria.
È possibile usare questa Z-score per scremare potenziali outlier della distribuzione.

2.5 Trasformazioni di Variabili Aleatorie

Uno dei problemi fondamentali in statistica è capire come una variabile aleatoria si propaghi all’interno di un sistema
complesso e in che misura renda aleatoria l’uscita di tale sistema.

Sia f(·) una funzione che trasforma la variabile aleatoria X nella variabile aleatoria Y , ovvero y = f(x), con x realizzazioni
della variabile aleatoria X, e supponiamo che f sia invertibile, ovvero che esiste una funzione x = g(y) tale che g(f(x)) = x.

Sia Ix un generico intervallo del dominio di esistenza dei valori x e Iy = {y : y = f(x), x ∈ Ix} la sua corrispondente

immagine. È ovvio che le probabilità degli eventi di x in Ix e y in Iy devono essere uguali ovvero∫
Iy
pY (y)dy =

∫
Ix
pX(x)dx (2.24)
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Senza perdita di generalità è possibile porre a infinitesimo l’intervallo Ix. Sotto questa condizione la relazione (2.24) si
riduce a

pY (y)|dy| = pX(x)|dx| = pX(g(y))|dx| (2.25)

da cui

pY (y) = pX(g(y))
|dx|
|dy|

= pX(g(y))|g′(y)| = pX(x)

|f ′(x)|

∣∣∣∣
x=g(y)

(2.26)

Questa relazione si può facilmente estendere al caso di funzione non iniettiva, sommando i diversi intervalli, e al caso
multidimensionale, usando lo Jacobiano al posto della derivata.

2.6 Propagazione dell’incertezza

Per capire come si propaga esattamente l’incertezza in un sistema è pertanto necessario un processo, più o meno complesso,
sia di inversione che di derivazione del sistema stesso.

In molte applicazioni risulta pertanto difficoltoso, se non impossibile, ottenere in forma analitica la distribuzione di
probabilità all’uscita di una trasformazione di una generica distribuzione in ingresso. Per fortuna, in applicazioni pratiche,
spesso è richiesta una precisione inferiore nell’affrontare un problema di propagazione dell’incertezza, limitandosi normalmente
alle sole statistiche di primo e secondo ordine e limitandosi ai casi di distribuzione di probabilità di tipo gaussiano.

Somma o differenza di grandezze La variabile aleatoria Z = X±Y , somma/differenza di variabili aleatorie indipendenti,
ha varianza (covarianza) pari a

var(Z) = var(X) + var(Y ) (2.27)

La varianza della variabile risultante pertanto è la somma delle singole varianze.

Trasformazioni Lineari Sia y = Ax un sistema lineare dove al vettore aleatorio x è associata la matrice di covarianza
var(X). La matrice di covarianza della variabile aleatoria y risultante, uscita del sistema, è

var(Y ) = var(AX) = Avar(X)A> (2.28)

Tale relazione vale anche nel caso di proiezioni y = b · x e, in modo simile al sistema lineare, la varianza della variabile
Y diventa

var(Y ) = var(b>X) = b>var(X)b (2.29)

Generalizzando i casi precedenti, la cross-covarianza tra Ax e By si può scrivere come:

cov(AX,BY ) = Acov(X,Y )B> (2.30)

e, come caso particolare, la cross-covarianza tra x e Ax

cov(X,AX) = var(X)A> (2.31)

È da notare che cov(Y,X) = cov(X,Y )> = Avar(X).
Gli esempi di propagazione dell’incertezza visti finora si possono ulteriormente generalizzare, anticipando risultati impor-

tanti per il caso non-lineare, presentato la trasformazione affine f(x) definita come

f(x) = fx̄ + A(x− x̄) (2.32)

ovvero una trasformazione di variabili casuali Y = f(X) che di fatto di valor medio ȳ = fx̄ e matrice di covarianza
ΣY = AΣXA>.

Trasformazioni non lineari La propagazione della covarianza nel caso non-lineare non è infatti facilmente ottenibile in
forma chiusa e in genere si ottiene solo in forma approssimata. Tecniche come la simulazione Monte Carlo possono essere
usate per simulare in maniera molto accurata a diversi ordini di precisione la distribuzione di probabilità a seguito una
generica trasformazione. L’approssimazione lineare è comunque ampiamente usata nei problemi pratici ma, come si vedrà
nella sezione successiva, tecniche moderne permettono la stima della covarianza a ordini di precisione elevati in maniera
abbastanza semplice.

Normalmente, per statistiche di primo ordine (first-order error propagation), la trasformazione f non lineare viene
approssimata, attraverso l’espansione in serie, da una trasformazione affine

f(x) ≈ f(x̄) + Jf (x− x̄) (2.33)

con Jf matrice delle derivate parziali (Jacobiano) della funzione f . Con questa approssimazione, il risultato del caso lineare
affine mostrato in precedenza in equazione (2.32) può essere usato per determinare la matrice di covarianza della variabile
f(x), sostituendo alla matrice A lo Jacobiano, ottenendo la covarianza

ΣY = JfΣXJ>f (2.34)

e usando come valor medio atteso ȳ = f(x̄).
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2.6.1 Esempi di propagazione degli errori

Risulta importante nel campo della visione artificiale la teoria della propagazione degli errori, in quanto sono comuni opera-
zioni base di estrazione di caratteristiche affette da rumore, come per esempio la misura dell’intensità di colore o la misura
della posizione di una particolare feature sull’immagine, ed è importante capire quanto questo rumore influisce nei calcoli
successivi.

L’errore di misura dovuto a rumore additivo si formalizza come x = x̂+ ε, dove x è il valore osservato, x̂ il valore reale e
ε è il rumore additivo, per esempio gaussiano bianco di varianza σ2

x.
Nel caso della visione potrebbe essere interessante stimare come si propaga nel sistema l’errore generato dall’osservazione

imprecisa di un punto sull’immagine. In questo caso le variabili osservate saranno (x, y) coordinate immagine affette entrambe
da errore di localizzazione di varianza σ2

x e σ2
y rispettivamente, variabili normalmente (almeno in prima approssimazione)

non correlate tra di loro.
Usando il risultato di equazione (2.33), la generica funzione z(x, y), funzione in due variabili aleatorie, si può approssimare

al primo ordine attraverso l’espansione in serie di Taylor come

z(x′, y′) ≈ z(x, y) +
∂z

∂x

∣∣∣∣
x,y

(x′ − x) +
∂z

∂y

∣∣∣∣
x,y

(y′ − y) (2.35)

da cui si può stimare l’incertezza sul valore di z, applicando la propagazione della varianza vista nella sezione precedente,
ottenendo

σ2
z =

(
∂z

∂x

)2

σ2
x +

(
∂z

∂y

)2

σ2
y (2.36)

avendo scelto di calcolare la derivata in (x, y).
Con questa formulazione, si possono presentare alcuni esempi:

Esempio 1 La propagazione dell’errore di z = x+ y è

σ2
z = σ2

x + σ2
y (2.37)

risultato già visto in precedenza.

Esempio 2 La propagazione dell’errore di z = xy è

σ2
z = y2σ2

x + x2σ2
y (2.38)

Esempio 3 La propagazione dell’errore di z = 1
x±y è

σ2
z =

σ2
x + σ2

y

(x± y)4
(2.39)

Esempio 4 La propagazione dell’errore di z = x
y è

σ2
z =

1

y2
σ2
x +

x2

y4
σ2
y (2.40)

Esempio 5 La propagazione dell’errore di z =
√
x2 + y2 è

σ2
z =

x2σ2
x + y2σ2

y

x2 + y2
(2.41)

È interessante notare da queste equazioni come il valore assoluto che assumono le variabili (x e y negli esempi) influisca
direttamente sulla stima dell’errore sulla variabile finale z: alcune variabili producono risultati a varianza inferiore man
mano che aumentano di intensità, mentre altre possono avere un comportamento contrario. Per questi motivi, a seconda
della trasformazione e pertanto della stima del modello che si vuole ottenere, alcuni punti dell’immagine possono essere più
importanti da osservare rispetto ad altri.

2.6.2 Propagazione dell’errore attraverso statistiche linearizzate

L’approccio a Punti Sigma (Sigma-Point Approach o SPA) permette di stimare il valor medio e la varianza di una variabile
casuale all’uscita di un sistema modellato da una funzione f : Rn 7→ Rm non lineare.

Per stimare valor medio e varianza, la variabile casuale in ingresso x ∈ Rn viene approssimata da 2n + 1 punti X i,
chiamati sigma points, ognuno pesato con un peso wi, in modo da ottenere una distribuzione con media e varianza x̄ e Σx

rispettivamente, ovvero parametri esattamente uguali a quelli di x.
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Un modo per ottenere un insieme di punti, la cui distribuzione ha media e varianza uguali a quelli della distribuzione
originale, consiste nel prendere 2n+ 1 sigma-points e i rispettivi pesi nel modo seguente:

X 0 = x̄
X i = x̄ + ζ

(√
Σx

)
i

X i+n = x̄− ζ
(√

Σx

)
i

(2.42)

dove ζ è un fattore scalare che tiene conto di quanto i punti sigma siano diffusi rispetto al valor medio x̄. Associato a ogni
punto sigma è presente una coppia di pesi wmi e wci usati nel calcolo, rispettivamente, della media e della covarianza.

A differenza dei metodi montecarlo, i sigma-points sono scelti in maniera deterministica in modo da rappresentare al
meglio le statistiche della variabile.

Ottenuti i sigma-points, questi vengono trasformati (unscented transformation) attraverso la funzione f in punti sigma
trasformati

Yi = f(X i) i=0,...,2n (2.43)

Da questi punti è possibile calcolare media e varianza della variabile di uscita attraverso

ȳ ≈
∑2n
i=0 w

m
i Yi

Σy ≈
∑2n
i=0 w

c
i (Yi − ȳ)(Yi − ȳ)>

(2.44)

per ogni punto i = 0, . . . , 2n. Media e varianza cos̀ı ottenuti sono una buona approssimazione della media e varianza della
distribuzione in ingresso trasformata attraverso la funzione f .

Il problema affrontato dall’approccio a punti Sigma è comunque un problema mal definito perché esistono infinite distri-
buzioni di probabilità possedenti la stessa la media e la covarianza. La Unscented transform (UT) [JU97], una dei possibili
Sigma-Point Approach, fissa come valori ζ =

√
n+ λ, dove n è la dimensione dello spazio e λ è un numero definito come

λ = α2(n + κ) − n con α ∈]0.001, 1] un numero piccolo positivo e κ solitamente posto a 0 o 3 − n. In alcuni articoli viene
posto α = 1 e κ = 3− n per le distribuzioni gaussiane.

Anche nella trasformazione unscented i punti sigma sono punti pesati e i pesi sono differenti nel calcolo del valor medio
e della matrice di covarianza. La trasformazione unscented fissa pertanto questi pesi a

wm0 = λ
n+λ

wc0 = λ
n+λ + (1− α2 + β)

wi = wi+n = 1
2(n+λ)

(2.45)

La differenza tra i pesi wmi e wci è solo nel termine centrale. Viene fissato β = 2 per le distribuzioni gaussiane.

È da sottolineare che le varianti degli approcci sigma-point hanno tali pesi calcolati in maniera differente.

2.7 Condizionamento nei sistemi lineari sovradimensionati

Nella sezione 2.6 e seguenti si è discusso di come il rumore si propaghi attraverso trasformazioni lineare e non lineari.
In questa sezione invece si studia il caso complementare dove è conosciuta la stima del rumore sulla variabile in uscita dal

sistema lineare mentre si vuole sapere la stima del rumore sulle variabili in ingresso ovvero la bontà con cui si è ottenuta la
soluzione di un sistema lineare. Per buona parte di questa sezione si fa riferimento alla teoria discussa in sezione 1.1 e ne è
di fatto la continuazione, per integrarla poi, con nella sezione 3.5 al discorso più generale di regressione a modelli non lineari.

Sia pertanto
Ax = b (2.46)

un sistema lineare, ideale ovvero non affetto da rumore, con x la soluzione esatta del problema.
Una perturbazione δb sulla colonna dei termini noti (osservazioni,uscite), in

Ax = b̃ (2.47)

con b̃ = b + δb, provoca una perturbazione x̃ = x + δx sulla soluzione di entità pari a

δx = A−1δb (2.48)

In questo modo si ricade nel caso visto in precedenza di propagazione di rumore in un sistema lineare.
Un indice interessante consiste nel calcolare la norma dell’errore in relazione al valore atteso. Tale relazione vale

‖δx‖
‖x‖

≤ ‖A‖‖A−1‖‖δb‖
‖b‖

= κ(A)
‖δb‖
‖b‖

(2.49)

avendo definito κ(A) numero di condizionamento (condition number) della matrice dei coefficienti (sensitivity matrix ) A.
Nel caso particolare in cui A sia singolare, il condizionamento della matrice si pone pari a κ(A) =∞.
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Estendiamo ora l’analisi al caso in cui il sistema sia un sistema lineare sovradimensionato. A questo scopo è possibile
ricavare il condizionamento di una matrice usando un’ulteriore proprietà della decomposizione SVD. Sia

x = VS−1U∗b (2.50)

la soluzione di un problema lineare sovradimensionato attraverso il metodo della decomposizione SVD. Se si esplicita l’equa-
zione (2.50), si può mostrare come la soluzione di un sistema lineare, soluzione ottenuta attraverso la decomposizione SVD,
ha come forma

x =
∑ u>i b

σi
vi (2.51)

Da questa formulazione si vede che, quando i valori singolari σi sono bassi, ogni piccola variazione al numeratore viene
amplificata: sotto la norma euclidea il numero di condizionamento di una matrice è esattamente il rapporto tra il più grande
valore singolare rispetto al più piccolo. Il condizionamento è sempre positivo e un condizionamento prossimo all’unità indica
una matrice ben condizionata.

Riassumendo il condizionamento ha le seguenti importanti proprietà:

� κ(A) = κ(A−1)

� κ(cA) = κ(A) per ogni c 6= 0

� κ(A) ≥ 1

� κ(A) = σ1

σn
se la norma è euclidea

� κ(A) = 1 se A è ortogonale

Come è stato fatto notare nella sezione 1.1, la soluzione alle equazioni perpendicolari tende invece ad amplificare gli errori
rispetto a soluzioni alternative. È facile dimostrare infatti che in questo caso

κ
(
A>A

)
=
( σ1

σn

)2

(2.52)

2.8 Il Maximum Likelihood estimator

Da un punto di vista statistico il vettore dei dati x = {x1 . . . xn} sono realizzazioni di una variabile aleatoria di una popolazione
sconosciuta. Il compito dell’analisi dei dati è quella di individuare la popolazione che più probabilmente ha generato quei
campioni. In statistica, ogni popolazione è identificata da una corrispondente distribuzione di probabilità e associata a ogni
distribuzione di probabilità c’è una parametrizzazione unica ϑ: variando questi parametri deve essere generata una differente
distribuzione di probabilità.

Sia f(x|ϑ) la funzione di densità di probabilità (PDF) che indica la probabilità di osservare x data una parametrizzazione
ϑ. Se le osservazioni singole xi sono statisticamente indipendenti una dall’altra la PDF di x può essere espressa come
prodotto delle singole PDF:

f(x = {x1 . . . xn} |ϑ) = f1(x1|ϑ)f2(x2|ϑ) . . . fn(xn|ϑ) (2.53)

Data una parametrizzazione ϑ è possibile definire una specifica PDF che mostra la probabilità di comparire di alcuni dati
rispetto ad altri. Nel caso reale abbiamo esattamente il problema reciproco: i dati sono stati osservati e c’è da individuare
quale ϑ ha generato quella specifica PDF.

Definizione 9 Per risolvere il problema inverso, definiamo la funzione L : ϑ 7→ [0,∞), funzione di verosimiglianza
( likelihood), definita come

L(ϑ|x) = f(x|ϑ) =

n∏
i=1

fi(xi|ϑ) (2.54)

nel caso di osservazioni statisticamente indipendenti.

L(ϑ|x) indica la verosimiglianza del parametro ϑ a seguito della osservazione degli eventi x.

Il principio dello stimatore a massima verosimiglianza (MLE ) ϑ̂MLE , sviluppato originariamente da R.A. Fisher negli
anni ’20 del novecento, sceglie come migliore parametrizzazione quella che fa adattare meglio la distribuzione di probabilità
generata con i dati osservati.

Nel caso di distribuzione di probabilità gaussiana è utile una ulteriore definizione.

Definizione 10 Sia ` la funzione di verosimiglianza logaritmica ( log likelihood) definita come

` = logL(ϑ|x1 . . . xn) =

n∑
i=1

log fi(xi|ϑ) (2.55)
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avendo sfruttato le proprietà del logaritmo.
La miglior stima dei parametri del modello è quella che massimizza la verosimiglianza, ovvero la verosimiglianza logarit-

mica

ϑ̂ML = arg max
ϑ

L(ϑ|x1 . . . xn) = arg max
ϑ

n∑
i=1

log fi(xi|ϑ) (2.56)

siccome il logaritmo è una funzione monotona crescente.
È possibile trovare in letteratura, come stimatore ottimo, invece del massimo della funzione di verosimiglianza, il minimo

dell’opposta

ϑ̂ML = arg min
ϑ

(
−

n∑
i=1

log fi(xi|ϑ)

)
(2.57)

ovvero il minimo del negative log likelihood.
Questa formulazione risulta molto utile quando la distribuzione del rumore è gaussiana. Siano (xi, yi) le realizzazioni

della variabile aleatoria. Nel caso infatti di una generica funzione yi = g(xi;ϑ) + ε con rumore a distribuzione normale,
tempo costante e media nulla, la Likelihood è

L(ϑ|x) =

n∏
i=1

1

σ
√

2π
exp

(
− (yi − g(xi;ϑ))

2

2σ2

)
(2.58)

e pertanto la MLE stimata attraverso il minimo della negative log likelihood si scrive come

ϑ̂ML = arg min
ϑ

(
−

n∑
i=1

logN(xi, yi|ϑ)

)
= arg min

ϑ

n∑
i=1

(yi − g(xi;ϑ))
2

(2.59)

ovvero la tradizionale soluzione ai minimi quadrati è lo stimatore alla massima verosimiglianza in caso di rumore additivo
gaussiano a media nulla.

Ora, le m derivate parziali della log-verosimiglianza formano un vettore m× 1

u(β) =
∂`(β)

∂β
=


∂`

∂β1
...
∂`

∂βm

 (2.60)

Il vettore u(β) è chiamato score vector (o Fisher’s score function) della log-verosimiglianza. Se la log-verosimiglianza è
concava, lo stimatore alla massima verosimiglianza individua pertanto il punto per il quale

u(β̂) = 0 (2.61)

I momenti di u(β) soddisfano pertanto importanti proprietà: come abbiamo visto poco sopra la media di u(β) calcolata nel
punto di massima verosimiglianza è uguale a zero e la matrice di varianza-covarianza è

var (u(β)) = E
[
u(β)u(β)>

]
= −E

[
∂2`(β)

∂βj∂βk

]
= I(β) (2.62)

La matrice I, definita come il negativo dell’Hessiana, è chiamata expected Fisher information matrix e la sua inversa observed
information matrix.

2.8.1 Stima del Massimo a Posteriori

Il Maximum a Posteriori estimator, o maximum a posteriori probability (MAP), fornisce come stima (una delle) moda della
distribuzione a posteriori. A differenza della stima alla massima verosimiglianza, la MAP ottiene una densità a posteriori
facendo uso della teoria bayesiana, unendo la conoscenza a priori f(ϑ) con la densità condizionale L(ϑ|x) = f(x|ϑ) di
verosimiglianza, ottenendo la nuova stima

ϑ̂MAP = arg max
ϑ

f(ϑ|x) = arg max
ϑ

f(x|ϑ)f(ϑ)

f(x)
= arg max

ϑ
f(x|ϑ)f(ϑ) (2.63)

e nel caso di eventi non correlati la formula si trasforma in

ϑ̂MAP = arg max
ϑ

n∏
i=1

f(xi|ϑ)f(ϑ) = arg max
ϑ

{
n∑
i=1

log f(xi|ϑ)

}
+ log f(ϑ) (2.64)

dove, sempre per semplificare i conti, si sono sfruttate le proprietà del logaritmo.
Chiaramente se la probabilità a priori f(ϑ) è uniforme, MAP e MLE sono coincidenti.
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2.9 Media ponderata con la varianza

Avendo molteplici osservazioni con varianza differente σ2
i , si vogliono fondere le varie osservazioni. Questo è il caso per

esempio di più osservazioni dello stesso osservabile eseguite da diversi sensori nello stesso istante o con lo stesso sensore di
una quantità supposta costante ma con rumore di osservazione variabile nel tempo. L’obiettivo è ottenere una media pesata
di ogni singola osservazione del tipo

x̄ =
∑
i

wixi (2.65)

La varianza della variabile x̄ sarà per definizione.

σ2
x̄ =

∑
i

w2
i σ

2
i (2.66)

La soluzione ottima (stimatore di massima verosimiglianza) si ottiene minimizzando questa quantitá sotto il vincolo aggiuntivo∑
i wi = 1.
Il peso che minimizza questa quantità è

wi =

1
σ2
i∑
j

1
σ2
j

(2.67)

In questo modo la varianza della media è inferiore alla varianza dei singoli strumenti di misura ed equivale a

σ2
x̄ =

1∑
1/σ2

i

(2.68)

Conseguenza diretta è il poter unire n letture dello stesso sensore e dello stesso osservabile (supponendo il rumore di
osservazione a varianza costante) ma in istanti di tempo differenti. La varianza finale si riduce a

σ2
x̄ =

σ2
0

n
(2.69)

È possibile costruire in modo iterativo questo risultato attraverso la successione:

x̄i+1 = (1− k)x̄i + kxi+1 k =
σ2
x̄

σ2
x̄ + σ2

i+1

(2.70)

con k fattore di blending. Scritta in questo modo, la stima dell’osservabile è nella stessa forma del filtro di Kalman monodi-
mensionale (si confronti questo risultato con quello di sezione 2.12.2): senza rumore di processo, il guadagno k è tendente a
zero.

2.10 Analisi ad autovalori

Questa sezione è a cavallo tra analisi, statistica e classificazione e tratta quelle tematiche riguardanti l’analisi dei dati
sfruttando le informazioni fornite dagli autovalori e autovettori.

2.10.1 PCA

La Principal Component Analysis, o trasformazione discreta di Karhunen-Loeve KLT, è una tecnica che ha due importanti
applicazioni nell’analisi dei dati:

� permette di “ordinare” in una distribuzione vettoriale dei dati in modo da massimizzarne la varianza e, attraverso
questa informazione, ridurre le dimensioni del problema: si tratta pertanto di una tecnica di compressione dei dati a
perdita, o altrimenti una tecnica per rappresentare con meno dati la medesima quantità di informazione;

� trasforma i dati in ingresso in modo che la matrice di covarianza dei dati in uscita sia diagonale e pertanto le componenti
dei dati siano tra loro scorrelate.

Allo stesso modo esistono due formulazioni della definizione di PCA:

� proietta i dati su uno spazio a dimensione inferiore tale che la varianza dei dati proiettati sia massima;

� proietta i dati su uno spazio a dimensione inferiore tale che la distanza tra il punto e la sua proiezione sia minima.
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Figura 2.2: Componenti Principali.

Un esempio pratico di riduzione delle dimensioni di un problema è l’equazione di un iperpiano in d dimensioni: esiste una
base dello spazio che trasforma l’equazione del piano riducendola a d − 1 dimensioni senza perdere informazione, facendo
risparmiare cos̀ı una dimensione al problema.

Siano pertanto xi ∈ Rd vettori aleatori rappresentanti i risultati di un qualche esperimento, realizzazioni di una variabile
aleatoria a media nulla, che possono essere memorizzati nelle righe1 della matrice X di dimensioni d×n, matrice pertanto che
memorizza n vettori aleatori di dimensionalità d e con n > d. Ogni riga corrisponde a un diverso risultato x e la distribuzione
di questi esperimenti deve avere media, quantomeno quella empirica, nulla.

Assumendo che i punti abbiano media zero (cosa che si può sempre ottenere con la semplice sottrazione del centroide),
la loro covarianza delle occorrenze di x è data da

Σ = E(xx>) ≈ 1

n
X>X (2.71)

Se i dati in ingresso x sono correlati, la matrice di covarianza Σ non è una matrice diagonale.
L’obiettivo di PCA è trovare una trasformazione V ottima che trasformi i dati da correlati a decorrelati

y = V>x (2.72)

ed ordinati in base al loro contenuto informativo in maniera tale che, se preso un sottoinsieme delle basi, possa tale approccio
ridurre la dimensione del problema.

Se esiste una base ortonormale V, tale che la matrice di covarianza di ΣX espressa con questa base sia diagonale, allora
gli assi di questa nuova base si chiamano componenti principali di Σ (o della distribuzione di X). Quando si ottiene una
matrice di covarianza dove tutti gli elementi sono 0 tranne che sulla diagonale, significa che sotto questa nuova base dello
spazio gli eventi sono tra loro scorrelati.

Questa trasformazione può essere trovata risolvendo un problema agli autovalori: si può infatti dimostrare che gli elementi
della matrice di correlazione diagonale devono essere gli autovalori di ΣX e per questa ragione le varianze della proiezione
del vettore x sulle componenti principali sono gli autovalori stessi:

ΣV = V∆ (2.73)

dove V è la matrice degli autovettori (matrice ortogonale VV> = I ) e ∆ è la matrice diagonale degli autovalori λ1 ≥ . . . ≥ λd.
Per ottenere questo risultato esistono due approcci. Siccome Σ è una matrice simmetrica, reale, definita positiva, può

essere scomposta in
Σ = V∆V> (2.74)

chiamata decomposizione spettrale, con V matrice ortonormale, autovalori destri di Σ, e ∆ è la matrice diagonale che
contiene gli autovalori. Siccome la matrice Σ è definita positiva, tutti gli autovalori saranno positivi o nulli. Moltiplicando
a destra l’equazione (2.74) per V si mostra che è esattamente la soluzione del problema (2.73).

Tale tecnica tuttavia richiede il calcolo esplicito di Σ. Data una matrice rettangolare X, la tecnica SVD permette
esattamente di trovare gli autovalori e gli autovettori della matrice X>X ovvero di Σ e pertanto è la tecnica più efficiente e
numericamente stabile per ottenere questo risultato. Attraverso la SVD è possibile decomporre la matrice degli eventi X in
modo che

X = USV>

usando come rappresentazione la Economy/Compact SVD dove U sono gli autovettori sinistri (left singular vectors), S gli
autovalori di Σ e V gli autovettori destri. È da notare che usando la SVD non è necessario calcolare esplicitamente la matrice
di covarianza Σ. Tale matrice può essere tuttavia ricavata in un secondo momento attraverso l’equazione

Σ = X>X = VS2V> (2.75)

1In questo documento si è scelta la convezione per righe: in letteratura si trova in ugual maniera la rappresentazione per riga o per colonna dei
dati e di conseguenza la nomenclatura potrebbe essere differente e far riferimento a U invece che a V e viceversa.
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Confrontando questa relazione con quella di equazione (2.74) si ottiene anche che ∆ = S2.
Vanno ricordate le proprietà degli autovalori:

� Gli autovalori di XX> e di X>X sono i medesimi.

� I valori singolari sono gli autovalori della matrice X>X, ovvero la matrice di covarianza;

� Gli autovalori maggiori sono associati ai vettori direzione di massima varianza;

e anche una importante proprietà della SVD

x(l) =

l∑
i=1

uiσiv
>
i (2.76)

che è l’approssimazione di rango l più vicina a X. Questo fatto, unito alla caratteristica propria di SVD di ritornare i valori
singolari di X ordinati dal maggiore al minore, permette l’approssimazione di una matrice a una di rango inferiore.

Selezionando il numero di autovettori con autovalori abbastanza grandi è possibile creare una base ortonormale m × n
dello spazio Ṽ tale che y ∈ Rm ottenuto come proiezione

y = Ṽ>x

rappresenti uno spazio di dimensioni ridotte ma che comunque contenga la maggior parte dell’informazione del sistema.

Figura 2.3: Esempio dei primi 10 autovettori 24× 48 estratti dal dataset di pedoni Daimler-DB

2.10.2 ZCA

PCA è una tecnica che permette di decorrelare le componenti ma questo non impedisce agli autovalori di essere essere
differenti. Se si forzano tutti gli autovalori ad essere uguali (si veda anche 2.4.1), e di fatto viene cambiata l’unita di misura,
in modo tale che tutte le componenti principali siano uguali (le varianze siano uguali) la distribuzione viene detta sferizzata
e il procedimento viene indicato come sbiancamento (whitening) dei dati.

W è chiamata matrice di sbiancamento (whitening matrix ) ed è indicata come la soluzione Zero Components Analysis
(ZCA) dell’equazione

Y>Y = I (2.77)

Dopo la trasformazione di sbiancamento, i dati, oltre ad avere media zero e decorrelati, avranno covarianza identità.
La matrice sbiancata dalla PCA è ottenuta come

XPCA = V>X> = SU> (2.78)

ovvero WPCA = V> mentre la matrice sbiancante dalla ZCA si può ottenere da

XZCA = ∆−1XPCA = S−1XPCA = S−1V>X> = U> (2.79)

ovvero WZCA = S−1V> ma soprattutto il risultato notevole XZCA = U>.
È da notare che la matrice dopo la trasformazione PCA potrebbe avere un numero di componenti inferiore ai dati di

ingresso, mentre ZCA ha sempre lo stesso numero di componenti.

2.11 Elementi di probabilità

In questa sezione sono riportati alcune relazioni di probabilità utili poi nella sezione successiva.
Definiamo la funzione di densità di probabilità (probability density function, PDF) come

pX(x) = P (X = x) (2.80)

per poter fare i passaggi dal caso discreto al caso continuo.
Il teorema di Bayes (o formula di Bayes) è una relazione che si ottiene unendo il teorema della probabilità composta con

il teorema della probabilità assoluta.
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Partendo dalla definizione di probabilità condizionata P (A,B) = P (A|B)P (B) (multiplication rule) si ottiene:

P (A|B) =
P (A,B)

P (B)
(2.81)

e il viceversa

P (B|A) =
P (B,A)

P (A)
(2.82)

con la considerazione che P (A,B) = P (B,A) si ottiene

P (A|B) =
P (B|A)P (A)

P (B)
(2.83)

Si può applicare lo stesso ragionamento nel caso di tre variabili:

P (A,B,C) = P (A|B,C)P (B,C) = P (B|A,C)P (A,C) = P (B,A,C) (2.84)

si ottiene la formula di Bayes

P (A|B,C) =
P (B|A,C)P (A|C)

P (B|C)
(2.85)

dove si vede come si propaga la dipendenza da una terza variabile C.
Un’altra formula importante che verrà usata nella prossima sezione è il teorema della probabilità assoluta (law of total

probability):

P (B) =
∑

P (Ai, B) =
∑

P (Ai)P (B|Ai) (2.86)

o nel caso continuo

pX(x) =

∫
pX,Y (X = x, Y = y)dy =

∫
p(x|Y = y)p(y)dy (2.87)

densità marginale di X.

2.12 Filtri Bayesiani

In questa sezione viene discusso il problema dei filtraggi statistici ovvero quella classe di problemi dove sono a disposizione
dati proveniente da uno o più sensori affetti da rumore, dati che rappresentano l’osservazione dello stato dinamico di un
sistema, non direttamente osservabile ma di cui è richiesta una stima. Il procedimento attraverso il quale si cerca di trovare
la miglior stima dello stato interno di un sistema viene chiamato “filtraggio” in quanto è un metodo per filtrare via le diverse
componenti di rumore. L’evoluzione di un sistema (l’evoluzione del suo stato interno) deve seguire leggi fisiche conosciute
su cui va ad agire una componente di rumore (rumore di processo). È proprio attraverso la conoscenza delle equazioni che
regolano l’evoluzione dello stato che è possibile fornire una stima migliore dello stato interno.

Un processo fisico può essere visto, nella sua rappresentazione di spazio di stato (State Space Model), attraverso una
funzione che descrive come lo stato xt si evolve nel tempo:

ẋt = f(t,xt,ut,wt) (2.88)

con ut eventuali ingressi al sistema, conosciuti, e wt parametro rappresentante il rumore di processo, ovvero l’aleatorietà che
ne regola l’evoluzione. Allo stesso modo anche l’osservazione dello stato è un processo su cui agisce un rumore, in questo
caso definito di osservazione. Anche in questo caso è possibile definire una funzione che modella l’osservazione zt come

zt = h(t,xt,vt) (2.89)

con vt rumore di osservazione e funzione solo dello stato attuale.
Questo formalismo è descritto nel dominio continuo del tempo. Nelle applicazioni pratiche i segnali vengono campionati

a tempo discreto k e pertanto viene normalmente usata una versione a tempo discreto nella forma

xk+1 = fk(xk, uk, wk)
zk+1 = hk(xk, vk)

(2.90)

dove wk e vk possono essere visti come sequenze di rumore bianco di statistiche note.
Nei sistemi che soddisfano le equazioni (2.90), l’evoluzione dello stato è solo funzione dello stato precedente, mentre

l’osservazione è solo funzione dello stato attuale (figura 2.4). Se un sistema soddisfa tali ipotesi si dice che il processo
è markoviano: l’evoluzione del sistema e l’osservazione devono essere solo funzione dello stato corrente e non degli stati
passati. L’accesso all’informazione sullo stato avviene sempre per via indiretta attraverso l’osservazione (Hidden Markov
Model).
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x1 x2 ... xm

z1 z2 zm

Figura 2.4: Esempio di evoluzione e osservazione di un sistema markoviano.

Molti approcci per stimare da un insieme di misure lo stato sconosciuto di un sistema non tengono conto della natura
rumorosa di tali osservazioni. È possibile infatti costruire un algoritmo che esegua una regressione non lineare sulle osserva-
zioni per ottenere la stima di tutti gli stati del problema, risolvendo un problema di ottimizzazione con un elevato numero
di incognite.

I filtri, a differenza delle regressioni, si pongono come obiettivo quello di fornire la miglior stima di delle variabili (stato)
man mano che i dati delle osservazioni arrivano. Dal punto di vista teorico le regressioni sono il caso ottimo, mentre i filtraggi
convergono al risultato corretto solo dopo un numero di campioni sufficientemente elevato.

I filtri bayesiani si pongono come obiettivo quello di stimare all’istante di tempo k, discreto, lo stato della variabile
aleatoria xk ∈ Rn data un’osservazione del sistema, indiretta, zk ∈ Rm.

Le tecniche di filtraggio permettono sia di ottenere la stima migliore dello stato sconosciuto xk ma anche la distribuzione
di probabilità multivariata p(xk) rappresentante la conoscenza che si ha dello stato stesso.

Data l’osservazione del sistema è possibile definire una densità di probabilità di xk a posteriori dell’osservazione dell’evento
zk dovuta proprio alla conoscenza in più che si ottiene da tale osservazione:

p+(xk) = p(xk|zk) (2.91)

dove, probabilità condizionata, p(xk|zk) indica la probabilità che lo stato nascosto sia xk data l’osservazione zk. La “funzione”
p(xk|zk) rappresenta il modello della misurazione dello stato (measurement model). In letteratura la distribuzione a posteriori
p+(xk) viene anche indicata come belief.

Applicando il teorema di Bayes all’equazione (2.91) si ottiene

p(xk|zk) = ckp(zk|xk)p(xk) (2.92)

con ck fattore di normalizzazione tale che
∫
p(xk|zk) = 1. La conoscenza di p(zk|xk) risulta indispensabile, conoscenza che

rappresenta la probabilità che l’osservazione sia proprio la quantità zk osservata dato il possibile stato xk. L’utilizzo del
teorema di Bayes per stimare lo stato data l’osservazione è il motivo per il quale questa classe di filtraggi è detta bayesiana.

Oltre alla conoscenza a posteriori della distribuzione di probabilità, è possibile sfruttare un’ulteriore informazione per
migliorare la stima: la conoscenza a priori rispetto all’osservazione, ottenuta dal vincolo secondo il quale lo stato non si evolve
in maniera totalmente imprevedibile ma viceversa può solo evolversi in determinati modi con determinate probabilità. Tali
modi in cui il sistema si può evolvere sono funzione solamente dello stato corrente. L’ipotesi di processo Markoviano implica
infatti che l’unico stato passato che influisca sull’evoluzione del sistema sia quello di tempo k − 1, ovvero p(xk|x1:k−1) =
p(xk|xk−1).

È pertanto possibile eseguire la predizione a priori, grazie all’equazione di Chapman-Kolmogorov:

p−(xk) =

∫
p(xk|xk−1,uk)p(xk−1)dxk−1 (2.93)

dove p(xk|xk−1,uk) rappresenta la dinamica del sistema (dynamic model) e uk sono gli eventuali ingressi, che influenzano
l’evoluzione del sistema, di cui però la conoscenza è totale.

Dalla conoscenza dello stato a priori e dall’osservazione zk è possibile riscrivere l’equazione (2.91) nell’equazione di
aggiornamento dello stato

p+(xk) = ckp(zk|xk)p−(xk) (2.94)

Lo stato viene stimato alternando una fase di predizione (stima a priori) a una fase di osservazione (stima a posteriori).
Questo processo, iterativo, prende il nome di stima bayesiana ricorsiva (Recursive Bayesian Estimation).

Le tecniche descritte in questa sezione faranno riferimento solo all’ultima osservazione disponibile per stimare lo stato.
Dal punto di vista formale è possibile estendere la discussione al caso in cui vengano sfruttate tutte le osservazioni per
ottenere una stima più accurata dello stato. In questo caso le equazioni di filtraggio e predizione diventano

p(xk|z1:k) =
∫
p(x1:k|z1:k)dx1:k−1

p(xk+1|z1:k) =
∫
p(xk+1|xk)p(xk|z1:k)dxk

(2.95)

Per motivi di semplicità e per il ridotto peso computazionale normalmente viene valutata solo l’ultima osservazione, ma
in determinati casi (per esempio nei filtri particellari) è possibile introdurre la conoscenza di tutta la storia passata nelle
equazioni in maniera abbastanza agevole.
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In quanto stima di variabili continue, non risulta possibile sfruttare la teoria bayesiana “direttamente” ma sono state
proposte in letteratura diversi approcci per permettere la stima in maniera efficiente sia dal punto di vista computazionale
che di utilizzo della memoria.

A seconda che il problema sia lineare o non-lineare, che la distribuzione di probabilità del rumore sia gaussiana o meno,
ognuno di questi filtri si comporta in maniera più o meno ottima.

Il Filtro di Kalman (sezione 2.12.2) è il filtro ottimo nel caso in cui il problema sia lineare e la distribuzione del rumore
gaussiana. I filtri di Kalman Estesi e a Punti Sigma, sezioni 2.12.4 e 2.12.5 rispettivamente, sono filtri sub-ottimi per problemi
non-lineari e distribuzione del rumore gaussiana (o poco discostanti da essa). Infine i filtri particellari sono una soluzione
sub-ottima per i problemi non lineari con distribuzione del rumore non gaussiana.

I filtri grid-based (sezione 2.12.1) e i filtri particellari (sezione 2.12.8) lavorano su una rappresentazione discreta dello
stato, mentre i filtri Kalman, Extendend e Sigma-Point lavorano su una rappresentazione continua dello stato.

Kalman, Kalman Esteso e Kalman a Punti Sigma stimano la distribuzione dell’incertezza (dello stato, del processo,
dell’osservazione) come una singola gaussiana. Esistono estensioni multimodali come Multi-hypothesis tracking (MHT ) che
permettono di applicare i filtri di Kalman a distribuzioni come miscela di gaussiane, mentre i filtri particellari e grid-based
sono per loro natura multimodali.

Un ottimo survey sui filtraggi bayesiani è [Che03].

2.12.1 Metodi Grid-based

Gli approcci grid-based si adattano perfettamente a quei problemi dove lo stato assume solo un numero limitato di valori
discreti (vengono infatti detti Filtri Discreti) mentre permettono di fornire una stima approssimata nel caso di stato continuo
(histogram filters) trasformato in discreto attraverso una quantizzazione spaziale. Ad ogni elemento della griglia (o dell’i-
stogramma) è associata la probabilità che lo stato sia effettivamente in quella particolare cella. La teoria dei filtri bayesiani
(perciò distribuzioni multimodali e sistemi fortemente non lineari) è sfruttata direttamente, limitata però ai soli punti discreti
in cui lo stato può vivere.

Si supponga che vengano usati m punti per rappresentare lo stato x ∈ Rn. Se lo stato originale è continuo questa
è chiaramente una approssimazione ed è preferibile che m � n. Ad ogni iterazione k, esistono pertanto xi,k ∈ Rn con
i = 1, . . . ,m stati possibili a cui è associata una distribuzione di probabilità pi,k che si evolve nel tempo in base alla dinamica
del problema.

Valgono le equazioni viste in precedenza, ovvero la stima a priori :

p−i,k =

m∑
j=1

p(xi,k|xj,k−1)p+
j,k−1 =

m∑
j=1

fi,jp
+
j,k−1 ∀i (2.96)

e l’equazione di aggiornamento dello stato a posteriori dell’osservazione zk:

p+
i,k = ckp(zk|xi,k)p−i,k ∀i (2.97)

con ck sempre fattore di normalizzazione tale che
∑
p+
i = 1.

I metodi grid-based permettono di applicare pertanto la teoria ricorsiva bayesiana direttamente.

2.12.2 Filtro di Kalman

Il filtro di Kalman [WB95] cerca di stimare in presenza di disturbi lo stato interno x ∈ Rn, non accessibile, di un sistema
tempo discreto, la cui conoscenza del modello è completa. Di fatto il filtro di Kalman è lo stimatore ricorsivo ottimo: se il
rumore del problema è gaussiano, il filtro di Kalman fornisce la stima ai minimi quadrati dello stato interno del sistema.

Per ragioni storiche il filtro di Kalman si riferisce propriamente al solo filtraggio di un sistema dove la transizione di stato
e l’osservazione sono funzioni lineari dello stato corrente.

Seguendo la teoria dei sistemi lineari, la dinamica di un sistema “lineare” tempo continuo è rappresentata da una equazione
differenziale del tipo

ẋ = A(t)x(t) + Bu(t) + w(t) (2.98)

equazione di aggiornamento dello stato, a cui è associata un’osservazione indiretta di questo stato attraverso un sistema
lineare:

z(t) = H(t)x(t) + v(t) (2.99)

con z ∈ Rm l’osservabile.
Il filtro di Kalman a tempo discreto viene in aiuto dei sistemi reali dove il mondo viene campionato a intervalli discreti,

trasformando il sistema lineare tempo continuo in un sistema lineare del tipo{
xk+1 = Akxk + Bkuk + wk

zk = Hkxk + vk
(2.100)
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Se il sistema si evolve seguendo questo modello è chiamato Linear-Gaussian State Space Model o Linear Dynamic System.
Se i valori delle matrici sono indipendenti dal tempo, il modello è chiamato stazionario.

Le variabili wk e vk rappresentano rispettivamente il rumore di processo e di osservazione, valor medio nullo w̄k = v̄k = 0
e varianza rispettiva Q e R conosciute (si suppone rumore gaussiano bianco). A è una matrice n × n di transizione dello
stato, B è una matrice n× l che collega l’ingresso di controllo opzionale u ∈ Rl con lo stato x e infine H è una matrice m×n
che collega lo stato con la misura zk. Tutte queste matrici, rappresentanti il modello del sistema, devono essere conosciute
con assoluta precisione, pena l’introduzione di errori sistematici.

Il filtro di Kalman è un filtro di stima ricorsivo e richiede ad ogni iterazione la conoscenza dello stato stimato dal passo
precedente x̂k−1 e l’osservazione corrente zk, osservazione indiretta dello stato del sistema.

Sia x̂−k la stima a priori dello stato del sistema, basata sulla stima ottenuta al tempo k−1 e dalla dinamica del problema,
e x̂k la stima dello stato del problema a posteriori dell’osservazione zk e basata su di essa. Da queste definizioni è possibile
definire l’errore della stima a priori e a a posteriori come

e−k = xk − x̂−k
ek = xk − x̂k

(2.101)

A questi errori è possibile associare

P−k = E[e−k e−k
>

]
Pk = E[eke

>
k ]

(2.102)

le matrici di covarianza a priori e a posteriori rispettivamente.
L’obiettivo del filtro di Kalman è minimizzare la covarianza dell’errore a posteriori Pk e fornire un metodo per ottenere

la stima di x̂k data la stima a priori x̂−k e l’osservazione zk.
Il filtro di Kalman fornisce una stima dello stato a posteriori attraverso una combinazione lineare della stima dello stato

precedente e dell’errore di osservazione:
x̂k = x̂−k + Kk(zk −Hkx̂

−
k ) (2.103)

spostando il problema della stima a quello di ricavare il fattore di guadagno Kk (blending factor). La differenza zk −Hkx̂
−
k

è chiamata residuo, o innovation, e rappresenta la discrepanza tra l’osservazione predetta e quella realmente avvenuta. È da
notare che la metrica usata per calcolare il residuo può dipendere dalle peculiarità del problema.

Il filtro di Kalman viene normalmente presentato in due fasi: aggiornamento del tempo (fase di predizione) e aggiorna-
mento della misura (fase di osservazione).

Nella prima fase si ottiene la stima a priori sia di x̂k che della covarianza Pk. La stima a priori x̂−k viene dalla buona
conoscenza della dinamica del sistema (2.100):

x̂−k = Ax̂k−1 + Buk (2.104)

e allo stesso modo viene aggiornata la stima a priori della covarianza dell’errore:

P−k = APk−1A
> + Qk (2.105)

Queste sono le miglior stime dello stato e della covarianza dell’istante k ottenibili a priori dell’osservazione del sistema.
Nella seconda fase viene calcolato il guadagno

Kk = P−k H>k
(
HkP

−
k H>k + Rk

)−1
(2.106)

che minimizza la covarianza a posteriori e, con questo fattore, viene aggiornato lo stato a posteriori attraverso l’equazio-
ne (2.103).

Usando questo valore per il guadagno K, la stima a posteriori della matrice di covarianza diventa

Pk = (I−KkHk)P−k (2.107)

Per poter unificare le diverse varianti dei filtri di Kalman si possono tradurre queste equazioni usando le matrici di
varianza-covarianza

cov(xk, zk) = P−k H>k
cov(zk) = HkP

−
k H>k

(2.108)

in modo da poter scrivere l’equazione (2.106) come

Kk = cov(xk, zk) (cov(zk) + Rk)
−1

(2.109)

e, sostituendo le covarianze (2.108) in (2.107) si ottiene

Pk = P−k −Kk cov(xk, zk)> (2.110)

Come si può facilmente notare la matrice di covarianza e il guadagno di Kalman non dipendono minimamente né dallo
stato, ne dalle osservazioni, ne tanto meno dal residuo, e hanno una storia indipendente.

Kalman richiede tuttavia un valore iniziale della variabile di stato e della matrice di covarianza: il valore iniziale dello
stato deve essere il più simile possibile al valore vero e la somiglianza a questo valore va inserita nella matrice di covarianza
iniziale.
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Filtro di Kalman monodimensionale

È interessante mostrare, come esempio, il caso semplificato di filtro di Kalman di stato monodimensionale e coincidente con
l’osservabile. Le equazioni di transizione e di osservazioni sono

xi = xi−1 + ui + wi
zi = xi + vi

(2.111)

dove wi è il rumore di processo la cui varianza qi rappresenta la stima della probabilità di variazione del segnale stesso (bassa
se il segnale varia poco nel tempo, alta se il segnale varia molto) mentre vi è il rumore di osservazione di varianza ri, rumore
associato all’osservazione dello stato.

Il ciclo di predizione è molto semplice e diventa:

x−i = xi−1 + ui
p−i = pi−1 + qi

(2.112)

Il guadagno di Kalman k diventa

ki =
p−i

p−i + ri
(2.113)

e infine la fase di osservazione diventa

xi = x−i + ki(zi − x−i ) = kizi + (1− ki)x−i
pi = (1− ki)p−i

(2.114)

È solitamente possibile stimare a priori il valore di r, mentre quello di q va impostato attraverso esperimenti.
Come si vede nella prima delle equazioni (2.114), il fattore k è di fatto un blending factor tra l’osservazione dello stato e

lo stato stimato precedente.
Nel caso monodimensionale è facile vedere come il guadagno k e la varianza p sono processi indipendenti dallo stato e

dalle osservazioni, tanto meno dall’errore. Se r e q non variano nel tempo, k e p sono sequenze numeriche che convergono a un
numero costante determinato solamente dalla caratterizzazione del rumore, indipendentemente dai valori assunti all’inizio.
Si confronti questo risultato con quello che si ottiene dall’equazione (2.70).

2.12.3 Rumore correlato

Nel caso in cui il rumore non sia semplicemente additivo, ma si propaghi nel sistema attraverso una trasformazione comunque
lineare, il sistema di Kalman si generalizza in{

xk+1 = Akxk + Bkuk + Wkwk

zk = Hkxk + Vkvk
(2.115)

Il rumore di processo è correlato attraverso una matrice Wk alla sorgente, e il rumore di osservazione attraverso una matrice
Vk.

È possibile in questo caso applicare le stesse equazioni del sistema di Kalman introducendo le sostituzioni

Q′k = WkQkW
>
k

R′k = VkRkV
>
k

(2.116)

Tale risultato tornerà utile nella sezione seguente sul filtro di Kalman esteso.
Chiaramente se le matrici Wk e Vk sono delle identità, ovvero il rumore è semplicemente additivo, la forma si semplifica

e ridiventa quella vista in precedenza.

2.12.4 Filtro di Kalman Esteso

Il filtro di Kalman esteso Extended Kalman Filter (EKF) è una versione non-lineare del filtro di Kalman usata quando
l’evoluzione o l’osservazione dello stato del sistema sono non-lineari.

Un sistema non lineare a tempo discreto, formato dall’evoluzione dello stato e dalla sua osservazione, può essere scritto
in forma generalizzata come {

xk+1 = f(xk,uk,wk)
zk = h(xk,vk)

(2.117)

dove, oltre allo stato xk e agli ingressi uk, anche gli errori di processo wk e di osservazione vk possono influire in maniera
non lineare nell’evoluzione dello stato f e nell’osservazione h, generalizzando anche il concetto di rumore additivo usato in
precedenza.
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Per poter essere applicato, EKF richiede il calcolo degli Jacobiani sia di f che di h. Applicando la teoria mostrata nella
sezione 2.6 sulla propagazione dell’incertezza in funzioni non lineari, attraverso le matrici delle derivate è possibile sfruttare
le stesse formulazioni matematiche fatte per il caso di Kalman lineare su funzioni non-lineari usando come matrici

Ak = ∂f(x,uk,w̄)
∂x

∣∣∣
x̂−k

Wk =
∂f(x̂−k ,uk,w)

∂w

∣∣∣
w̄

Hk = ∂h(x,v̄)
∂x

∣∣∣
x̂−k

Vk = ∂h(x,v)
∂v

∣∣∣
x̄

(2.118)

e usando come equazione di aggiornamento

x̂k = x̂−k + Kk(zk − h(x̂−k )) (2.119)

È comunque da notare che anche il calcolo del residuo zk − h(x̂−k ) può essere una funzione non lineare (per esempio quando
si esegue un confronto tra angoli ed esiste una periodicità dell’errore).

Rispetto a Kalman lineare, la versione EKF risulta una scelta sub-ottima come stimatore ma comunque ampiamente
accettata e usata in applicazioni pratiche. Il filtro di Kalman esteso, per sua costruzione, raggiunge solo una precisione di
primo ordine ma permette comunque risultati vicini all’ottimo nel caso di funzionamento del filtro in punti in cui le derivate
seconde sono nulle.

2.12.5 Filtro di Kalman Sigma-Point

Un’alternativa nel caso non-lineare al filtro di Kalman Esteso è il filtro di Kalman a Punti Sigma. In risultati riportati da
diversi esperimenti, nel caso di funzioni f e h non lineari, il Sigma Point Kalman Filter (SPKF) tende a fornire prestazioni
migliori rispetto a EKF: la propagazione dell’errore linearizzata dal punto di vista statistico (SPKF) è generalmente migliore
della propagazione dell’espansione in serie di Taylor (EKF).

Non solo lo stato, ma i diversi punti intorno la media (i sigma points) vengono propagati attraverso le funzioni che
compongono l’aggiornamento e l’osservazione dello stato di Kalman. Il vantaggio di SPKF è quello di non richiedere il
calcolo degli Jacobiani e normalmente permette una stima migliore di media e varianza del processo.

Il filtro di Kalman Unscented (Unscented Kalman filter) è una delle varie versioni del filtro di Kalman a Punti Sigma.
In questo caso si fa uso della teoria per la propagazione dell’incertezza discussa in sezione 2.6.2 per stimare valor medio e
covarianza dello stato a priori e dell’errore di osservazione.

Anche con il filtro Unscented è possibile gestire il caso in cui il rumore si inserisce nel sistema in maniera non additiva.
Per generalizzare il caso di rumore non additivo definiamo, allo scopo di mantenere una sintassi uguale a quella discussa in
sezione 2.6.2, una variabile chiamata stato aumentato xa ∈ Rna con na = n+ q formata dallo stato x ∈ Rn e dal rumore di
processo w, a media nulla, in modo da usare la funzione

X− = f(xak−1,uk) (2.120)

di aggiornamento dello stato che permetta di tener conto in maniera non lineare e non additiva anche del contributo del
rumore di processo. Allo stesso modo definiamo la matrice di covarianza aumentata come:

Pa
x =

[
Px 0
0 Q

]
(2.121)

Nel caso in cui il rumore di processo sia additivo il sistema ridiventa simile a quello di Kalman lineare nella forma

P−k =

2n∑
i=0

wci (X
−
i − X̄−i )(X−i − X̄−i )> + Qk (2.122)

Dai sigma points X−i , proiettati attraverso f e rappresentanti la distribuzione dello stato a priori, è possibile generare
altri punti sigma in modo da ottenere la stima dell’osservazione a priori :

Zi = h(X−i ) (2.123)

con cui calcolare il valore più probabile dell’osservazione ẑ pesando i risultati Zi con i pesi dei sigma point associati come
nell’equazione (2.44). Anche in questo caso il rumore di osservazione può essere inserito come stato aumentato o, se supposto
additivo e indipendente, può venire sommato alla matrice di covarianza.

Attraverso la conoscenza dei punti sigma X−i e Zi è possibile ottenere facilmente la covarianza cov(Z) e anche la
cross-covarianza cov(X ,Z) generalizzando l’equazione (2.44):

cov (X ,Z) ≈
2n∑
i=0

wci (X i − x̄)(Zi − z̄)> (2.124)

Data la conoscenza della covarianza cov(Z) e la cross-covarianza cov(X ,Z) il guadagno di Kalman sigma-point diventa
esattamente come quello espresso dall’equazione (2.109) e l’aggiornamento della covarianza Pk segue l’equazione (2.110).
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2.12.6 IEKF e ISPKF

Il filtro di Kalman esteso fa uso dello Jacobiano della funzione di osservazione h centrato in x̂−, stato a priori e, grazie alla
conoscenza dell’osservazione, permette di ottenere la stima dello stato a posteriori.

Di fatto questo procedimento è esattamente una singola iterazione del metodo di Gauss-Newton.
È possibile aumentare le iterazioni in modo da ottenere la classe dei filtri di Kalman iterativi, i quali normalmente

mostrano prestazioni nettamente migliori della loro controparte non iterativa.
L’unica differenza rispetto ai rispettivi filtri non iterativi è nella parte di osservazione (cfr. equazione (2.119)), sostituita

da iterazioni nella forma:
xi+1 = x̂ + K(z− h(xi)−Hi(x̂− xi)) (2.125)

con il guadagno K calcolato in maniera iterativa come

K = PH>i (HiPH>i + R)−1 (2.126)

e usando come valore iniziale per la minimizzazione, il valore x0 = x̂−.
Il valore di K, associato all’ultima iterazione, viene infine usato per aggiornare la matrice di covarianza di processo.
Lo stesso procedimento si può applicare al filtro SPKF per ottenere l’Iterated Sigma Point Kalman Filter [SSM06], dove

l’iterazione per calcolare lo stato è nella forma

xi+1 = x̂ + K
(
z− h(xi)− cov(X ,Z)>P−1(x̂− xi)

)
(2.127)

2.12.7 Filtro di Kalman a miscela di Gaussiane

Il Gaussian sum Kalman filters (GS-KF) descrive un filtro bayesiano dove la distribuzione multimodale viene approssimata
a una miscela di Gaussiane. Viene trattato allo stesso modo del filtro di Kalman lineare nel caso di trasformazioni lineari
trattando ogni stato separatamente.

2.12.8 Particle Filter

Gli approcci lineari e quasi lineari proposti da Kalman possono essere usati in quei problemi dove lo stato è gaussiano o quasi
gaussiano con distribuzione unimodale: la stima dello stato all’istante di tempo k è funzione diretta dell’unica stima dello
stato all’istante di tempo k − 1 e della covarianza di tale stima.

Quando è richiesto di ricavare la distribuzione di probabilità non gaussiana dello stato del sistema p(xk;uk−1; zk) all’istante
di tempo k, funzione degli ingressi e delle osservazioni, gli approcci di tipo Kalman non sono più soddisfacenti.

Gli approcci grid based sono adatti a quei problemi, di fatto poco comuni, dove lo stato è discretizzabile e finito. Gli
approcci histogram based/occupacy grid si adattano a una classe di problemi maggiore che però, a causa del campionamento
uniforme dello stato, scalano molto male con l’aumentare delle dimensioni.

Si consideri nuovamente il risultato espresso dall’equazione (2.4): per estrarre una generica statistica h(·) (per esempio
media, o varianza) da una distribuzione di probabilità p(x), si fa uso dell’espressione

h̄
def
=

∫
X

h(x)p(x)dx (2.128)

Nel caso in cui tale stima non si possa ottenere per via analitica, è comunque possibile ricavarla per via indiretta, attraverso
l’analisi di xi campioni indipendenti, con 1 ≤ i ≤ N , estratti casualmente con distribuzione esattamente p.

Dati i campioni xi generati in questo modo, la stima Monte Carlo di h(·) è data da

h̄ ≈ 1

N

N∑
i=1

h(xi) (2.129)

Monte Carlo non risolve tutti i problemi né suggerisce come ottenere i campioni casuali in maniera efficiente. Il problema
diventa sensibile nei casi multidimensionali dove le aree in cui la probabilità assume valori significativi sono estremamente
esigue. L’obiettivo che si pone infatti l’Important Sampling (IS) è campionare la distribuzione p(x) in regioni “importanti”
in modo da massimizzare l’efficienza computazionale.

L’idea dell’Important Sampling è quella di prendere una più semplice distribuzione q(x) (Importance density), al posto
della vera p(x) normalmente difficile da campionare (o da riprodurre), effettuando la sostituzione∫

X

h(x)p(x)dx =

∫
X

h(x)
p(x)

q(x)
q(x)dx =

∫
X

h(x)w(x)q(x)dx

avendo introdotto il sistema di pesi w(x). Attraverso l’uso di adeguati pesi pertanto è possibile modificare l’equazione (2.129)
in

h̄ ≈ 1

N

N∑
i=1

wih(xi) (2.130)



42 CAPITOLO 2. ELEMENTI DI STATISTICA

dove wi ∝ Wi = p(xi)/q(xi) rappresenta un peso correttivo, fattore di importanza (important weights), per convertire la
distribuzione di supporto q a quella reale p. I pesi Wi devono essere normalizzati

wi =
Wi∑
Wi

(2.131)

per poter essere utilizzati.
Più la distribuzione q(x) è simile alla p(x), più la stima risulterà corretta. D’altra parte la distribuzione q(x) deve essere

molto semplice da campionare, scegliendo per esempio la distribuzione uniforme o gaussiana.
Data la conoscenza dei filtri bayesiani e con le tecniche Monte Carlo è possibile affrontare la teoria dei filtri particellari. Lo

stato all’istante k è rappresentato da un insieme di campioni (particles) e ogni campione è un ipotesi dello stato da vagliare.
Si può parlare di una serie di particelle ottenute a priori dell’osservazione, applicando l’equazione (2.130) alla funzione di
evoluzione dello stato.

Se si applica direttamente la teoria bayesiana ai campioni della distribuzione stimata è possibile modificare i pesi wi
associati ai campioni usando contemporaneamente il modello del sistema e della percezione (Sequential Important Sampling):

wk,i ∝ wk−1,i
p(zk|xk,i)p(xk,i|xk−1,i)

q(xk,i|xk−1,i, zk)
(2.132)

In questo modo i campioni iniziali sono sempre gli stessi, ma cambiano solo i pesi wi associati.
Quando possibile è conveniente usare come Important density la distribuzione a priori

q(xk,i|xk−1,i, zk) = p(xk,i|xk−1,i) (2.133)

in modo che, introdotta in (2.132), si ottenga

wk,i ∝ wk−1,ip(zk|xk,i) (2.134)

Il problema dell’approccio SIS è che dopo poche iterazioni solo alcune particelle avranno il fattore peso non trascurabile
(weight degeneracy).

BootStrap/Sequential Importance Resampling

Una soluzione più semplice è la Sequential Important Resampling dove i pesi non dipendono dalle iterazioni precedenti ma
sono invece i campioni a cambiare, in seguito a una fase di resampling.

La fase di ricampionamento consiste nel generare un nuovo insieme di particelle x′ ricampionando Ns volte una versione
discreta approssimata di p(xk|zk) data da

p(xk|zk) ≈
Ns∑
i=1

wk,iδ(xk − xk,i) (2.135)

avendo definito
wk,i ∝ p(zk|xk) (2.136)

I filtri SIR non evitano il caso degenere (di fatto anzi eliminano definitivamente le particelle poco probabili), tuttavia
portano a un notevole risparmio computazionale e concentrano la ricerca della soluzione intorno agli stati più probabili.

Esistono svariati algoritmi per eseguire il ricampionamento. Un’elenco, non sicuramente esaustivo, di tali algoritmi è:
Simple Random Resampling, Roulette Wheel / Fitness proportionate selection, Stochastic universal sampling, Multinomial
Resamping, Residual Resampling, Stratified Resampling, Systematic Resampling.

2.12.9 Stima dei Parametri

Kalman, in tutte le sue varianti, è classicamente visto come filtro o stimatore di uno stato. Tuttavia è largamente diffuso,
principalmente in machine learning, l’utilizzo di queste tecniche per stimare i parametri di un modello (il meta-modello):

yk = f(xk,β) (2.137)

dove yk sono le uscite del sistema, xk gli ingressi e f una funzione basata sui parametri β da stimare. Il concetto di
addestramento, o fitting, del modello consiste nel determinare i parametri β.

Kalman permette di determinare i parametri, eventualmente variabili, del modello usando come stato da determinare
proprio β in modo da ottenere un sistema iterativo del tipo{

βk+1 = βk + wk

yk = f(xk,βk)
(2.138)

dove il rumore opzionale wk viene usato per modellare eventuali variazioni del modello nel tempo: la scelta della varianza
di w determina la reattività alle variazioni dei parametri del modello.



2.12. FILTRI BAYESIANI 43

2.12.10 Filtro alfa beta

L’alpha-beta filter si può vedere come una versione semplificata del filtro di Kalman dove lo stato è rappresentato da sole due
variabili di cui una è l’integrale dell’altra. Da una semplice similitudine con sistemi fisici possiamo chiamare queste variabili
posizione x e velocità v. Se si suppone che la velocità rimanga costante nell’intervallo di tempo piccolo ∆T si ha la stima a
priori (predizione) della posizione all’istante k come

x̂−k = x̂k−1 + ∆Tvk−1 (2.139)

mentre la velocità viene sempre ritenuta costante:
v̂−k = ˆvk−1 (2.140)

L’uscita tuttavia è affetta da rumore e il valore osservato xk è differente dal valore predetto x̂−k . Questo errore di
predizione r è chiamato residuo (stima dell’errore a posteriori):

rk = xk − x̂−k (2.141)

Definiamo due parametri α e β in modo da ottenere la stima a posteriori come{
x̂k = x̂−k + αrk
v̂k = v̂−k + β rk

∆T

(2.142)

In questo modo si ottiene un osservatore asintotico delle variabili posizione e velocità. A differenza del filtro di Kalman, il
filtro alfa-beta è un filtro subottimo dove i parametri α e β sono tarati per via sperimentale senza nessun riscontro statistico.
Questo approccio è solitamente avvallato dal fatto che anche nel filtro di Kalman a volte è necessario imporre le matrici del
rumore per via totalmente empirica.



Capitolo 3

Metodi di Regressione e Ottimizzazione per
l’Analisi di Modelli

Uno dei problemi più diffusi all’interno della visione artificiale (e in generale all’interno della teoria dell’informazione) è quello
di far adattare un insieme di misure affette da rumore (per esempio i pixel di un’immagine) a un modello predefinito.

Oltre alla presenza di rumore, che potrebbe essere sia gaussiano bianco ma potenzialmente di qualunque distribuzione
statistica, c’è da considerare il problema dell’eventuale presenza di outlier, termine utilizzato in statistica per indicare dati
troppo distanti dal modello per farne effettivamente parte.

In questo capitolo vengono presentate sia diverse tecniche regressive volte a ricavare i parametri β di un modello stazionario
dato un insieme di dati affetti da rumore sia tecniche per individuare e rimuovere gli outlier dai dati in ingresso.

Nel capitolo successivo verranno presentate invece tecniche di “regressione” più legate al tema della classificazione.
Per stimare i parametri di un modello alcune tecniche presenti in letteratura sono le seguenti:

Least Squares Fitting Se i dati sono tutti inliers, non ci sono outliers e l’unico disturbo è rumore additivo gaussiano
bianco, la regressione ai minimi quadrati è la tecnica ottima (sezione 3.2);

M-Estimator La presenza anche di pochi outlier sposta di molto il modello in quanto gli errori vengono pesati al quadra-
to [Hub96]: pesare in maniera non quadratica i punti lontani del modello stimato produce miglioramenti nella stima
stessa (sezione 3.8);

IRLS iteratively reweighted least squares viene usata quando gli outliers sono molto distanti dal modello e in bassa quantità:
in questa condizione si può eseguire una regressione iterativa (sezione 3.9), dove a ogni ciclo i punti con errore troppo
elevato vengono rimossi (ILS ) o pesati in maniera differente (IRLS );

Hough Se i dati in ingresso sono sia affetti da errore che da molti outliers e potenzialmente c’è presenza di una distribuzione
multimodale, ma con il modello formato da pochi parametri, la trasformata di Hough [Hou59] permette di ottenere il
modello più diffuso dal punto di vista statistico (sezione 3.11);

RANSAC Se gli outliers sono comparabili in numero con gli inliers e il rumore è molto basso (rispetto alla posizione degli
outliers), il RANdom SAmpling and Consensus [FB87] permette di ottenere il miglior modello presente sulla scena
(sezione 3.12);

LMedS Il Least Median of Squares è un algoritmo, simile a RANSAC, che ordina i punti in base alla distanza del modello
generato casualmente e sceglie fra tutti il modello con mediana dell’errore minore [Rou84] (sezione 3.12.2);

Kalman È possibile infine usare un filtro di Kalman per ricavare i parametri di un modello (vedi 2.12.9) quando tale
informazione è richiesta a tempo di esecuzione.

Solamente RANSAC e la Trasformata di Hough permettono di gestire ottimamente il caso in cui nella misura siano
presenti due o più distribuzioni che contemporaneamente si avvicinano al modello.

Nulla infine impedisce di usare tecniche miste, per esempio un Hough abbastanza grossolano (pertanto veloce e con basso
impatto in termini di memoria) per rimuovere gli outliers e successivamente una regressione ai minimi quadrati per ottenere
i parametri del modello in maniera più precisa.

3.1 Il limite di Cramer-Rao

Il limite di Cramer-Rao (Cramer-Rao Lower Bound CRLB) stabilisce un limite inferiore per la varianza di ogni stimatore
corretto del parametro θ (per mantenere una simbologia comune con la letteratura, beta nel nostro caso).

Sia X una variabile aleatoria multidimensionale e θ un parametro deterministico sconosciuto. Sia fϑx (X) la densità di
probabilità di X dato θ. Assumiamo che tale densità di probabilità esista e sia due volte differenziabile rispetto a θ.

44
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Teorema 1 (Disuguaglianza di Cramer-Rao) Sia T (·) uno stimatore corretto del parametro scalare ϑ, e si supponga
che lo spazio delle osservazioni X sia indipendente da θ. Allora (sotto alcune ipotesi di regolarità...)

Eθ
[
(T (X)− θ)2

]
≥ [In(θ)]

−1
(3.1)

dove In(θ) = Eθ
[(

∂ ln fθx(X)
∂θ

)2
]

(quantità di Informazione di Fisher).

Siccome il parametro θ non è conosciuto il teorema di Cramer-Rao permette solo di capire se lo stimatore è ottimo o
meno.

3.2 Regressione ai minimi quadrati

Esaminiamo per primo il caso più diffuso in applicazioni reali quando il rumore sulle osservazioni è di tipo additivo gaussiano
bianco.

Sia pertanto
y = f(x,β) + ε (3.2)

funzione, in generale non lineare, di alcuni parametri β e di alcuni ingressi x a cui viene sommato del rumore additivo,
gaussiano, a media nulla e varianza σ. Per poter stimare in maniera robusta i parametri, il numero di campioni in ingresso
x = {x1 . . .xn} deve essere elevato, molto di più dei parametri.

Si può pensare che la funzione dei parametri non sia la stessa per tutti i campioni ma potrebbero essercene di differenti,
osservando di fatto quantità differenti, funzione sempre dei medesimi parametri β. In tal caso l’equazione (3.2) può venire
generalizzata come

yi = fi(β) + εi (3.3)

avendo sottinteso con il pedice i sia il tipo di funzione sia l’i-esimo campione in ingresso (di fatto un parametro costante
della funzione).

Si introduce il vettore r definito come
ri = yi − fi(β) (3.4)

contenete il residuo associato all’osservazione i-esima (o alla funzione i-esima). ri è funzione di β tanto come fi e ne condivide
le derivate (a meno di un segno con questo formalismo).

Per ottenere uno stimatore a massima verosimiglianza, la quantità da minimizzare è la negative log likelihood (sezione 2.8)
della funzione (3.2). Nel caso di rumore gaussiano la funzione di verosimiglianza si scrive infatti come

L(ri|β, σ) =
1√

2πσ2
i

e
− r2i

2σ2
i (3.5)

nel caso di osservazioni indipendenti. Applicando alla funzione di verosimiglianza la definizione di negative log likelihood si
ottiene che nel caso di rumore gaussiano lo stimatore alla massima verosimiglianza è il metodo dei minimi quadrati.

La regressione ai minimi quadrati è una tecnica di ottimizzazione standard per sistemi sovradimensionati che individua
i parametri β = (β1, . . . , βm) di una funzione f(x,β) : Rm 7→ Rn che minimizzano un errore S calcolato come somma del
quadrato (Sum Of Squared Error) dei residui ri su un insieme di n osservazioni y1 . . . yn:

S(β) = SSE(β) = r · r =

n∑
i=1

‖ri‖2 =

n∑
i=1

‖yi − fi(β)‖2 (3.6)

S(β) è definito come residual sum of squares o alternativamente come expected squared error.
S : Rm 7→ R è una funzione che viene analizzata, al variare dei parametri β ∈ Rm, per cercare il suo valor minimo

β+ = arg min
β

S(β) (3.7)

Per questa ragione viene chiamata funzione obiettivo o funzione costo. Un minimo ottenuto attraverso un procedimento
come quello descritto dall’equazione (3.7) viene definito minimo globale.

Un minimo globale è difficile, dal punto di vista prettamente computazionale, da individuare e normalmente si possono
sfruttare tecniche per individuare solamente i minimi locali.

Sia pertanto S(β)1 differenziabile, ovvero f differenziabile. La condizione necessaria che β sia un minimo è che, in quel
punto dello spazio dei parametri, il gradiente di S(β) si annulli, ovvero

∂S(β)

∂βj
= 2J>r = −2

n∑
i=1

ri
∂fi(β)

∂βj
= 0 j = 1, . . . ,m (3.8)

1In letteratura la funzione S viene spesso codificata con un fattore 1/2 di scala per rendere il gradiente di S non viziato dal fattore 2 ed il segno
concorde con f per semplificare la notazione.
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Condizione sufficiente che un punto stazionario (S′(β) = 0) sia un minimo è che S′′(β) (l’Hessiana) sia definita positiva.
Chiaramente l’esistenza del minimo locale garantisce solo che esiste un intorno δ di β tale che la funzione S(β + δ) ≥ S(β).

Tutta la discussione affrontata fin ora ha come ipotesi che il rumore sia additivo ε con varianza costante tra tutti i
campioni (homoscedasticity). Nel caso in cui il rumore di misura sia comunque gaussiano additivo a media nulla ma con
varianza non costante, ogni singola osservazione yi è una variabile aleatoria indipendente a cui è associata la varianza σ2

i .
Intuitivamente si capisce che la regressione ottima in questo caso dovrà pesare di più i campioni con varianza bassa mentre
dovranno essere pesati meno i campioni con varianza elevata. Per ottenere questo risultato si fa uso di una normalizzazione,
simile a quella mostrata in sezione 2.4.1 e diretta conseguenza della likelihood di equazione (3.5), e pertanto non si deve più
minimizzare la semplice somma dei residui al quadrato, ma piuttosto la somma pesata dei residui:

χ2 =

n∑
i=1

‖ri‖2

σi
(3.9)

La funzione costo, ora somma di una variabile aleatoria di varianza unitaria al quadrato, diventa una distribuzione chi-quadro
e per questo motivo viene indicata come χ2. Il minimo di questa funzione costo coincide con quello ottenuto in precedenza
dai minimi quadrati quando la varianza è invece costante. La condizione (3.8) per ottenere il minimo si modifica anch’essa
di conseguenza:

n∑
i=1

ri
σi

∂fi(β)

∂βj
= 0 j = 1, . . . ,m (3.10)

Generalizzando ulteriormente questo concetto, quando sull’osservazione è presente del rumore gaussiano con matrice di
covarianza nota Σ, la Weighted Sum of Squared Error (WSSE ) si può scrivere infine come

χ2 = r>Σ−1r (3.11)

È da notare che questa formulazione della funzione di costo equivale a quella di equazione (3.6) dove però, invece della
distanza euclidea, viene usata la distanza di Mahalanobis (sezione 2.4).

Qualunque Weighted Least Squares può essere ricondotto a un problema non pesato Σ = I premoltiplicando i residui r (e
di conseguenza le derivate) per una matrice L> tale che Σ−1 = LL>, usando per esempio una decomposizione di Cholesky
nel caso in cui tale matrice non sia diagonale.

Tutti questi stimatori, che tengono conto della varianza dell’osservazione, coincidono con il negative log likelihood per la
variabile y perturbata da rumore gaussiano di media zero e covarianza Σ.

3.2.1 Regressione lineare ai minimi quadrati

Quando f è una funzione lineare rispetto ai parametri β si parla di regressione lineare ai minimi quadrati (Linear Least
Squares o Ordinary Least Squares OLS ). Tale funzione può essere rappresentata nella forma di sistema lineare

yi = xiβ + εi (3.12)

dove β sono i parametri sconosciuti da ricavare e εi è rumore additivo gaussiano bianco a media nulla. I parametri β sono i
coefficienti della regressione: permettono di misurare l’associazione tra la variabile x e la variabile y.

Ogni osservazione è un vincolo e tutti i singoli vincoli possono essere raccolti in forma matriciale

y = Xβ + ε (3.13)

y ∈ Rn è il vettore delle risposte (variabili dipendenti), la matrice X ∈ Rn×m che raccoglie le variabili indipendenti
(explanatory variables) viene chiamata design matrix, e infine ε è il vettore del rumore additivo a media nulla E[ε] = 0
e varianza Σ. Il vettore dei parametri β è chiamato Linear Projection Coefficient o Linear Predictor. La variabile casuale y
è pertanto formata da una parte deterministica e da una parte stocastica.

L’obiettivo è quello di trovare l’iperpiano β in m dimensioni che meglio si adatta ai dati (y,X).
Il valore β che minimizza la funzione costo definita in equazione (3.6), limitatamente al caso di rumore sull’osservazione

a valor medio nullo e varianza costante fra tutti i campioni, di fatto è il miglior stimatore lineare che minimizza la varianza
(Best Linear Unbiased Estimator BLUE ).

Definizione 11 Il Best Linear Unbiased Estimate (BLUE) di un parametro β basato su un set di dati Y è

1. una funzione lineare di Y , in modo che lo stimatore possa essere scritto come β̂ = AY ;

2. deve essere unbiased (E[AY ] = 0),

3. fra tutti gli stimatori lineari possibili è quello che produce la varianza minore.
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Il teorema di Gauss-Markov dimostra che uno stimatore ai minimi quadrati è la miglior scelta tra tutti gli stimatori a
minima varianza BLUE quando la varianza sull’osservazione è costante (homoscedastic).

La miglior stima ai minimi quadrati β̂ che minimizza la somma dei residui è la soluzione del problema lineare

β̂ = arg min
b

‖ε‖2 = arg min
b

∑
‖yi − xib‖2 = (X>X)−1X>y (3.14)

Lo stesso risultato era già pervenuto nella sezione 1.1 riguardante la pseudoinversa di una matrice: una decomposizione SVD
della matrice X ritorna anche la soluzione migliore dal punto di vista della propagazione degli errori di calcolo.

La matrice P, definita come
P = X(X>X)−1X> (3.15)

è una matrice di proiezione (projection matrix ) che trasforma le uscite (response vector) y nella loro stima ŷ (stima
dell’osservazione senza rumore):

Pyi = xiβ̂ = ŷi (3.16)

Grazie a questa proprietà, P è chiamata hat matrix .
Nel caso di rumore a varianza non costante tra i campioni osservati (heteroscedastic) la regressione a minimi quadrati

pesata è la scelta BLUE

wi =
1

σi
(3.17)

con wi > 0 che tengono conto le varie incertezze legate ad ogni osservazione yi cos̀ı che 1/wi sia la deviazione standard della
misura i-esima. Inseriti i pesi wi in una matrice diagonale W si ottiene un nuovo sistema lineare dove ogni riga di fatto ha
la medesima varianza di osservazione. La soluzione che minimizza ε, può sempre essere espressa come

β̂ = (WX)+Wy (3.18)

con W = Σ−1.
Generalizzando ulteriormente, nel caso di rumore con varianza non costante tra i campioni osservati e tra loro correlato,

la miglior stima BLUE nel caso lineare deve tenere conto della covarianza del rumore Σ:

β̂ = (X>Σ−1X)−1X>Σ−1y (3.19)

Tale estimatore è chiamato Generalized Least Squares (GLS ).
Tale sistema minimizza la varianza

V ar[β̂GLS ] = (X>Σ−1X)−1 (3.20)

3.2.2 Total Least Squares

Estendiamo ora il problema lineare Ax = b + δ al caso più generale dove anche la matrice dei coefficienti Ã = A + E è
perturbata (Errors-In-Variables model EIV [VHV91]). Questo tipo di problema di regressione ai minimi quadrati è chiamato
Total Least squares (TLS).

La soluzione del sistema perturbato
(A + E)x = b + δ (3.21)

corrisponde a trovare la soluzione x che minimizzi la norma di Frobenius ‖(E δ)‖F , soggetta al vincolo (3.21). Con il TLS
classico tutte le colonne della matrice dei dati contengono rumore. Se alcune colonne sono senza errori, allora la soluzione è
chiamata mixed TLS-LS.

Il sistema (3.21) può essere riscritto come

([A|b] + [E|δ])

[
x
−1

]
= 0 (3.22)

Sfruttando la decomposizione SVD e il teorema di Eckart-Young-Mirsky (la matrice formata dai primi n termini della
decomposizione SVD è la matrice che meglio approssima la matrice Z sotto la norma di Frobenius) è possibile trovare la
soluzione del problema (3.21). Sia pertanto

C := [A|b] = UΣV> (3.23)

la Decomposizione a Valori Singolari della matrice C, dove Σ = diag (σ1 . . . σn+d). La soluzione Total Least squares, se esiste,
si scrive come

X̂tls = −V12V
−1
22 (3.24)

‘avendo partizionato

V =

[
V11 V12

V21 V22

]
Σ =

[
Σ1 0
0 Σ2

]
(3.25)

‘ed è possibile ottenere la miglior stima di Ĉ come

Ĉtls = C + ∆Ctls = U diag (Σ1, 0) V> (3.26)
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3.3 Metodi di ottimizzazione

Consideriamo ora un generico problema di modellizzazione (ottimizzazione) di funzione non vincolata, applicabile per esempio
a problemi di classificazione nell’ambito della visione artificiale. Le considerazioni espresse in questa sezione si applicano al
caso dei minimi quadrati ma possono essere estese a una generica loss function.

Sia z l’insieme dei dati coinvolti nell’operazione di modellizzazione formati da una coppia (xi, yi) composizione da un
ingresso arbitrario xi e dall’uscita yi. Sia `(ŷ, y) la funzione costo (loss function) che ritorna la bontà della stima su y.
L’obiettivo è trovare i pesi β che parametrizzano la funzione f(x;β) che minimizzano una funzione costo S(β)

S(β) =

∫
`(z;β)dP (z) S(β) =

n∑
i=1

`i(β) (3.27)

sia nel caso continuo che nel caso discreto, avendo definito `i(β) = `(fi(xi;β), yi). Per semplicità si farà sempre riferimento
al secondo caso, quello discreto, per descrivere la funzione costo.

Nel caso di errore additivo gaussiano normale, lo stimatore a massima verosimiglianza è la loss function quadratica di
equazione (3.6):

`i(β) = r2
i (β) = (yi − fi(xi;β))

2
(3.28)

In applicazioni pratiche non è quasi mai possibile ottenere il minimo della funzione in forma chiusa e pertanto bisogna
fare ricorso ad opportuni metodi iterativi, i quali, partendo da uno stato iniziale e muovendosi lungo opportune direzioni δ
si avvicinano man mano al minimo della funzione obiettivo.

3.3.1 Metodo di Newton-Raphson

Il problema di trovare i minimi di una funzione può essere ricondotto al problema di trovare gli zeri di una funzione, nel caso
specifico la derivata prima della funzione costo S.

Sia pertanto g : Rm 7→ Rn una funzione multivariata derivabile di cui sia richiesto di trovare

g(x) = 0 (3.29)

Espandendo in serie di Taylor la funzione g, localmente intorno a un punto x opportuno, si ottiene

g(x + δ) = g(x) + Jgδ +O(δ2) (3.30)

dove Jg è la matrice n×m Jacobiano della funzione g calcolato in x.
L’obiettivo è modificare il valore di x di un valore δ in maniera tale che la funzione costo calcolata in xt+δ sia esattamente

zero. Ignorando i contributi di ordine di ordine superiore a δ2, la stima del δ che in prima approssimazione fa avvicinare a
zero la funzione g è la soluzione del sistema lineare (3.30) con la condizione (3.29), ovvero

Jgδ = −g(x) (3.31)

sistema che, se Jg non ha deficienze di rango, è un semplice sistema lineare volendo anche sovradimensionato, che si può
risolvere con una delle tecniche mostrate in sezione 1.1. L’idea dei metodi iterativi è quello di modificare il punto xt della
quantità δt

xt+1 = xt + δt (3.32)

per le iterazioni t = 1, 2, . . ., cos̀ı calcolata in modo da avvicinarsi progressivamente allo zero della funzione.
Nel caso di singola variabile n = m = 1 il metodo di Newton si riduce a

xt+1 = xt −
g(x)

g′(x)
(3.33)

In calcolo numerico questo è il cosiddetto metodo di Newton (o di Newton-Raphson) per trovare gli zeri di una funzione.
I punti di massimo e minimo di una funzione sono i punti per i quali si riesce ad annullare il gradiente. Si può pertanto

applicare questa tecnica per trovare i massimi e minimi di una funzione f(x) : Rm 7→ R definendo

g(x) = ∇f(x)
Jg(x) = Hf (x)

(3.34)

dove ∇f(x) è la funzione gradiente Rm 7→ Rm mentre Hf (x) la matrice Hessiana m×m, funzioni gradiente ed Hessiana di
f calcolate in x. La modifica del punto x di Newton diventa pertanto

Hf (x)δt = −∇f(x) (3.35)
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Quando viene utilizzato per ottimizzazione il metodo di Newton approssima di fatto la funzione f(x) nell’intorno di x con
una quadrica. Se f(x) è una funzione quadratica, la convergenza è garantita in un sola iterazione.

Ora, nel caso specifico dei metodi di ottimizzazione, la funzione f(x) è la funzione costo S(β). Pertanto, quando la
matrice Hessiana di S(β) è non singolare, si ottiene l’equazione di variazione dei parametri

δt = −H−1
S (βt)∇S(βt) (3.36)

attraverso il metodo di ottimizzazione di Newton.

3.3.2 Discesa del Gradiente

L’algoritmo di discesa del gradiente (gradient descent, GD, o steepest descent) aggiorna i pesi β a ogni iterazione usando il
gradiente (più precisamente, l’antigradiente) della funzione obiettivo S(β):

βt+1 = βt − γ∇S(βt) = βt − γ
n∑
i=1

∇`i(βt) (3.37)

ovvero, definendo il passo di aggiornamento:

δt = −γ
n∑
i=1

∇`i(βt) (3.38)

dove γ è un fattore di ottimizzazione opportunamente scelto (in machine learning è chiamato learning rate). Sotto opportune
assunzioni, se il punto di partenza è sufficientemente vicino alla soluzione e il valore di γ è abbastanza piccolo, il ritmo di
convergenza ottenibile è praticamente lineare.

Poiché il parametro γ è scelto manualmente, l’approccio risulta empirico e dipendente dal problema, se non dall’esperienza
dell’utilizzatore. Confrontando l’equazione (3.37) con l’equazione (3.36), si osserva che il metodo di Newton è di fatto un
caso particolare di discesa del gradiente, in cui il parametro scalare γ viene sostituito da una matrice definita positiva Γt,
ottenuta come inversa dell’Hessiana nel punto corrente:

βt+1 = βt − Γt∇S(βt) (3.39)

La discesa del gradiente del secondo ordine corrisponde quindi all’algoritmo di Newton, che - sotto opportune ipotesi -
garantisce una convergenza quadratica, in contrasto con la convergenza lineare della discesa del gradiente classica.

3.3.3 Discesa Stocastica del Gradiente

L’algoritmo di discesa stocastica del gradiente (Stochastic Gradient Descent, SGD) è una semplificazione della discesa del
gradiente classica. Invece di calcolare il gradiente esatto della funzione obiettivo S(β), ad ogni iterazione si utilizza il gradiente
di un singolo campione `i scelto casualmente:

βt+1 = βt − γt∇`i(βt) (3.40)

SGD è garantito convergere su funzioni convexe definite su domini convessi, ma viene comunemente utilizzato anche in
contesti non convessi, come l’addestramento di reti neurali.

Una variante pratica consiste nell’utilizzare un piccolo gruppo di campioni (mini-batch) per ogni aggiornamento, riducendo
il rumore rispetto al singolo campione ma mantenendo una buona efficienza computazionale.

Per simulare un’inerzia nel cambiamento dei parametri, si introduce un termine α detto momentum:

δt = −γt∇S(βt) + αδt−1 (3.41)

dove α è solitamente un valore piccolo (es. 0.05). Il momentum è una delle modifiche più semplici ed efficaci a SGD, utile
per superare oscillazioni e rallentamenti in direzioni poco informative.

Oltre a SGD con momentum, esistono numerose varianti progettate per accelerare la convergenza e migliorare la stabilità
dell’ottimizzazione. Una lista non esaustiva include:

� Nesterov Accelerated Gradient (NAG)

� AdaGrad (Adaptive Gradient)

� RMSProp (Root Mean Square Propagation)

� AdaDelta

� Adam (Adaptive Moment Estimation) 3.3.4

� AdaMax

� Momentum

� Resilient Propagation (RProp)

Una panoramica comparativa di questi algoritmi è disponibile in [Rud16].
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3.3.4 Adam

Adam [KB14] (Adaptive Moment Estimation) è uno degli algoritmi di ottimizzazione più diffusi nel deep learning, grazie alla
sua capacità di combinare i vantaggi di AdaGrad e RMSProp.

AdaGrad assegna un learning rate specifico a ciascun parametro, risultando efficace in presenza di gradienti sparsi.
RMSProp, invece, adatta il learning rate in base alla magnitudo del gradiente, rendendolo adatto a scenari online e non
stazionari.

Adam estende questi approcci introducendo una stima adattiva sia del momento di primo ordine (la media dei gradienti)
che del momento di secondo ordine (la varianza). In particolare, per ogni modello β, Adam mantiene due variabili:

� mt: stima del momento di primo ordine (media dei gradienti);

� vt: stima del momento di secondo ordine (varianza dei gradienti).

Queste stime vengono aggiornate iterativamente secondo:

mt = β1mt−1 + (1− β1)∇S(βt) (3.42)

vt = β2vt−1 + (1− β2) (∇S(βt))
2

(3.43)

dove β1 e β2 sono iperparametri (da non confondere con β che sono i parametri del modello) che controllano il decadimento
esponenziale (tipicamente β1 = 0.9, β2 = 0.999).

Poiché mt e vt sono inizializzati a zero, le prime iterazioni risultano sottostimate. Per correggere questo bias, si calcolano:

m̂t =
mt

1− βt1
, v̂t =

vt
1− βt2

(3.44)

L’aggiornamento dei parametri avviene quindi secondo:

βt+1 = βt − γ ·
m̂t√
v̂t + ε

(3.45)

dove γ è il learning rate e ε è un termine di stabilizzazione numerica (tipicamente ε = 10−8).
Adam è particolarmente efficace in scenari con dati rumorosi, gradienti sparsi o funzioni obiettivo non stazionarie. Grazie

alla sua robustezza e semplicità d’uso, è spesso la scelta predefinita per l’ottimizzazione di reti neurali profonde.

3.3.5 Gauss-Newton

I metodi visti finora lasciano molta libertà nella scelta della loss function. Nei casi pratici in cui la funzione costo
` è quadratica, si possono introdurre ottimizzazioni ulteriori rispetto al metodo di Newton, evitando il gravoso calcolo
dell’Hessiana.

In questo caso, la loss function assume la forma già vista in precedenza:

S(β) =
1

2
r>r =

1

2

n∑
i=1

r2
i (β) (3.46)

Il termine 1/2 serve per ottenere un’espressione del gradiente più compatta.
Con questa funzione costo, gradiente e Hessiana si scrivono come:

∇S(β) =
∑n
i=1 ri(β)∇ri(β) = J>r r

HS(β) =
∑n
i=1∇ri∇r>i +

∑n
i=1 riHri = J>r Jr +

∑n
i=1 riHri

(3.47)

Quando i parametri sono vicini alla soluzione, il residuo è piccolo e l’Hessiana può essere approssimata dal primo termine:

HS(β) ≈ J>r Jr (3.48)

In queste condizioni, gradiente e Hessiana della funzione costo S dipendono solo dal Jacobiano delle funzioni ri(β).
L’Hessiana cos̀ı approssimata può essere inserita nell’equazione (3.35):

−J>r r = HSδβ ≈ J>r Jrδβ (3.49)

Come nel caso del metodo di Newton, si ottiene un problema di minimo lineare risolvibile tramite le normal equations:

δβ = −
(
J>r Jr

)−1
J>r r (3.50)
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Il significato delle normal equations è geometrico: il minimo si ottiene quando Jδβ − r è ortogonale allo spazio colonne
di J.

Nel caso particolare in cui il residuo sia scritto come:

ri = yi − fi(xi;β) (3.51)

ovvero come in equazione (3.6), è possibile usare Jf , Jacobiano di f , invece di Jr:

δβ =
(
J>f Jf

)−1
J>f r (3.52)

avendo osservato che le derivate di ri e fi(xi) coincidono a meno del segno.2

3.3.6 Levenberg-Marquardt

Nelle sezioni precedenti, gli algoritmi di risoluzione di sistemi non lineari sono stati distinti tra metodi di discesa del gradiente
e metodi di Gauss-Newton. Per una trattazione più approfondita si rimanda a [MBT04].

Nei metodi Gauss-Newton, quando J>J è definita positiva, il metodo fornisce sempre una direzione di discesa del costo.
Tuttavia, quando J>J diventa singolare, il metodo può diventare numericamente instabile.

La tecnica proposta da Levenberg-Marquardt cerca di combinare i punti di forza di Gauss-Newton e della discesa del
gradiente, traendone vantaggio da entrambi.

L’algoritmo di Levenberg-Marquardt (LM) è una tecnica iterativa ormai considerata standard per la risoluzione di
problemi non lineari multivariabili. Una descrizione dettagliata dell’algoritmo è disponibile in [Lou05].

LM può essere visto come composto da una fase iniziale di discesa del gradiente, più lenta ma stabile, seguita da un
risolutore di tipo Gauss-Newton, più veloce ma meno robusto.

L’algoritmo risolve una versione modificata dell’equazione (3.49), caso particolare dell’equazione (3.35), nota come
augmented normal equations:

Nδβ = −J>r r (3.53)

dove N = HS + µI e µ > 0 è un fattore di attenuazione (damping factor). Quando µ è elevato, N è quasi diagonale e
l’algoritmo si comporta come una discesa del gradiente. Quando µ è vicino a zero, LM approssima il metodo di Newton.

A differenza della ricerca lungo una linea (line search), LM implementa il concetto di trust region, adattando dinamica-
mente la regione entro cui si assume valida la linearizzazione del modello.

Come nel metodo di Gauss-Newton, LM sfrutta l’approssimazione dell’Hessiana:

HS(β) ≈ J>r Jr (3.54)

valida quando la loss function è quadratica.
La scelta iniziale e l’aggiornamento del parametro µ tra le iterazioni è lasciata al risolutore, e diverse strategie sono

proposte in letteratura.
Una delle implementazioni più diffuse [Nie99] propone di inizializzare µ come:

µ0 = τ max trace H (3.55)

dove τ è scelto liberamente dall’utente in base alla fiducia nella stima iniziale di β.
L’aggiornamento di µ è guidato dal gain ratio ρ:

ρ =
S(β)− S(β + δβ)
1
2δ
>
β (µδβ + J>r)

(3.56)

Un valore elevato di ρ indica che la linearizzazione del modello è efficace, e si può ridurre µ. Viceversa, se ρ è basso o
negativo, µ va aumentato per avvicinarsi a un comportamento da discesa del gradiente. Quando ρ ≈ 1, si ha una buona
corrispondenza tra modello e dati.

L’aggiornamento di µ può essere gestito secondo la seguente regola:

if ρ > 0 then
µ← µ ·max

(
1
3 , 1− (2ρ− 1)3

)
ν ← 2

else
µ← µ · ν
ν ← 2 · ν

end if

2Le derivate coincidono quando si sceglie un residuo del tipo ri = ŷi − yi.
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3.3.7 DogLeg

Come in Levenberg-Marquardt, l’algoritmo Dog-Leg prova a combinare il metodo Gauss-Newton con il metodo a discesa del
gradiente. Rispetto a Levenberg-Marquardt dove questo comportamento è gestito dalla Dumped Hessian, nel caso di Dog
Leg, la scelta è resta esplicita dall’analisi di una Trust Region.

3.3.8 Sampson Error

V
x
p̂

p

Figura 3.1: Tra una varietà V e un punto p si possono individuare il punto a distanza geometrica minima p̂ e il punto
determinato dalla distanza di Sampson x.

In molti problemi di regressione di dati è necessario essere in possesso di una qualche metrica per capire quanto un p è
distante dal modello vero e proprio e per fare questo sarebbe utile avere una stima p̂ dell’osservazione senza la componente
del rumore, ovvero un dato che appartiene al modello esattamente. Entrambe queste quantità normalmente non sono
direttamente ottenibili se non introducendo variabili sussidiarie incognite. È tuttavia possibile ottenere una stima di questi
valori, linearizzando la funzione del modello nell’intorno dell’osservazione.

Sia p una osservazione affetta da rumore e sia f(x) = 0 una varietà multidimensionale manifold rappresentante un
particolare modello a cui l’osservazione deve appartenere, ovvero p = p̂ + ε.

Il residuo f(p) è una misura algebrica della vicinanza tra il punto e il modello e non fornisce nessuna informazione utile in
termini assoluti: se la funzione viene sostituita da un suo multiplo (diverso da zero) rappresenterà ovviamente lo stesso luogo
dei punti ma il risultato della funzione cambierà di conseguenza. La metrica corretta sotto il punto di vista dello stimatore
alla massima verosimiglianza in caso di rumore additivo gaussiano bianco sulle osservazioni è la distanza geometrica tra il
punto p e il punto p̂ appartenente al modello ovvero stimare ε.

Esaminiamo pertanto il problema di calcolare una distanza approssimata tra il punto p ∈ Rm rispetto a una varietà
geometrica f(x) = 0 dove f : Rm 7→ Rn funzione derivabile in un intorno di p.

Il punto p̂ che giace sulla varietà più vicino al punto p è per definizione quel punto che minimizza l’errore geometrico

p̂ = arg min
x

‖p− x‖ (3.57)

sotto il vincolo f(x) = 0 (o min ||ε||2 sotto il vincolo f(p + ε) = 0).
La differenza tra minimizzare una quantità algebrica in maniera lineare e una quantità geometrica in maniera non-lineare

ha spinto la ricerca di un eventuale compromesso. Il metodo di Sampson, sviluppato inizialmente per varietà come le coniche,
richiede un ipotesi che può essere applicata invece a diversi problemi: le derivate della funzione costo nell’intorno del minimo
p̂ devono essere pressoché lineari e dunque approssimabili attraverso l’espansione in serie. La varietà f(p) = 0 può essere
approssimata con Taylor in modo tale che

f̃(x) ≈ f(p) + Jfδx = 0 (3.58)

con Jf matrice n×m dello Jacobiano della funzione f calcolato in p e δx = x− p.

Questa è l’equazione di un iperpiano in x e la distanza tra il punto p con il piano f̃(x) = 0 è la distanza di Sampson o
l’approximate maximum likelihood (AML). L’errore di Sampson rappresenta la distanza geometrica tra il punto e la versione
approssimata della funzione (geometric distance to first order approximation function).

Il problema a questo punto diventa quello di trovare il punto x più vicino a p, ovvero minimizzare ‖δx‖, soddisfacendo
il vincolo lineare

Jfδx = −f(p) (3.59)

Essendo un caso di minimizzazione con vincoli si risolve attraverso l’uso dei moltiplicatori di Lagrange, da cui si ottiene
il risultato notevole

δx = −J>
(
JJ>

)−1
f(p) (3.60)

risultato interessante se confrontato con il metodo di Gauss-Newton per esempio, equazione (3.50).
Il valore δx rappresenta una stima della distanza del punto p rispetto alla varietà e può essere usato sia per capire se

il punto appartiene o meno alla varietà (per esempio all’interno di algoritmi come RANSAC per discernere gli outlier) che
potenzialmente come funzione costo alternativa alla norma euclidea. δx è l’errore di Sampson e la sua norma, data da

‖δx‖2 = δ>x δx = f(p)>
(
JJ>

)−1
f(p) (3.61)
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indica la distanza (al quadrato) tra il punto e (l’approssimazione al primo grado di) un punto della varietà.
Nel caso notevole n = 1, la distanza di Sampson si riduce a

‖δx‖2 =
(f(p))

2

‖∇f(p)‖2
(3.62)

Applicazioni pratiche dell’uso dell’errore di Sampson sono per esempio la distanza tra un punto e la conica (vedi sezio-
ne 3.6.7), distanza di una coppia di punti da una omografia o la distanza di una coppia di punti omologhi rispetto alla matrice
Fondamentale (sezione 9.4.2).

La distanza di Sampson può venire generizzata nel caso di molteplici vincoli usando la distanza di Mahalanobis, ovvero
minimizzando

min
ε

∑
||ε||2Σ = min

ε

∑
ε>Σ−1ε (3.63)

sotto al vincolo f(p + ε) = 0. L’equazione sopra si generalizza pertanto in

‖δx‖2 = δ>x δx = f(p)>
(
JΣJ>

)−1
f(p) (3.64)

3.3.9 Regressione con rumore Anisotropo

Nel caso in cui il rumore di osservazione non sia isotropico non è più possibile usare la distanza euclidea per misurare l’errore
ma è necessario passare alla distanza di Mahalanobis. Sotto questa differente metrica la funzione costo (3.46) si scrive

S(β) = (r(β))
>

Ω (r(β)) (3.65)

dove Ω = Σ−1 è la matrice dell’informazione (information matrix ) detta anche matrice di concentrazione o matrice di
precisione. La distanza di Mahalanobis è lo stimatore ottimo nel senso di Maximum Likelihood quando il rumore è Gaussiano
anisotropo a media nulla. Nel caso particolare in cui la matrice di covarianza sia diagonale questo approccio può ricondursi
totalmente all’approccio ai minimi quadrati pesato.

L’espansione in serie di Taylor dell’equazione (3.65) si scrive

S(β + δ) = (r(β + δ))
>

Ω (r(β + δ))

≈ (r + Jδ)
>

Ω (r + Jδ)
= rΩr> + 2r>ΩJδ + δ>J>ΩJδ
= rΩr> + 2bδ + δ>Hδ

(3.66)

con r e J calcolate in β. La matrice H = J>ΩJ è la matrice dell’informazione dell’intero sistema in quanto ottenuta dalla
proiezione dell’errore di misura nello spazio dei parametri attraverso lo Jacobiano J mentre b = r>ΩJ è stato introdotto per
compattezza.

Le derivate della funzione S di conseguenza diventano

∂S(β + δ)

∂δ
≈ 2b + 2Hδ (3.67)

Da questo risultato, se si vuole trovare il minimo della funzione costo S usando Gauss-Newton si ottiene un risultato simile
a quello visto in precedenza

Hδ = −b (3.68)

risultato molto simile a quella di equazione (3.49) ottenuta da Gauss-Newton con rumore isotropo.

3.3.10 Ottimizzazione su una Varietà

Tutti i metodi di ottimizzazione visti finora sono stati progettati per lavorare su uno spazio Euclideo “piatto”. Quando
si vuole ottimizzare un vettore di stato che contiene una o più variabili dove lo spazio euclideo perde significato (esempio
rotazioni o matrici) ogni parametrizzazione risulta in soluzioni sub-ottime ed affette da singolarità. Negli ultimi anni hanno
preso molto piede tecniche che usano la versione overparametrizzata per il vettore di stato [Her08] per poi ottimizzare il
problema direttamente sulla varietà (manifold), varietà che localmente è ‘omeomorfica rispetto a uno spazio lineare.

L’idea è trasformare la classica minimizzazione di S ∈M, con M una varietà n-dimensionale,

δ ⇐ ∂S(x + δ)

∂δ

∣∣∣∣
δ=0

= 0 x⇐ x + δ (3.69)

‘in

: ε⇐ ∂S(x� ε)
∂ε

∣∣∣∣
ε=0

= 0 x⇐ x� ε (3.70)

con ε ∈ Rn, supponendo che nell’intorno ε = 0 la funzione lavori in uno spazio euclideo. L’operatore � permette l’addizione
tra elementi dello spazio della varietà con elementi dello spazio euclideo Rn.

Un esempio molto classico è considerare l’ottimizzazione di una orientazione espressa in 3 dimensioni attraverso l’uso di
un quaternione in 4 dimensioni.
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3.4 Funzioni Convesse e Problemi di Ottimizzazione Convessa e non

Definizione 12 Una funzione f : Rn → R si dice convessa se, per ogni coppia di punti x,y nel dominio di f e per ogni
λ ∈ [0, 1], vale la disuguaglianza:

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (3.71)

Una funzione è detta concava se la sua opposta, −f , è convessa. Le funzioni convesse presentano proprietà strutturali che
le rendono particolarmente adatte alla formulazione e risoluzione di problemi di ottimizzazione:

� L’intersezione di insiemi convessi è ancora un insieme convesso.

� L’epigrafo della funzione, definito come (x, t) ∈ Rn × R, |, f(x) ≤ t, è un insieme convesso.

� Se f è due volte differenziabile (f ∈ C2), la convessità è equivalente alla semidefinità positiva della matrice hessiana
∇2f(x) in ogni punto del dominio.

� La disuguaglianza di Jensen fornisce una caratterizzazione alternativa della convessità:

f (E[X]) ≤ E[f(X)] (3.72)

Esempi tipici di funzioni convesse includono: funzioni quadratiche con matrice Q � 0, norme `p come |x|1, |x|2, |x|∞, e
la funzione log-sum-exp f(x) = log (

∑
i e
xi), frequentemente impiegata in machine learning.

In visione artificiale, formulazioni convesse compaiono in numerosi contesti: stima di parametri tramite minimi quadrati,
matching tra feature come problema lineare, segmentazione e clustering basati su rilassamenti convessi. I problemi convessi
risultano particolarmente vantaggiosi perché ogni minimo locale coincide con il minimo globale, esistono algoritmi numerici
efficienti per la loro risoluzione (metodi del gradiente, simplesso, metodi a punto interno), e molti problemi pratici possono
essere riformulati in modo convesso.

Un problema di programmazione lineare (LP) assume la forma:

min
x
c>x s.t. Ax ≤ b (3.73)

dove A ∈ Rm×n e b ∈ Rm. La regione ammissibile è un poliedro convesso, e la soluzione ottima, se esiste, si trova in
corrispondenza di uno dei suoi vertici. Esempi di programmazione lineare in visione artificiale sono i problemi di assegnamento
e matching, flussi su grafo per segmentazione o stereo.

Un problema di programmazione quadratica (QP) si scrive come:

min
x

1
2x
>Qx+ c>x s.t. Ax ≤ b (3.74)

con Q � 0. Si tratta di un’estensione della LP che include un termine quadratico convesso. Esempi di programmazione
quadratica in visione artificiale sono Support Vector Machines (SVM) e fitting di modelli geometrici con vincoli.

Oltre a LP e QP, esistono classi più generali di problemi convessi:

� Second-Order Cone Programming (SOCP): impiegato in contesti di ottimizzazione robusta.

� Semidefinite Programming (SDP): utilizzato nei rilassamenti convessi di problemi combinatori.

Tuttavia, molti problemi di visione artificiale non sono convessi. In tali casi la funzione obiettivo può presentare più
minimi locali e non esistono garanzie di convergenza verso la soluzione globale. Esempi tipici sono la stima della posa (PnP),
il bundle adjustment o la ricostruzione tridimensionale. Per affrontare tali difficoltà si ricorre a:

� inizializzazioni robuste, per ridurre il rischio di convergere verso minimi locali indesiderati;

� rilassamenti convessi o approssimazioni, che consentono di trattare un problema non convesso come se fosse convesso;

� strategie iterative (RANSAC, multi-start), che esplorano più soluzioni candidate;

� metodi che sfruttano la struttura del problema, come l’ottimizzazione su gruppi di Lie.

Nella pratica, gran parte dell’ottimizzazione in visione artificiale avviene su problemi non convessi, e la qualità della
soluzione dipende fortemente dalla bontà dell’inizializzazione e dalla modellazione del problema.
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3.5 Valutazione dei parametri del modello

Trascurando la presenza di outlier nei dati in ingresso su cui eseguire la regressione, rimangono come importanti questioni
aperte sia quella di dare un giudizio su quanto è buono il modello ottenuto e allo stesso tempo fornire un indice su quanto
tale stima sia distante dal modello vero, a causa degli errori sui dati in ingresso.

In questa sezione viene trattato ampiamente il caso non-lineare: il caso lineare è equivalente usando al posto dello
Jacobiano J la matrice dei parametri X in parte già affrontato in sezione 2.7.

Sia y = (y1, . . . , yn)
>

un vettore di realizzazioni di variabili aleatorie statisticamente indipendenti y ∈ R e β ∈ Rm
parametri del modello. Uno stimatore intuitivo della bontà del modello è il root-mean-squared residual error (RMSE ),
chiamato anche standard error of the regression:

s =

√∑n
i=1 (yi − ŷi)2

n
(3.75)

con ŷi = f(xi, β̂) valore stimato grazie al modello f da cui sono stati ricavati i parametri β̂. Normalmente si è già vista
questa funzione espressa sotto forma del residuo ri = yi− ŷi. Se lo stimatore non è effetto da bias (come accade per esempio
nella regressione ai minimi quadrati) E[ri] = 0. Pertanto nel caso in cui il rumore sulle osservazioni sia gaussiano a media
nulla il valore di s ≥ σ e i due valori sono uguali quando il modello è ottimo.

Questo tuttavia non è un indice diretto della bontà della soluzione individuata ma solo quanto il modello trovato combacia
con i dati in ingresso: si pensi ad esempio al caso limite dei sistemi non sovradimensionati dove il residuo sarà sempre zero,
indipendentemente dalla quantità di rumore che agisce sulle singole osservazioni.

L’indice più adatto a stimare il modello è la matrice di varianza-covarianza dei parametri (Parameter Variances and
Covariances matrix ).

La propagazione in avanti della covarianza (covariance forward propagation) è stata già mostrata nella sezione 2.6 e,
facendo un veloce rimando, esistono 3 metodi per eseguire tale operazione: ‘il primo è basato sulla approssimazione lineare
del modello e coinvolge l’uso dello Jacobiano, il secondo è basato sulla più generica tecnica della simulazione Monte Carlo,
e infine una via moderna alternativa, media tra le prime due, è la Unscent Transformation (sezione 2.12.5) che permette,
empiricamente, stime fino al terzo ordine in caso di rumore gaussiano.

Il voler valutare la bontà dei parametri individuati β̂ data la covarianza del rumore stimata (Covariance Matrix Esti-
mation) è esattamente il caso opposto perché richiede di calcolare la propagazione all’indietro della varianza (backward

propagation). Infatti, ottenuta tale matrice di covarianza, è possibile definire un intervallo di confidenza nell’intorno di β̂.

Tale bontà della stima dei parametri β̂, nel caso non-lineare, può essere valutata in prima approssimazione attraverso
l’inversione della versione linearizzata del modello (ma anche in questo caso tecniche come la Montecarlo o la UT possono
essere utilizzate per stime più rigorose).

È possibile individuare la matrice di covarianza associata alla soluzione proposta β̂ nel caso in cui la funzione f sia
biunivoca e derivabile nell’intorno di tale soluzione. Sia pertanto f : Rm → Rn funzione multivariata multidimensionale, è

possibile stimare il valor medio r̄ = E
[
y − f(β̂)

]
≈ 0 e la matrice di cross-covarianza Σr dei residui allora la trasformazione

inversa f−1 avrà valor medio β̂ e matrice di covarianza

Σβ = (J>Σ−1
r J)−1 (3.76)

con J Jacobiano del modello f calcolato nel punto β̂:

Ji,j =
∂ri
∂βj

(β̂) = − ∂fi
∂βj

(β̂) (3.77)

L’equazione (3.76) si ricava manipolando l’equazione (2.34), equazione che calcola la propagazione in avanti dell’incertezza.
Si noti che questo (l’inverso della matrice dell’informazione) è il limite inferiore di Cramer-Rao sulla covarianza che può

avere uno stimatore corretto del parametro β.
Nei casi in cui la trasformazione f sia sottodeterminata, il rango dello Jacobiano d, con d < m, è chiamato numero dei

parametri essenziali (essential parameters). In caso di trasformazione f sottodeterminata la formula (3.76) non è invertibile
ma è possibile dimostrare che la migliore approssimazione della matrice di covarianza può essere ottenuta attraverso l’uso
della pseudo-inversa:

Σβ = (J>Σ−1
r J)+

Alternativamente è possibile eseguire una decomposizione QR con Pivot dello Jacobiano, individuare le colonne linearmente
dipendenti (attraverso l’analisi della diagonale della matrice R) e rimuoverle durante l’inversione stessa della matrice.

Nel caso invece molto comune in cui f sia una funzione scalare e il rumore di osservazione sia indipendente di varianza
costante, la matrice di covarianza stimata asintoticamente (Asymptotic Covariance Matrix ) si può scrivere in maniera più
semplice come

Σβ = (J>J)−1σ2 (3.78)
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con σ2 varianza del rumore di osservazione avendo applicato l’ipotesi Σr = σ2I valida in caso di realizzazioni indipendenti.
Siccome J è funzione solo della geometria del problema, la matrice (J>J)−1 è anche essa sola funzione del problema e non

delle osservazioni. Asintoticamente la stima tende a β = N
(
β̂,Σβ

)
. La matrice dello Jacobiano, in quanto indica quanto

le uscite sono suscettibili dai parametri, è anche chiamata sensitivity matrix.

La stima del rumore di osservazione può essere empirica, ipotizzando per la legge dei grandi numeri σ = s, calcolata
attraverso

σ2 ≈
∑n
i=1 r

2
i

n−m
(3.79)

‘usando le statistiche a posteriori dell’errore sui dati ri. Il denominatore n −m rappresenta i gradi di libertà statistici del
problema: in questo modo la varianza stimata è infinita quando il numero di incognite del modello equivale al numero di
dati raccolti.

Lo stimatore di covarianza di Eicker-White è leggermente differente e viene lasciato al lettore il suo studio.

La matrice di varianza-covarianza dei parametri rappresenta l’elissoide dell’errore.

Una metrica utile per dare un voto al problema è la configurazione D-ottima (D-optimal design):

det
(
J>J

)−1
(3.80)

che minimizza il determinante della matrice di varianza-covarianza, o nel caso opposto, che massimizza la matrice dell’infor-
mazione di Fisher:

det F (β) (3.81)

Geometricamente questo approccio minimizza il volume dell’elissoide dell’errore.

Altre metriche sono per esempio la configurazione E-ottima (E-optimal design) che consiste nel massimizzare il mini-
mo autovalore della matrice di Fisher ovvero minimizzare il più grande autovalore della matrice di varianza-covarianza.
Geometricamente questo minimizza il massimo diametro dell’elissoide.

3.6 Regressioni notevoli

In questa sezione verranno esaminate alcune regressioni notevoli a modelli molto semplici, come rette piani e circonferenze.

3.6.1 Regressione a una retta

Sia

y = mx+ q + ε (3.82)

l’equazione della retta scritta in forma esplicita con l’errore di misura totalmente inserito lungo l’asse delle y. Con l’errore
lungo l’asse y la funzione costo da minimizzare è

S =
1

2n

n∑
i=1

(mxi + q − yi)2
(3.83)

La soluzione del problema è il punto in cui il gradiente di S in m e q si annulla

∂S
∂m = 1

n

(
m
∑
x2
i + q

∑
xi −

∑
yixi

)
= mx̄2 + qx̄− ¯(xy) = 0

∂S
∂q = 1

n (m
∑
xi + qn−

∑
yi) = mx̄+ q − ȳ = 0

(3.84)

‘ovvero:

m =
¯(xy)− x̄ȳ
x̄2 − x̄2

=
cov(x, y)

var(x)
q = −mx̄+ ȳ

(3.85)

con x̄ il valor medio dei campioni xi (con lo stesso formalismo sono indicate anche le altre quantità). La retta passa per il
punto (x̄, ȳ) centroide della distribuzione.

È facile modificare tale risultato nel caso in cui si voglia minimizzare lo scarto lungo le x invece che lungo le y, o
rappresentare l’equazione della retta in forma implicita.



3.6. REGRESSIONI NOTEVOLI 57

3.6.2 Orthogonal Distance Fit

Nel caso in cui l’errore sia presente su entrambi gli assi (rumore funzione della distanza), la scrittura della funzione costo S
che massimizza la verosimiglianza è quella che viene chiamata Orthogonal least-squares line fit. L’errore può essere espresso
infatti usando la distanza tra il punto e la retta, secondo equazione (1.31). La regressione che usa questa metrica, pertanto
detta Perpendicular Regression o Total least squares (si veda sezione 3.2.2), ha senso quando entrambe le coordinate sono
affette da errore ovvero sono entrambe variabili aleatorie. L’ammontare del rumore sulle due componenti è supposto uguale
(per il caso più generale si veda la discussione in sezione 2.4). La funzione errore S da minimizzare è la distanza tra il punto
e la retta:

S =
1

2n

n∑
i=1

(axi + byi + c)2

a2 + b2
(3.86)

‘e il minimo si trova in ∇S = 0. È da notare che nel caso di distanza perpendicolare esiste come soluzione sia un minimo
che un massimo e pertanto esisteranno due valori di rette (ortogonali tra loro) entrambe soluzioni del sistema.

Dalla derivata parziale ∂S
∂c = 0 si ricava che la retta di regressione passa per il centroide (x̄, ȳ) della distribuzione, ovvero

c = −ax̄− bȳ (3.87)

con x̄ e ȳ medie dei campioni xi e yi rispettivamente.

La funzione errore (3.86), usando la relazione (3.87), si può scrivere come:

S =
a2
(
x̄2 − x̄2

)
+ 2ab (xy − x̄ȳ) + b2

(
ȳ2 − ȳ2

)
a2 + b2

(3.88)

‘ovvero, facendo sostituzioni adeguate Sxx = var(x), Syy = var(y) e Sxy = cov(x, y):

S =
a2Sxx + 2abSxy + b2Syy

a2 + b2
(3.89)

più facilmente derivabile. L’espressione (3.89) dell’errore non è di carattere generale, ma vale solamente per tutte le rette che
passano per il centroide della distribuzione. Essendo una forma omogenea è conosciuta a meno di un fattore moltiplicativo:
non esiste pertanto una sola soluzione ma una relazione che lega i parametri. Escludendo i casi a = 0, b = 0 (da trattare a
parte) il vincolo per ricavare il minimo/massimo ha la forma del tipo

(a2 − b2)Sxy + ab(Syy − Sxx) = 0 (3.90)

soluzione del problema.

È da notare infine che il medesimo risultato si ottiene in maniera molto più semplice applicando la decomposizione
SVD sull’equazione delle rette. Nel caso di regressione lineare la decomposizione SVD minimizza sia l’errore algebrico che
geometrico (l’errore algebrico e geometrico coincidono quando tutti i termini affetti da rumore rimangono limitati al termine
noto).

3.6.3 Regressione ortogonale a un piano

Si possono estendere le considerazioni fatte sulla retta anche per il piano. Va sottolineato che le regressione ortogonali di
una retta, di un piano, o di un iperpiano, sono da considerarsi come un problema di autovalori e risolvibile attraverso la
decomposizione SVD (è esattamente la principale applicazione della PCA).

Sia p0 = E[p] il centroide dei punti coinvolti nella regressione. Data l’equazione del piano (1.49) e come funzione errore
la sommatoria delle distanze (1.52) si ottiene immediatamente il vincolo:

k = −p0 · n̂ (3.91)

‘ovvero, come già rilevato nel caso lineare, il centroide della distribuzione appartiene al piano. Partendo da questo primo
vincolo, è possibile descrivere il piano come

(p− p0) · n̂ = 0 (3.92)

sistema omogeneo sovradimensionato, la cui soluzione si può ottenere con la pseudoinversa (ad esempio con la fattorizzazione
QR o SVD). Il valore di n̂ cos̀ı ricavato sarà conosciuto a meno di un fattore moltiplicativo e per questo motivo si può
sempre normalizzare, forzandolo alla lunghezza unitaria (le soluzioni ottenute attraverso fattorizzazioni sono solitamente già
normalizzate).
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3.6.4 Regressione lineare a funzione polinomiale

Il metodo applicato per ottenere la regressione lineare a una retta espressa in forma esplicita si può generalizzare a una
qualunque funzione polinomiale del tipo:

y = β0 + β1x+ β2x
2 + . . .+ βmx

m + ε (3.93)

dove β0 . . . βm sono i parametri della curva da ricavare, parametri che si ottengono cercando il minimo della funzione errore
descritta in (3.6). Le derivate di una funzione polinomiale sono notevoli:

∂S
∂βj

=
∑n
i=0(β0 + . . .+ βmx

m
i − yi)x

j
i

= β0

∑
xji + . . .+ βm

∑
xj+mi −

∑
yix

j
i

(3.94)

Il porre il gradiente nullo significa risolvere pertanto il sistema associato:
∑

1 . . .
∑
xmi∑

xi . . .
∑
xm+1
i

...
. . .

...∑
xmi . . .

∑
x2m
i


β0

...
βm

 =


∑
yi∑
yixi
...∑
yix

m
i

 (3.95)

che è una matrice simmetrica.
Alternativamente è possibile sfruttare la teoria della pseudoinversa (sezione 1.1) e usare direttamente l’equazione (3.93)

per costruire un sistema lineare sovradimensionato:
1 x1 . . . xm1
1 x2 . . . xm2
...

...
1 xn . . . xmn


β0

...
βm

 =


y1

y2

...
yn

 (3.96)

matrice di Vandermonde. La soluzione di questo sistema permette di ottenere i coefficienti del polinomio che minimizza il
quadrato dei residui. Se si pensa alla pseudoinversa risolta con il metodo delle normal equations si vede come il sistema
risultante è esattamente lo stesso di equazione (3.95).

Come si vedrà in altre parti di questo libro, matrici come quella di Vandermonde, dove le diverse colonne hanno ordini
di grandezza differenti, sono mal condizionate e richiedono una normalizzazione per migliorarne la stabilità numerica.

3.6.5 Regressione a una circonferenza

La regressione di una serie di punti all’equazione di una circonferenza (circular regression) si può ottenere minimizzando sia
una distanza algebrica che geometrica.

Se si vuole calcolare la regressione lineare di una serie di dati verso l’equazione della circonferenza di centro in (x0, y0) e
raggio r la funzione da minimizzare è

S =
∑(

(xi − x0)2 + (yi − y0)2 − r2
)2

(3.97)

dove si minimizza la distanza ortogonale tra i punti e il modello. Per risolvere il problema conviene eseguire un cambio di
variabile e minimizzare la forma algebrica:

S =
∑

(zi +Bxi + Cyi +D)
2

(3.98)

dove è stato introdotto zi = x2
i +y2

i per semplicità. Il problema si riduce alla soluzione di un sistema lineare 3×3 di equazione∑
zixi +B

∑
x2
i +C

∑
yixi +D

∑
xi = 0∑

ziyi +B
∑
xiyi +C

∑
y2
i +D

∑
yi = 0∑

zi +B
∑
xi +C

∑
yi +D

∑
1 = 0

(3.99)

simmetrico, facilmente risolvibile. Ricavati i parametri B, C e D è possibile ottenere i parametri originali del cerchio:

x0 = −B
2

y0 = −C
2

r2 = x2
0 + y2

0 −D (3.100)

Lo stesso risultato si può ottenere usando i risolutori lineari visti in precedenza. Si consideri per esempio una rappresen-
tazione algebrica di un cerchio

f(x) = ax>x + b>x + c = 0 (3.101)
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dove x ’e il luogo dei punti della circonferenza.

Dato un elenco di punti che appartengono alla circonferenza affetti da rumore, i parametri (a, bx, by, c) che descrivono la
circonferenza si ottengono dalla soluzione del sistema omogeneo di vincoli (3.101). Come si vedrà in dettaglio in successivi
problemi, per motivi puramente computazionali, risulta conveniente normalizzare i dati in ingresso, in quanto le diverse
incognite sono associate a dati di magnitudine molto differenti.

La soluzione algebrica è spesso usata come soluzione iniziale per tecniche iterative che minimizzano una metrica differente.

Per eseguire una regressione geometrica è necessario minimizzare le distanze d2
i =

(
‖xi − (x0, y0)>‖ − r

)2
. Per minimizzare

questa quantità è richiesto un risolutore non lineare ai minimi quadrati, ad esempio Levenberg-Marquardt, e il calcolo delle
derivate della funzione costo.

Una alternativa è infine parametrizzare il problema in un altro spazio diverso da quello cartesiano. Usando infatti la
forma parametrica dell’equazione del cerchio

x = x0 + r cosϕ
y = y0 + r sinϕ

(3.102)

le quantità da minimizzare diventano

xi − x0 + r cosϕi ≈ 0
yi − y0 + r sinϕi ≈ 0

(3.103)

facilmente derivabili. Ad ogni dato in ingresso (xi, yi) viene associata una incognita aggiuntiva ϕi, variabile sussidiaria. In
questo modo si crea un sistema non lineare in 3 + n incognite con 2n equazioni.

3.6.6 Regressione ad un ellisse

Come per il cerchio è possibile eseguire sia una minimizzazione algebrica, che geometrica.

L’equazione quadratica di un ellisse è

f(x) = x>Ax + b>x + c = 0 (3.104)

dove A è una matrice simmetrica, definita positiva. Anche in questo caso la soluzione del problema omogeneo (3.104)
permette di ricavare le 6 incognite (conosciute a meno di un fattore moltiplicativo) del sistema.

La soluzione non lineare che minimizza la quantità geometrica si può ottenere usando la rappresentazione parametrica
dell’ellisse

x =

[
x0

y0

]
+

[
cosα − sinα
sinα cosα

] [
a cosϕ
b sinϕ

]
(3.105)

dove (x0, y0) rappresenta il centro dell’ellissi, (a, b) la lunghezza dei due semiassi e α la rotazione dell’ellissi rispetto al centro.
Come per il cerchio, le ϕi saranno variabili sussidiarie e il problema non lineare diventa di 5 + n incognite con 2n equazioni.

3.6.7 Regressione ad un conica

È chiaramente possibile generalizzare la regressione della parabola, della circonferenza e dell’ellissi a una qualsiasi conica
(sezione 1.6) arbitrariamente orientata.

Siano (xi, yi)
>, con i = 1, . . . , n, punti affetti da rumore appartenenti al luogo dei punti da stimare.

L’equazione (1.56) può essere riscritta nella forma

a>i β = 0 (3.106)

dove ai =
{
x2
i , xiyi, y

2
i , xi, yi, 1

}
e β = {a, b, c, d, e, f} da cui risulta evidente che per ottenere i parametri β di una qualsiasi

conica si può procedere con la soluzione di un problema omogeneo di tipo Aβ = 0 in 6 incognite, minimizzando una quantità
del tipo

S =

n∑
i=1

a>i β (3.107)

Tale soluzione chiaramente minimizza un errore algebrico e non geometrico, pertanto questo non è lo stimatore ottimo.

Una formulazione alternativa per ricavare i parametri delle coniche si può trovare in [FPF99].

Infine, per capire se un punto è vicino all’equazione di una conica ovvero per ottenere una approssimazione geometrica
della distanza punto-conica, si può calcolare l’errore di Sampson (sezione 3.3.8) sfruttando il fatto che, per una conica di
equazione (1.56), il gradiente della varietà assume una forma molto semplice da calcolare:

∇f(x, y) = (2ax+ by + d, bx+ 2cy + e) (3.108)
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Figura 3.2: Funzione Logistica

3.7 Regressione Logistica

Esiste una famiglia di modelli lineari, che mettono in relazione la variabile dipendente con le variabili esplicative attraverso
una funzione non lineare, chiamati modelli lineari generalizzati (generalized linear model). La regressione logistica si situa
in questa classe di modelli, nel caso particolare in cui la variabile y sia dicotomica, ovvero possa assumere solo valori 0 o 1.
Per sua natura, questo genere di problemi, assume una notevole importanza nei problemi di classificazione.

Nel caso di problemi binari è possibile definire la probabilità di successo e insuccesso

P [Y = 1|x] = p(x)
P [Y = 0|x] = 1− p(x)

(3.109)

La risposta di un predittore lineare del tipo

y′ = β · x + ε (3.110)

non è limitata tra 0 e 1 perciò non è adatta a questo scopo. Risulta necessario associare la risposta del predittore lineare
con la risposta di una certa funzione g, funzione della probabilità p(x)

g(p(x)) = β · x + b (3.111)

dove g(p), mean function, è una funzione non lineare definita tra [0, 1]. g(p) deve essere invertibile e l’inversa g−1(y′) è la
link function.

Un modello ampiamente usato per la funzione g(p) è la funzione logit definita come:

logit(p) = log
p

1− p
= β · x (3.112)

La funzione p
1−p , siccome rappresenta quante volte il successo è maggiore dell’insuccesso, è detta odds-ratio e di conseguenza

la funzione (3.112) rappresenta il logaritmo della probabilità che accada un evento rispetto alla probabilità che il medesimo
evento non accada (log-odds).

La sua funzione inversa esiste e vale

E[Y |x] = p(x) =
eβ·x

1 + eβ·x
(3.113)

‘ed è la funzione logistica.

Il metodo della massima verosimiglianza in questo caso non coincide con il metodo dei minimi quadrati ma con

L(β) =

n∏
i=1

f(yi|xi) =

n∏
i=1

pyi(xi) (1− pyi(xi)) (3.114)

da cui la funzione di verosimiglianza logaritmica

logL(β) =

n∑
i=1

yi(β · xi)− log
(
1 + eβ·xi

)
(3.115)

la cui massimizzazione, attraverso tecniche iterative, permette la stima dei parametri β.
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3.8 M-Estimator

L’utilizzo della regressione ai minimi quadrati (Least squares) dell’errore rispetto ad altre funzioni di peso è sia scelta per
via della funzione di massima verosimiglianza ma soprattutto per via della semplicità delle derivate che si ottengono nello
Jacobiano.

Nei problemi visti finora si è quasi sempre supposta la varianza costante e gli errori di osservazioni distribuiti secondo una
distribuzione normale. Se il rumore fosse solamente gaussiano questo approccio è teoricamente corretto, ma applicazioni reali
presentano distribuzioni solitamente formate da rumore gaussiano appartenente al modello e rumore associato a elementi che
non appartengono al modello stesso (outlier). In questa condizione la regressione ai minimi quadrati ha come conseguenza
quella di trattare tutti i punti come se l’errore fosse gaussiano, ovvero pesando poco i punti vicini al modello e pesando invece
molto i punti lontani dal modello i quali, per un puro discorso di probabilità, sono solitamente outlier.

Il modo di trattare in maniera univoca questi problemi è stato indicato da John Nelder che ha battezzato tali tecniche
con il nome di modelli lineari generalizzati (GLM, General Linear Models).

Per risolvere questo problema è necessario cambiare la metrica attraverso la quale vengono valutati gli errori: ‘un primo
esempio di metrica differente che potrebbe risolvere il problema è la regressione al valore assoluto. Il calcolo tuttavia del
minimo della funzione errore espresso come distanza in valore assoluto (Least absolute deviations regression) non è facile,
in quanto la derivata non è continua e richiede l’utilizzo di tecniche iterative di ottimizzazione: metriche derivabile sono
preferibili in questo caso.

Peter Huber ha proposto nel 1964 una generalizzazione del concetto di minimizzazione alla massima verosimiglianza
introducendo gli M-estimator.

Alcuni esempi di funzioni di regressione sono mostrate in figura 3.3.
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Figura 3.3: Alcuni esempi di funzioni peso per regressioni: la regressione ai minimi quadrati (metrica L2), la regressione
lineare (L1), gli stimatori di Huber, la biquadratica di Tukey, la funzione Lorentziana (Cauchy) e la funzione di Welsch
(Leclerc).

Un M-Estimator sostituisce la metrica basata sulla somma dei quadrati a una metrica basata su una funzione ρ (loss
function) generica con un unico minimo in zero e con crescita sub-quadratica. Gli M-Estimator generalizzano la regressione
ai minimi quadrati: ponendo ρ(r) = ‖r‖2 si ottiene la forma classica della regressione.

Infine, se la funzione perdita è monotona crescente si parla di M-estimator mentre se la funzione perdita è crescente
vicino a zero ma decrescente lontano da 0 si parla di Redescending M-estimator.

La stima dei parametri si ottiene attraverso la minimizzazione di una sommatoria di quantità pesate generiche:

min
β

∑
ρ

(
ri
σi

)
(3.116)

la cui soluzione, in forma chiusa o iterativa, rispetto ai minimi quadrati è diversa a causa della differente derivata della
funzione ρ:

n∑
i=1

1

σi
ρ′
(

ri
σi

)
∂ri
∂βj

= 0 j = 1, . . . ,m (3.117)

3.9 Minimi quadrati riponderati iterativamente

Una tecnica ortogonale agli M-Estimator è la tecnica dei minimi quadrati riponderati iterativamente (IRLS, Iteratively
Reweighted Least Squares) [gre84]. È una tecnica dove ad ogni iterazione vengono stimati nuovi pesi con i quali ricavare una
nuova soluzione. Tale tecnica si può applicare sia a problemi lineari che non-lineari.
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Nel caso lineare l’obiettivo è quello di minimizzare una funzione costo del tipo

‖Wr‖2 =
∑
i

w2
i r

2
i = r>W>Wr (3.118)

dove la matrice W è una matrice diagonale con i pesi wi posti lungo la diagonale.
Nel caso di problema sovradimensionato questo ha soluzione

x =
[
A>W>WA

]−1
A>W>Wb (3.119)

Si applica lo stesso approccio a sistemi non-lineari.

3.10 Black-Rangarajan duality

La tecnica dei minimi quadrati iterativi diventa una tecnica ottima se per i pesi vengono selezionati opportunamente, cercando
di unire l’aspetto di stima robusta con l’aspetto di rigetto degli Outlier.

La dualità descritta da Black-Rangarajan [BR96] collega questi due aspetti mostrando che la stima robusta può essere
vista come un processo di rimozione degli Outlier. Questo dualismo permette l’uso della Non-Convessità Graduata (Graduated
Non-Convexity, GNC), una tecnica che trasforma gradualmente un problema non convesso in uno convesso, rendendo più
facile trovare una soluzione globale senza bisogno di un’ipotesi iniziale.

In pratica, questo dualismo unito alla GNC sono utilizzati per sviluppare algoritmi che sono robusti a una percentuale
elevata di outlier, superando i metodi tradizionali come RANSAC in termini di accuratezza e velocità.

La dualità di Black-Rangarajan fornisce una teoria per costruire la relazione tra M-estimatori e processi lineari. Le
tipiche funzioni di Loss robuste includono Welsch (Leclerc), Cauchy (Lorentziana), Charbonnier (pseudo-Huber, `1-`2),
Huber, Geman-McClure, quadratica troncata smooth, quadratica troncata, funzioni biweight di Tukey, ecc. La dualità di
Black-Rangarajan di queste funzioni può essere trovata in [ZB17] di cui riporto un estratto qua in tabella:

Nome ρ(x) ω(x)

Quadratica x2

2 1

Cauchy τ2

2 log
(
1 + x2/τ2

)
τ2

τ2+x2

Huber

{
x2/2 |x| ≤ τ
τ |x| − τ2/2 |x| ≥ τ

{
1 |x| ≤ τ
τ/|x| |x| ≥ τ

Welsch τ2

2

(
1− e−x2/τ2

)
e−x

2/τ2

Quadratica troncata min {τ, x}2 /2
{

1 |x| ≤ τ
0 |x| > τ

dove c’è la loss function ρ(x) e la sua corrispondente funzione di aggiornamento dei pesi ω(x) e sia τ
def
== max{x : ω(x) = 1}

il raggio degli inlier incondizionati.

3.11 Trasformata di Hough

Sia g(x,β) = 0 una varietà continua in x di cui è richiesto stimare i parametri β ∈ Rm. Per ricavare tali parametri e poter
definire completamente la funzione, sono disponibili un insieme di coordinate S = {x1, . . . ,xn} che appartengono al luogo
dei punti della funzione, potenzialmente affetti da rumore ma sopratutto potenzialmente outlier.

La trasformata di Hough (Hough Transform) è una tecnica che permette di raggruppare un insieme “molto probabile”
di punti che soddisfano alcuni vincoli parametrici [PIK92].

Per ogni possibile punto β∗ nello spazio dei parametri è possibile associare un voto H(β) del tipo

H(β∗) = {x : g(x,β∗) = 0,x ∈ S} (3.120)

‘ovvero il numero degli elementi di S che soddisfano il vincolo espresso da g. Il parametro β∗ che massimizza tale voto è la
soluzione statisticamente più probabile al problema.

Sia ora la funzione p(x,β) un indice di verosimiglianza tra la coppia (x,β) e il vincolo espresso da g(x,β) = 0. La funzione
p normalmente è una funzione binaria, ma generalizzando può rappresentare tranquillamente una probabilità. Attraverso la
funzione p è possibile costruire la trasformata di Hough H(β) in maniera incrementale attraverso

H(β) =

n∑
i=1

p(xi,β) (3.121)

La trasformata di Hough è la somma di tutte queste funzioni.
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Figura 3.4: Esempio di Trasformata di Hough per individuare rette in coordinate polari: mappa accumulatore (in alto a
destra) di un singolo punto (in alto a sinistra), e mappa accumulatore (in basso a destra) di una serie di punti colineari
insieme ad outlier (in basso a sinistra).

Per particolari vincoli è possibile semplificare ulteriormente quest’approccio, in modo da ridurre il peso computazionale
e l’utilizzo della memoria.

Siano pertanto β1 . . . βm parametri da stimare, quantizzabili e limitati, e siano f e β1 una funzione e un parametro tali
che si possa scrivere la funzione g(x,β) = 0 come

β1 = f(x, β2 . . . βm) (3.122)

Se la funzione g è esprimibile come in equazione (3.122), è possibile attraverso il metodo della trasformata di Hough discreta
stimare i parametri β che rappresentano il modello più “probabile” fra tutti i punti x forniti. Per ogni elemento x è possibile
far variare i parametri β2 . . . βm nel loro intervallo e inserire nell’immagine accumulatore H(β) i valori di β1 restituiti dalla
funzione (3.122).

In questo modo è possibile generare una mappa n-dimensionale di probabilità usando osservazioni x affette da rumore e
potenzialmente outliers. Allo stesso modo il metodo di Hough permette di stimare un modello in presenza di una mistura di
modelli con parametri differenti.

Il metodo di Hough permette prestazioni via via migliori man mano che il numero di vincoli aumenta, limitando dinami-
camente per esempio il campo dei parametri associati al campione x. L’algoritmo di Hough può essere visto come una forma
degenere di template matching.

Normalmente risulta interessante l’uso di Hough dove il modello ha solo 2 parametri in quanto facilmente graficabile su
una mappa bidimensionale.

Un esempio molto comune della trasformata di Hough è quello dove g (il modello) è una retta, espressa in forma polare
come in equazione (1.46), dove i parametri da ricavare sono θ e ρ: risulta evidente che per ogni coppia di punti (x, y) e
per tutti i possibili angoli di θ quantizzati e limitati (in quanto angolo è un parametro limitato) esiste uno e un solo ρ che
soddisfa l’equazione (1.46).

È pertanto possibile creare mappa H(θ, ρ) dove per ogni punto (x, y) ∈ S e per ogni θ ∈ [θmin, θmax] viene incrementata
sulla mappa accumulatore l’elemento associato a (θ, cos θx + sin θy), relazione che soddisfa l’equazione (1.46) della retta
scritta sotto forma di coordinate polari.

3.12 RANSAC

L’algoritmo di RANdom Sample And Consesus è un algoritmo iterativo per la stima dei parametri di un modello dove
l’insieme dei dati è fortemente condizionato dalla presenza di outlier, algoritmo [FB81] non deterministico basato sulla
selezione casuale degli elementi generatori del modello.

RANSAC, e tutte le sue varianti, possono essere viste come algoritmi che iterativamente alternano tra due fasi: la fase
di generazione delle ipotesi (hypothesis generation) e la fase di valutazione delle ipotesi (hypothesis evaluation).

L’algoritmo, in breve, consiste nel selezionare casualmente s campioni fra tutti gli n campioni in ingressoX = {x1, . . . ,xn},
con s grande abbastanza per ricavare un modello (l’ipotesi). Ottenuta un’ipotesi, vengono contati quanti degli n elementi
di X sono abbastanza vicini ad essa per appartenergli. Un campione x ∈ S appartiene o meno al modello ipotetico (ovvero
è un inlier o un outlier ipotetico) se la sua distanza rispetto al modello dβ(x) è inferiore o superiore a una soglia data
τ , soglia normalmente dipendente dal problema. La soglia τ si scontra con quei problemi pratici dove l’errore additivo è
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di tipo gaussiano, ovvero dove il supporto è infinito. In questo caso è comunque necessario definire una probabilità p di
individuazione degli inlier per definire una soglia τ .

Tutti i camptioni che soddisfano l’ipotesi si chiamano consensi (consensus).
L’insieme dei consensi S associati all’ipotesi β è il consensus set di β:

S(β) = {x ∈ X : dβ(x) < τ} (3.123)

Tra tutti i modelli generati casualmente viene scelto il modello che soddisfa una determinata metrica, per esempio, per
RANSAC originale, quella che ha il consenso di cardinalità massima.

Uno dei problemi è scegliere quante ipotesi generare per avere una buona probabilità di ottenere il modello corretto.
Esiste una relazione statistica tra il numero di iterazioni N e la probabilità p di individuare una soluzione di soli inlier.

Il numero di tentativi N deve soddisfare (1− P )N ≤ 1− p ovvero

N ≥ log(1− p)
log(1− P )

(3.124)

dove P è la probabilità di avere scelto una soluzione fatta solamente di inlier.
Normalmente come approssimazione di P si può usare P = (1− ε)s3 e perciò

N =
log(1− p)

log(1− (1− ε)s)
(3.125)

con ε la probabilità a priori di selezionare un outlier e s il numero di elementi necessari a definire il modello. La dimensione
di un consensus set minimo può essere dedotta in via statistica semplicemente come T = (1− ε)n.

Normalmente s viene scelto uguale al numero di elementi necessari per creare il modello ma, se superiore a questo numero,
il modello che viene generato deve essere un modello costruito attraverso una regressione numerica rispetto ai vincoli forniti,
condizione necessaria quando la varianza del rumore è elevata, incrementando tuttavia il rischio di inglobare nei vincoli anche
outliers.

3.12.1 M-SAC

La politica di RANSAC è quella di restituire, fra tutte le ipotesi generate, quella che possiede il minor numero di elementi
esterni a una soglia fissata. Questa politica può essere vista come un M-estimator che minimizza una loss function del tipo

ρ =

{
0 |e| < τ
1 |e| > τ

(3.126)

‘ovvero che assegna come voto 1 a tutti gli elementi più distanti della soglia dal modello valutato e a 0 gli elementi all’interno
della soglia τ .

Il concetto si può pertanto generalizzare, nelle tecniche M-SAC (M-Estimator Sample and Consensus), dove la loss
function di RANSAC viene modificata.

Come segnalato nella sezione precedente il rumore sui dati può essere visto in parte come rumore gaussiano sugli inliers
associato a una distribuzione uniforme di outliers. La negative Maximum Likelihood è di fatto la loss function teoricamente
corretta, base dei metodi MLESAC, ma abbastanza onerosa dal punto di vista computazionale.

Una buona approssimazione, propria delle tecniche M-SAC, è usare come loss function

ρ =

{
e2 |e| < τ
τ2 |e| > τ

(3.127)

Questa loss function modella abbastanza bene il caso di inlier affetti da errore gaussiano a media nulla, e outlier distribuiti
uniformemente.

3.12.2 LMedS

L’algoritmo di rigetto degli outlier chiamato Least Median of Squares (LMedS ) è molto simile concettualmente a RANSAC:
come per RANSAC viene generato un modello partendo da campionamenti casuali dai dati in ingresso ma, invece che
scegliere il modello che raccoglie il maggior numero di consensi (o che minimizza una loss function), LMdeS seleziona fra
tutti il modello che ha il valore mediano degli errori minore. Tutti i dati in ingresso pertanto vengono confrontati con il
modello, ordinati per errore, ed esaminato il valore mediano.

La relazione tra probabilità di individuare inlier e numero di iterazioni è lo stesso di RANSAC. RANSAC tuttavia richiede
due parametri (il numero di iterazioni e la soglia per discriminare se un elemento appartiene o meno al data-set), mentre
LMedS richiede solo il primo. Per costruzione, LMedS tuttavia tollera al massimo la presenza del 50% di outlier.

Una buona panoramica delle tecniche RANSAC, M-SAC e LMedS si può trovare in [CKY09].

3La stima corretta è P =

(
pn
s

)
(
n
s

) con pn numero totale di inlier, n numero totale di elementi e s il numero di elementi necessari.



Capitolo 4

Classificazione

Un ruolo predominante nella Visione Artificiale rivestono le tecniche di Classificazione e di machine learning. La grande
quantità di informazione che si può estrarre da un sensore video supera di gran lunga in quantità quella che si può ottenere
da altri sensori ma richiedono tecniche complesse che permettano di sfruttare questa ricchezza di informazione.

Come già detto in precedenza, statistica, classificazione e fitting di modelli si possono vedere di fatto come diverse facce
di un unico argomento. La statistica ricerca il modo più corretto dal punto di vista bayesiano per estrarre i parametri (dello
stato o modello) nascosti di un sistema, affetto eventualmente da rumore, cercando, dati gli ingressi, di restituire l’uscita
più probabile mentre la classificazione propone tecniche e modi su come modellare il sistema in maniera efficiente. Infine se
si conoscesse il modello esatto che sottostà a un sistema fisico, qualunque problema di classificazione si ricondurrebbe a un
problema di ottimizzazione. Per queste ragioni non è pertanto facile ne netto capire dove finisca un argomento e inizi l’altro.

Il problema della classificazione si riconduce a quello di ricavare i parametri di un modello generico che permetta di
generalizzare il problema avendo a disposizione un numero limitato di esempi.

Un classificatore può essere visto in due modi, a seconda di che tipo di informazione tale sistema voglia fornire:

1. come funzione di “verosomiglianza” verso un modello, come in equazione (4.1);

2. come partizionamento dello spazio degli ingressi, come in equazione (4.2).

Nel primo caso un classificatore viene rappresentato da una generica funzione

f : Rn → Rm (4.1)

che permette di associare all’elemento x in ingresso, formato dalle n caratteristiche rappresentanti l’esempio da classificare,
dei valore di confidenza rispetto alle possibili {y1, . . . , ym} classi di uscita (categorie):

f(x) = (p(y1|x), . . . , p(ym|x))

ovvero la probabilità che l’oggetto osservato sia proprio yi data la quantità osservata x.
A causa sia dell’infinità delle possibili funzioni sia della mancanza di ulteriori informazioni specifiche sulla forma del

problema, la funzione f non potrà essere un funzione ben specifica ma verrà rappresentata da un modello a parametri nella
forma

y = f(x,β)

dove y ∈ Rm è lo spazio degli output, x ∈ Rn spazio degli input mentre β sono i parametri del modello f da determinare
nella fase di addestramento.

La fase di addestramento si basa su un insieme di esempi (training set) formato da coppie (xi,yi) e attraverso questi
esempi la fase di addestramento deve determinare i parametri β della funzione f(x,β) che minimizzino, sotto una determinata
metrica (funzione di costo), l’errore sul training set stesso.

Per addestrare il classificatore bisogna pertanto individuare i parametri ottimi β che minimizzano l’errore nello spazio
delle uscite: la classificazione è anche un problema di ottimizzazione. Per questa ragione machine learning, fitting di modelli
e statistica risultano ambiti di ricerca strettamente legati. Le medesime considerazioni usate in Kalman o per Hough e tutto
ciò detto nel capitolo di fitting di modelli ai minimi quadrati si possono usare per classificare e gli algoritmi specifici di
classificazione possono essere usati ad esempio per adattare una serie di osservazioni affette da rumore a una curva.

Normalmente non è possibile produrre un insieme di addestramento completo: non è infatti sempre possibile ottenere
qualsiasi tipo di associazione ingresso-uscita in modo da mappare in maniera sistematica tutto lo spazio degli input nello
spazio degli output e, se ciò fosse anche possibile, risulterebbe comunque dispendioso disporre della memoria necessaria per
rappresentare tali associazioni sotto forma di Look Up Table. Queste solo le principali ragioni dell’utilizzo di modelli nella
classificazione.

Il fatto che il training set non possa coprire tutte le possibili combinazioni ingresso-uscita, combinato alla generazione
di un modello ottimizzato verso tali dati incompleti, può provocare una non-generalizzazione dell’addestramento: elementi

65
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non presenti nell’insieme di addestramento potrebbero essere classificati in maniera errata a causa dell’eccessivo adattamento
al training set (problema dell’overfitting). Questo fenomeno è causato normalmente da una fase di ottimizzazione che si
preoccupa più di ridurre l’errore sulle uscite piuttosto che di generalizzare il problema.

Tornando ai modi per vedere un classificatore, risulta spesso più semplice e più generalizzante ricavare direttamente dai
dati in ingresso una superficie in Rn che separi le categorie nello spazio n-dimensionale degli ingressi. Si può definire una
nuova funzione g che ad ogni gruppo di ingressi associ una ed una sola etichetta in uscita, nella forma

g : Rn → Y = {y1, . . . , ym} (4.2)

Questo è il secondo modo di vedere un classificatore.
L’espressione (4.1) può essere sempre convertita nella forma (4.2) attraverso una votazione per maggioranza:

g(x) = arg max
yi

p(yi|x) (4.3)

Il classificatore, sotto questo punto di vista, è una funzione che restituisce direttamente il simbolo più somigliante all’in-
gresso fornito. Il training set ora deve associare a ogni ingresso (ogni elemento dello spazio) una ed una sola classe y ∈ Y in
uscita. Solitamente questo modo di vedere un classificatore permette di ridurre la complessità computazionale e l’utilizzo di
risorse.

Se la funzione (4.1) rappresenta effettivamente una funzione di trasferimento, una risposta, la funzione (4.2) può essere
vista come un partizionamento dello spazio Rn dove a regioni, generalmente molto complesse e non contigue dello spazio
degli ingressi, è associata un’unica classe.

Per le motivazioni addotte in precedenza non è fisicamente possibile realizzare un classificatore ottimo (se non per
problemi di dimensioni molto contenute o per modelli semplici e conosciuti perfettamente) ma esistono diversi classificatori
general purpose che a seconda del problema e delle performance richieste possono considerarsi sub-ottimi. Nel caso dei
classificatori (4.2) il problema è quello di ottenere un partizionamento ottimo dello spazio e pertanto è richiesto un set di
primitive veloci e tali da non usare troppa memoria nel caso di alti valori di n, mentre nel caso (4.1) è richiesta espressamente
una funzione che modelli molto bene il problema evitando però specializzazioni.

Le informazioni (features) che si possono estrarre da una immagine per permetterne la classificazione sono molteplici. In
genere usare direttamente i toni di grigio/colore dell’immagine è raramente usato in applicazioni pratiche perché tali valori
sono normalmente influenzati dalla luminosità della scena e sopratutto perché rappresenterebbero uno spazio di ingresso
molto vasto, difficilmente gestibile. È necessario pertanto estrarre dalla parte di immagine da classificare delle informazioni
essenziali (features) che ne descrivano l’aspetto al meglio. Per questa ragione, tutta la teoria mostrata in sezione 6 è
ampiamente usata in machine learning. Sono ampiamente usati infatti, sia le feature di Haar grazie alla loro velocità di
estrazione o gli Istogrammi dell’Orientazione del Gradiente (HOG, sez. 6.2) per la loro accuratezza. Come compromesso, e
loro generalizzazione, tra le due classi di feature di recente sono state proposte le Feature su Canali Integrali (ICF, sez. 6.3).

Per ridurre la complessità del problema di classificazione questo può essere diviso in più strati da affrontare in maniera
indipendente: un primo strato trasforma lo spazio degli ingressi nello spazio delle caratteristiche, mentre un secondo livello
esegue la classificazione vera e propria partendo dallo spazio delle caratteristiche.

Sotto questa considerazione le tecniche di classificazione si possono dividere in 3 categorie principali:

Rule-based learning In questo caso sia lo spazio delle caratteristiche che i parametri della funzione di classificazione sono
decisi da un utente umano, senza sfruttare alcun insieme di dati o esempi di addestramento;

Machine Learning La trasformazione tra spazio di ingressi a spazio delle caratteristiche è scelta dall’utente tra un insieme
finito di funzioni, mentre l’estrazione dei parametri del modello è lasciata all’elaboratore analizzando gli esempi forniti;

Representation learning Sia la trasformazione in spazio delle caratteristiche che l’estrazione dei parametri del modello
sono attuati dal calcolatore.

Recentemente tecniche di Representation learning costruite con più strati in cascata tra loro (Deep Learning) hanno
avuto molto successo a risolvere problemi di classificazione complesse.

Tra le tecniche per trasformare lo spazio di ingressi nello spazio delle caratteristiche è importante citare la PCA, tecnica
lineare non supervisionata. La Principal Component Analysis (sezione 2.10.1) è una tecnica che permette di ridurre il numero
di ingressi al classificatore, rimuovendo le componenti linearmente dipendenti o ininfluenti, riducendo pertanto la dimensione
del problema cercando comunque di preservare al massimo l’informazione.

Per quanto riguarda i modelli e le tecniche di modellazione general purpose molto utilizzate sono

Regressione una regressione di dati ad un modello è di fatto un classificatore. Di conseguenza, tutta la teoria del capitolo 3
può e deve essere usata per classificare dati;Tra

Neural Network Le reti neurali permettono di generare funzioni di tipo (4.1) concatenando tra loro somme, moltiplicazioni
e funzioni fortemente non lineari come le sigmoidi. Tecniche di regressione permettono di stimare i parametri di questo
modello generico;
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Classificatori Bayesiani è possibile usare il teorema di Bayes direttamente come classificatore o per unire insieme più
classificatori in modo da massimizzare la probabilità a posteriori di individuare la classe corretta (sezione 4.2);

Albero di decisione dove i classificatori sono messi in cascata con altri classificatori (ed ogni nodo rappresenta un qualche
attributo estratto dai dati in ingresso);

Decision Stump albero di decisione degenere (1 nodo), permette di partizionare lo spazio delle features usando una semplice
soglia, diventando cos̀ı il più semplice classificatore di tipo (4.2) ed esempio di classificatore debole;

Ensemble Learning Più classificatori deboli (weak) possono essere messi in relazione tra loro (Ensemble Learning, sezio-
ne 4.6) in modo da massimizzare qualche metrica globale (ad esempio il margine di separazione tra le classi). Di fatto
non sono veri e propri classificatori ma sono tecniche per unire più classificatori semplici e generare un classificatore
complesso (ensemble).

Figura 4.1: Esempio di Template Matching. L’approccio funziona bene sull’immagine di origine, ma non è possibile
estenderlo ad altre immagini, soprattutto con variazioni di luminosità e scala sensibili.

4.1 Classificatori Binari

Un particolare caso, molto diffuso, di classificatore è quello di classificatore binario. In questo caso il problema consiste nel
cercare una relazione che leghi il training-set S = {(x1, y1) . . . (xl, yl)} ∈ (X × Y) dove X ⊆ Rn è il vettore che raccoglie le
informazioni da usare per l’addestramento e Y = {+1,−1} lo spazio delle classi associate.

Esempi di classificatori intrinsecamente binari sono:

LDA la Linear Discriminant Analysis (sezione 4.3) è una tecnica che permette di trovare il piano di separazione tra le classi
che massimizza la distanza tra le distribuzioni;

Decision Stump Gli alberi di decisione a un solo livello hanno solo due possibili uscite;

SVM le Macchine a Vettori di Supporto Support Vector Machines (sezione 4.4) partizionano, massimizzando il margine, lo
spazio delle feature usando iperpiani o semplici superfici.

Un particolare interesse ricoprono i classificatori lineari (LDA e SVM-Lineare) i quali, per risolvere il problema di
classificazione binaria, individuano un iperpiano (w, b) di separazione tra le due classi.

L’equazione di un iperpiano, modificando leggermente la formula (1.49), è

w · x + b = 0 (4.4)

dove il vettore normale w può anche non essere di norma unitaria. Un iperpiano divide lo spazio in due sottospazi dove
l’equazione (4.4) ha segno opposto. La superficie di separazione è un iperpiano che divide lo spazio in due sotto parti
rappresentanti le due categorie della classificazione binaria.

Un classificatore lineare è basato su una funzione discriminante

f(x) = w · x + b (4.5)

Il vettore w è chiamato weight vector ed il termine b è chiamato bias. I classificatori lineari assumono una certa importanza
in quanto, attraverso la proiezione lungo l’asse w, trasformano il problema da multidimensionale a scalare.

Il segno della funzione f(x) rappresenta il risultato della classificazione. Un iperpiano di separazione equivale ad
individuare una combinazione lineare degli elementi x ∈ X in modo da ottenere

ŷ = sgn(w · x + b) (4.6)
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4.2 Classificatori bayesiani

Il teorema di Bayes, associato alla Visione Artificiale, rappresenta una tecnica fondamentale per la classificazione di pattern,
basata sull’esperienza (training set).

Per capire il teorema di Bayes è necessario fare un semplice esempio. Si supponga di voler classificare della frutta che
viene mostrata a un osservatore (un elaboratore nel caso estremo). Per semplicità si supponga che i tipi di frutta (le categorie
del classificatore) siano solo due, per esempio, arance e mele. Per gli esseri umani, ma allo stesso modo deve essere fatto
per le macchine, determinare la tipologia di frutta che si stà osservando, avviene esaminando determinate caratteristiche
(feature) estratte dall’osservazione della frutta, attraverso opportune tecniche.

Se i frutti vengono scelti in maniera totalmente casuale e non è possibile estrarre alcuna altra informazione da essi,
l’approccio ottimo per classificarli sarebbe fornire una risposta totalmente a caso.

La teoria bayesiana di decisione svolge un ruolo importante solo quando risultano conosciute alcune informazioni a priori
sugli oggetti.

Come primo passo, si supponga di non avere comunque conoscenza alcuna su come siano fatti i frutti, ma si sa che l’80%
della frutta sono mele ed il resto siano arance. Se questa è l’unica informazione su cui basare la decisione, istintivamente
si tenderà a classificare la frutta come mela (il classificatore ottimo): ogni frutto verrà classificato come mela in quanto, in
mancanza di altre informazioni, è l’unico modo per minimizzare l’errore. Le informazioni a priori in questo caso sono le
probabilità che il frutto scelto sia una mela o un’arancia.

Esaminiamo a questo punto il caso in cui sia possibile estrarre qualche informazione in più dalla scena osservata. Il
concetto di Bayes applicato alla classificazione è molto intuitivo anche da questo punto di vista: se osservo una particolare
caratteristica misurabile dell’immagine x (features) riesco a stimare la probabilità che tale immagine rappresenti una certa
classe yi a posteriori dell’osservazione. Sotto questo punto di vista i classificatori bayesiani forniscono esattamente la
probabilità che il vettore di dati in ingresso rappresenti la determinata classe in uscita.

4.2.1 Il teorema di Bayes

La definizione di probabilità condizionata ci permette di ottenere immediatamente il seguente fondamentale

Teorema 2 (di Bayes) Sia {Ω,Y, p} uno spazio probabilizzato. Siamo gli eventi y = yi (abbreviato con yi) con i = 1..n un
sistema completo di eventi di Ω e p(yi) > 0 ∀i = 1..n.

In questo caso ∀yi ∈ Y con p(yi) > 0 si avrà che:

p(yi|x) =
p(yi)p(x|yi)∑n
j=1 p(yj)p(x|yj)

(4.7)

e questo ∀i = 1..n.

Il teorema di Bayes costituisce uno degli elementi fondamentali dell’approccio soggettivista, o personale, alle probabilità e
all’inferenza statistica. Il sistema di alternative yi con i = 1..n viene spesso interpretato come un insieme di cause e il teorema
di Bayes, note le probabilità iniziali delle diverse cause, permette di assegnare probabilità alle cause dato un effetto x. Le
probabilità p(yi) con i = 1..n possono essere interpretate come le conoscenze a priori (solitamente indicate con πi), ossia
quelle che si hanno prima di effettuare un esperimento statistico. Le probabilità p(x|yi) con i = 1..n vengono interpretate
come la verosimiglianza o informazione relativa a x acquisibile eseguendo un opportuno esperimento statistico. La formula di
Bayes suggerisce dunque un meccanismo di apprendimento dall’esperienza: coniugando alcune conoscenze a priori sull’evento
yi date da p(yi) con quelle acquisibili da un esperimento statistico date da p(x|yi) si perviene ad una migliore conoscenza
data da p(xi|y) dell’evento xi detta anche probabilità a posteriori dopo aver eseguito l’esperimento.

Possiamo avere, per esempio, la distribuzione di probabilità per il colore delle mele, cos̀ı come quella per le arance. Per
usare la notazione introdotta in precedenza nel teorema, chiamiamo y1 lo stato in cui la frutta sia una mela, y2 la condizione
in cui la frutta sia un’arancia e sia la x una variabile casuale che rappresenti il colore della frutta. Con questa notazione,
p(x|y1) rappresenta la funzione densità per l’evento colore x subordinato al fatto che lo stato sia mela, p(x|y2) che sia arancia.

In fase di addestramento è possibile costruire la distribuzione di probabilità di p(x|yi) per i mela o arancia. Oltre a questa
conoscenza sono sempre note le probabilità a priori p(y1) e p(y2), che rappresentano semplicemente il numero totale di mele
contro il numero di arance.

Quello che stiamo cercando è una formula che dica quale è la probabilità di una frutta di essere mela o un’arancia, avendo
osservato un certo colore x.

La formula di Bayes (4.7) permette proprio questo:

p(yi|x) =
p(x|yi)p(yi)

p(x)
(4.8)

date le conoscenze a priori, permette di calcolare la probabilità a posteriori che lo stato della frutta sia yi data la feature
misurata x. Pertanto, osservato un certo x sul nastro trasportatore, calcolati p(y1|x) e p(y2|x), si sarà inclini a decidere che
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la frutta è una mela se il primo valore sarà maggiore del secondo (o viceversa):

p(y1|x) > p(y2|x)

ovvero:
p(x|y1)p(y1) > p(x|y2)p(y2)

In generale per n classi lo stimatore bayesiano si può definire come una discrimant function:

f(x) = ŷ(x) = arg max
i

p(yi|x) = arg max
i

p(x|yi)πi (4.9)

È anche possibile calcolare un indice, data la conoscenza a priori del problema, di quanto questo ragionamento sarà
soggetto ad errori. La probabilità di compiere un errore data una feature osservata x sarà dipendente dal valore massimo
delle n curve della distribuzione in x:

p(error|x) = 1−max [p(y1|x), p(y2|x), . . . , p(yn|x)] (4.10)

4.2.2 Il classificatore bayesiano

Attraverso l’approccio bayesiano, sarebbe possibile costruire un classificatore ottimo se si conoscessero in maniera perfetta
sia le probabilità a priori p(yi), sia le densità condizionate alla classe p(x|yi). Normalmente tali informazioni sono raramente
disponibili e l’approccio adottato è quello di costruire un classificatore da un insieme di esempi (training set).

Per modellare p(x|yi) si utilizza normalmente un approccio parametrico e quando possibile, si fa coincidere tale distribu-
zione con quella di una gaussiana o con delle funzioni spline.

Le tecniche più usate per la stima sono la Maximum-Likelihood (ML) e la Stima Bayesiana che, sebbene differenti nella
logica, portano a risultati quasi identici. La distribuzione gaussiana è normalmente un modello appropriato per la maggior
parte dei problemi di pattern recognition.

Esaminiamo il caso abbastanza comune nel quale la probabilità delle varie classi è di tipo gaussiano multivariato di media
µi e matrice di covarianza Σi. Il classificatore bayesiano ottimo è

ŷ(x) = arg maxi p(x|yi)πi
= arg maxi log (p(x|yi)πi)
= arg mini

(
(x− µi)>Σ−1

i (x− µi)− log det Σi − 2 log πi
) (4.11)

usando la negative log-likelihood (sezione 2.8). Nel caso di probabilità a priori πi uguali, l’equazione (4.11) coincide con il
problema di cercare il minimo della distanza di Mahalanobis (sezione 2.4) tra le classi del problema.

4.2.3 Naive Bayes

Normalmente con una sola caratteristica estratta dall’oggetto da classificare non è possibile ottenere una precisione elevata
di classificazione. Fortunatamente le caratteristiche che si possono estrarre da una immagine sono molteplici.

Siano indicate con xj , con j = 1, . . . ,m tali caratteristiche. È molto importante notare che gli eventi osservati xj con
cui costruire il classificatore bayesiano devono essere eventi indipendenti (indipendenza condizionale), altrimenti il teorema
di Bayes non risulta più valido (uno dei limiti dei classificatori bayesiani): per esempio non si possono unire classificatori che
analizzino parti dell’immagine in comune o non si può unire lo stimatore “è arancione” insieme a “è non rosso”.

L’assunzione Naive Bayes (o idiot Bayes) sfrutta l’ipotesi semplificativa di indipendenza degli attributi (feature) osservati:
in questo caso date m variabili osservate x1 . . . xm la probabilità che l’evento yi si verifichi sarà:

p(x1 . . . xm|yi) =

m∏
j=1

p(xj |yi) (4.12)

4.3 LDA

Un esempio di riduzione delle dimensioni del problema a scopo di classificazione è la Analisi di Discriminante Lineare Linear
Discriminant Analysis (Fisher, 1936).

Se si analizza il funzionamento di PCA (sezione 2.10.1), questa tecnica si limita a massimizzare l’informazione non distin-
guendo tra loro le eventuali classi che compongono il problema: PCA non considera il fatto che i dati siano rappresentativi
di diverse categorie. PCA non è un vero classificatore ma è una tecnica utile a semplificare il problema, riducendone le di-
mensioni. LDA cerca invece di massimizzare sia l’informazione discriminatoria tra le classi che l’informazione rappresentata
dalla varianza.

Nel caso di un problema di due classi, il miglior classificatore bayesiano è quello che permette di individuare il margine di
decisione (decision boundary) formato dall’ipersuperficie lungo la quale la probabilità condizionata delle due classi è uguale.
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µ1

µ2

w · x = c

Figura 4.2: Analisi di Discriminante Lineare.

Se si forza l’ipotesi che le due classi del problema binario abbiano distribuzione gaussiana multivariata e uguale matrice
di covarianza Σ è facile dimostrare che il margine di decisione bayesiano, equazione (4.11), diventa lineare.

In LDA viene fatta pertanto l’ipotesi di omoschedasticità e, sotto questa ipotesi, si vuole ottenere un vettore w che
permetta di proiettare lo spazio n-dimensionale degli eventi in uno spazio scalare che però massimizzi la separazione tra le
classi e permetta di separarle linearmente attraverso un margine di separazione del tipo

w>x = c (4.13)

Per determinare questa superficie di separazione si possono usare diverse metriche. Sotto il termine LDA attualmente
confluiscono diverse tecniche dove la Discriminante di Fisher (Fisher’s Linear Discriminant Analysis) risulta la più diffusa
in letteratura.

Si può dimostrare che la proiezione che massimizza la separazione tra le due classi dal punto di vista “statistico”, ovvero
l’iperpiano di decisione, si ottiene con

w = Σ−1(µ1 − µ2) (4.14)

e il valore di separazione ottimo si trova a metà strada tra le proiezioni delle due medie

c = w(µ1 − µ2)/2 (4.15)

nel caso in cui le probabilità a priori dei due insiemi siano identiche.
Questo margine di decisione è la soluzione alla massima verosomiglianza in caso di due classi con distribuzione uniforme

e stessa covarianza.

4.4 SVM

LDA si pone come obiettivo quello di massimizzare la distanza statistica tra le classi ma non cerca di valutare quale sia
l’effettivo margine di separazione tra di loro.

w · x + b = −1

w · x + b = +1

Figura 4.3: Iperpiano di separazione tra due classi ottenuto attraverso SVM. I punti sul margine (tratteggiato) sono i Support
Vectors.

SVM [CV95], come LDA, permette di ottenere un classificatore lineare basato su una funzione discriminante nella stessa
forma mostrata in equazione (4.5). SVM però va oltre: l’iperpiano ottimo in Rn viene generato in maniera tale da sepa-
rare “fisicamente” (decision boundary) gli elementi del problema di classificazione binario ovvero si pone come obiettivo
quello di massimizzare il margine di separazione tra le classi. Questo ragionamento premia molto per quanto riguarda la
generalizzazione del classificatore.

Siano pertanto definite come classi di classificazione quelle tipiche di un problema binario nella forma yi = {+1,−1} e si
faccia riferimento all’iperpiano di formula (4.4). Supponiamo che esistano dei parametri (w0, b0) ottimi tali che soddisfino il
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vincolo
xi ·w0 + b0 ≥ +1 per yi = +1
xi ·w0 + b0 ≤ −1 per yi = −1

(4.16)

ovvero, in forma più compatta:

yi(xi ·w0 + b0)− 1 ≥ 0 (4.17)

per ogni (yi,xi) campioni forniti durante la fase di addestramento.

Si può supporre che esistano, per ognuna delle categorie, uno o più vettori xi dove le disuguaglianze (4.17) diventano
uguaglianze. Tali elementi, chiamati Support Vectors, sono i punti più estremi della distribuzione e la loro distanza rappresenta
la misura del margine di separazione tra le due categorie.

La distanza ρ punto-piano (cfr. eq.(1.52)) vale

ρ =
‖w · x + b‖
‖w‖

(4.18)

Dati due punti di classe opposta che soddisfino l’uguaglianza (4.17), il margine può essere ricavato dall’equazione (4.18), e
vale

ρ =
2

‖w0‖
(4.19)

Per massimizzare il margine ρ dell’equazione (4.19) bisogna minimizzare la sua inversa, ovvero

min
w,b

1

2
‖w‖2 (4.20)

sotto la serie di vincoli espressi dalla diseguaglianza (4.17). Questo è quello che viene definito come problema di ottimizzazione
primale in forma standard dell’SVM.

Questa classe di problemi (minimizzazione con vincoli come disuguaglianze o primal optimization problem) si risolvono
utilizzando l’approccio di Karush-Kuhn-Tucker che è il metodo dei moltiplicatori di Lagrange generalizzato a disuguaglianze.
Attraverso le condizioni KKT si ottiene la funzione lagrangiana:

L(w, b,α) =
1

2
‖w‖2 −

∑
i

αi (yi(xi ·w + b)− 1) (4.21)

da minimizzare in w e b e massimizzare in α. I pesi αi ≥ 0 sono i moltiplicatori di Lagrange. Dall’annullamento delle
derivate parziali si ottiene

∂L
∂b

= 0→
∑

yiαi = 0 (4.22)

∂L
∂w

= 0→ w =
∑

αiyixi (4.23)

Sostituendo tali risultati (le variabili primali) all’interno della lagrangiana (4.21) questa diventa funzione dei soli moltiplica-
tori, i dual, da cui la forma duale di Wolfe:

Ψ(α) =
∑

αi −
1

2

∑
i

∑
j

αiαjyiyjxi · xj (4.24)

sotto i vincoli αi ≥ 0 e
∑
αiyi = 0. Il massimo della funzione Ψ calcolato su α sono gli αi associati a ogni vettore di

addestramento xi. Tale massimo permette di trovare la soluzione del problema originale.

Su questa relazione sono valide le condizioni KKT tra le quali è di notevole importanza il vincolo, detto di Complementary
slackness,

αi (yi(xi ·w + b)− 1) = 0 (4.25)

Questo vincolo dice che il massimo della lagrangiana o è sul bordo del vincolo (αi 6= 0) o è un minimo locale (αi = 0). Come
conseguenza solo gli αi sul limite sono non nulli e contribuiscono alla soluzione: tutti gli altri campioni di addestramento
sono di fatto ininfluenti. Tali vettori, associati agli αi > 0, sono i Support Vectors.

Risolvendo il problema quadratico (4.24), sotto il vincolo (4.22) e αi ≥ 0, i pesi che presentano αi 6= 0 saranno i Support
Vectors. Tali pesi, inseriti nelle equazioni (4.23) e (4.25), porteranno a ricavare l’iperpiano di massimo margine.

Il metodo più usato per risolvere questo problema QP è il Sequential Minimal Optimization (SMO). Per una trattazione
approfondita delle tematiche legate a SVM si può fare riferimento a [SS02].
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4.4.1 Soft Margin SVM

In applicazioni reali non sempre esiste un margine, ovvero non sempre le classi sono linearmente separabili nello spazio delle
features attraverso un iperpiano. Il concetto alla base del Soft Margin permette di ovviare a questo limite, introducendo una
variabile ξ aggiuntiva per ogni campione, in modo da rilassare (slack) il vincolo sul margine

yi(w · xi + b) ≥ 1− ξi
ξi ≥ 0,∀i (4.26)

Il parametro ξ rappresenta la slackness associata al campione. Quando 0 < ξ ≤ 1 il campione è correttamente classificato
ma è all’interno dell’area di margine. Quando ξ > 1 il campione entra nello spazio di decisione della classe opposta e perciò
verrà classificato in maniera errata.

Per cercare ancora un iperpiano di separazione in qualche modo ottimo, la funzione costo da minimizzare deve considerare
anche la distanza tra il campione e il margine:

min
1

2
‖w‖2 + C

∑
ξi (4.27)

soggetta ai vincoli (4.26). Il parametro C è un grado di libertà del problema per indicare quanto un campione deve pagare
il violare il vincolo sul margine. Quando C è piccolo, il margine è ampio, mentre quando C è prossimo a infinito si ricade
alla formulazione Hard Margin di SVM vista in precedenza.

Ogni campione xi può ricadere in uno di tre possibili stati:

� può stare oltre il margine yi(w
>xi + b) > 1 e di conseguenza non contribuire alla funzione;

� può stare sul margine yi(w
>xi + b) = 1 non partecipando direttamente alla minimizzazione ma solo come support

vector,

� può infine cadere all’interno del margine ed essere penalizzato tanto quanto si discosta dai vincoli forti.

La lagrangiana del sistema (4.27), con i vincoli introdotti dalle variabili ξ, è

L(w, b, ξ, α) =
1

2
‖w‖2 + C

∑
i

ξi −
∑
i

αi(yi(w · xi + b)− 1 + ξi)−
∑
i

γiξi (4.28)

Con l’aumento del numero di vincoli, le variabili duali sono sia α che γ.
Il risultato notevole è che, applicate le derivate, la formulazione duale di (4.28) diventa esattamente uguale alla duale del

caso Hard Margin: le variabili ξi infatti non compaiono nella formulazione duale e l’unica differenza tra il caso Hard Margin
e il caso Soft Margin è nel vincolo sui parametri αi, in questo caso limitati tra

0 ≤ αi ≤ C (4.29)

invece che con la semplice diseguaglianza αi ≥ 0. Il grande vantaggio di questa formulazione è proprio nella elevata semplicità
dei vincoli e nel fatto che permetta di ricondurre il caso Hard Margin a un caso particolare (C = ∞) del Soft Margin. La
costante C è un limite superiore al valore che gli αi possono assumere.

4.4.2 SVM e funzioni kernel

Nonostante il Soft Margin, alcuni problemi sono intrinsecamente non separabili nello spazio delle feature. Tuttavia, dalla
conoscenza del problema, è possibile intuire che una trasformazione non lineare φ : X → F trasforma lo spazio delle feature
di input X nello spazio delle feature F dove l’iperpiano di separazione permette di discriminare meglio le categorie. La
funzione discriminante nello spazio F è

f(x) = w>φ(x) + b (4.30)

Per permettere la separazione, normalmente lo spazio F è di dimensioni maggiori dello spazio X . Questo aumento di
dimensioni provoca un aumento della complessità computazionale del problema e la richiesta di risorse. I metodi Kernel
risolvono questo problema.

Il vettore w è una combinazione lineare dei campioni di addestramento (i support vector nel caso hard margin):

w =
∑
i

αiφ(xi) (4.31)

La funzione discriminante assume pertanto la forma

f(x) =
∑
i αiφ(xi)

>φ(x) + b
=
∑
i αik(x,xi) + b

(4.32)
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con la valutazione della funzione kernel k(x,x′).

Al momento della valutazione della funzione discriminante pertanto è richiesto l’utilizzo dei vettori di supporto (almeno
quelli con un parametro αi associato non trascurabile). Di fatto SVM con kernel individua alcuni campioni dell’insieme di
addestramento come informazione utile per capire quanto vicino a loro è il campione di valutazione in esame.

Il bias si calcola istantaneamente dall’equazione (4.32), mediando

b = E[yj −
∑
i

αik(xj ,xi)] (4.33)

I kernel più diffusi, in quanto semplici da valutare, sono i kernel gaussiani nella forma

k(x,x′) = e−γ‖x−x′‖2 (4.34)

con γ parametro da impostare, e i kernel polinomiali di grado d nella forma

k(x,x′) = (x>x′ + 1)d (4.35)

e nel caso d = 1 la formulazione si riconduce al caso lineare.

L’utilizzo di funzioni kernel, unita alla possibilità di precalcolare tutte le combinazioni k(xi,xj), permette di definire
un’interfaccia comune tra gli addestramenti lineari e i non lineari, mantenendo di fatto lo stesso grado di prestazioni.

È da notare che le predizione f(x) = w>φ(x) assume la forma

φ(x) = [k1(x,x1), . . . , kn(x,xn)] (4.36)

dove xi rappresenta un sottoinsieme dell’addestramento. I modelli scritto in questa forma di fatto eseguono un template
matching tra il campione x da valutare e i prototipi xi.

4.4.3 Minimizzazione Empirica del Rischio

Il vincolo Soft Margin (4.26) può essere riscritto come

yif(xi) ≥ 1− ξi (4.37)

dove f(xi) può essere anche la generica funzione kernel. Questa disequazione è equivalente a

ξi ≥ max (0, 1− yif(xi)) (4.38)

siccome ξi ≥ 0. La funzione di perdita (4.38) è chiamata funzione perdita cardine (Hinge Loss)

`(y, ŷ) = max(0, 1− yŷ) (4.39)

e ha il vantaggio di essere convessa e non differenziabile solo in 1. La hinge loss è sempre maggiore della funzione perdita
0/1.

Il problema di addestramento di SVM nel caso non linearmente separabile è equivalente a un problema di ottimizzazione,
non vincolato, su w del tipo

min
w∈Rd

‖w‖2 + C

N∑
i

` (yi, f(xi)) (4.40)

La funzione obiettivo continua ad essere descritta in due parti chiaramente distinte: la prima è la regolarizzazione di Tikhonov
e la seconda è la minimizzazione del rischio empirica con la funzione di perdita Cardine. SVM può essere pertanto visto
come un classificatore lineare che ottimizza la funzione di perdita Cardine con una regolarizzazione L2.

I dati di ingresso xi possono cadere in 3 diverse categorie:

� yif(xi) > 1 sono i punti fuori dal margine e non danno nessun contributo alla funzione costo;

� yif(xi) = 1 sono i punti sul margine e non danno contributo al costo come nel caso “hard margin”;

� yif(xi) < 1 sono i punti che violano il vincolo e contribuiscono al costo.
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4.5 Classificazione multiclasse

SVM ritorna una funzione obiettivo f(xi,W, b) = Wxi + b il cui valore assoluto non ha un vero significato in quanto è un
uscita non calibrata. L’estensione al caso multiclasse è difficile in quanto le differenti funzioni obiettivo per ogni classe non
sono tra loro direttamente confrontabili.

Il concetto di hinge loss può però essere esteso al caso multiclasse. In questo caso viene definita una SVM Loss del tipo

`i =
∑
j 6=yi

{
0, if syi ≥ sj + 1

sj − syi + 1, otherwise
=
∑
j 6=yi

max(0, sj − syi + 1) (4.41)

dove con sj = fj(xi) è stato indicato, per semplicità, la funzione obiettivo associato alla classe j per il campione i-esimo.
Un’altra metrica simile è la squared hinge loss:

`i =
∑
j 6=yi

max (0, sj − syi + 1)
2

(4.42)

Viene infine definita una funzione perdita sull’intero dataset come media

L =
1

n

n∑
i=1

`i + λR((W )) (4.43)

con l’opzionale termine di regolarizzazione sui pesi.
Una metrica differente, estesa al caso multiclasse, è la funzione esponenziale normalizzata Softmax :

`i = − log
esyi∑
j e
sj

= −syi + log
∑
j

esj (4.44)

La funzione obiettivo sj può essere interpretata come una probabilità non normalizzata logaritmica per ogni classe e perciò si
può sostituire la funzione perdita cardano con la funzione perdita entropia incrociata (cross-entropy loss). Un classificatore
Softmax minimizza l’entropia incrociata tra le classi e siccome minimizza la negative log likelihood della classe corretta può
essere visto come uno stimatore a massima verosimiglianza. Nel caso Softmax il termine di regolarizzazione R((W )) può
essere visto, da un punto di vista statistico, come un prior sui pesi: in questo caso è una stima Maximum a posteriori (MAP).

4.6 Ensemble Learning

Il concetto di addestramento Ensemble richiama l’utilizzo di diversi classificatori, differenti, uniti in un certo modo per
riuscire a massimizzare le prestazioni usando i punti di forza di ognuno e limitando le debolezze dei singoli.

Alla base del concetto di Ensemble Learning ci sono i classificatori deboli (weak classifier): un classificatore debole riesce
a classificare almeno il 50% + 1 dei campioni di un problema binario. Sommati in un certo modo tra di loro, i classificatori
deboli permettono di costruire un classificatore forte, risolvendo allo stesso tempo problemi tipici dei classificatori tradizionali
(overfitting in primis).

L’origine dell’Ensemble Learning, del concetto di classificatore debole e in particolare il concetto di probably approximately
correct learning (PAC ) sono stati per primi introdotti da Valiant [Val84].

Di fatto le tecniche di Ensemble Learning non forniscono classificatori general purpose, ma indicano solo il modo ottimo
per unire più classificatori tra loro.

Esempi di tecniche di Ensemble Learning sono

Decision Tree gli Alberi di Decisione, essendo costruiti da tanti Decision Stump in cascata sono un primo esempio di
Ensemble Learning ;

Bagging il BootStrap AGGregatING prova a ridurre i problemi di overfitting addestrando diversi classificatori su sottoparti
del training set ed eseguendo infine una votazione per maggioranza;

Boosting Invece che prendere sottoparti del training set puramente casuali vengono, in parte, usati i campioni che rimangono
non classificati correttamente;

AdaBoost l’ADAptive BOOSTing (sezione 4.6.2) è l’algoritmo di Ensemble Learning più conosciuto e progenitore della
famiglia molto florida di classificatori AnyBoost ;

Random Forest� è un BootStrap Aggregating (bagging) su Decison Tree, Ensemble Classifier composto da diversi alberi di
decisione, ognuno creato su un sottoinsieme dei dati di addestramento e delle caratteristiche da analizzare, che votano
per maggioranza;



4.6. ENSEMBLE LEARNING 75

e molti altri ancora.
Esempi di classificatori deboli ampiamente usati in letteratura sono i Decision Stump [AL92] associati alle feature di Haar

(sezione 6.1). Il Decision Stump è un classificatore binario nella forma

h(x) =

{
+1 if pf(x) > pθ
−1 otherwise

(4.45)

dove f(x) è una funzione che estrae uno scalare dal campione da classificare, p = {+1,−1} è una parità che serve per indicare
la direzione della diseguaglianza e θ è la soglia di decisione (figura 4.4).

4.6.1 Alberi di Decisione

v > θ

+1 −1

yes no

Figura 4.4: Esempio di Decision Stump. v è una caratteristica (feature) estratta dall’immagine e θ una soglia.

Un Albero di Decisione (Decision Tree) è un metodo molto semplice ed efficace per realizzare un classificatore e l’ad-
destramento degli alberi di decisione è una delle tecniche attuali di maggior successo. Un albero di decisione è un albero
di classificatori (Decision Stump) dove ogni nodo interno è associato ad una particolare “domanda” su una caratteristica
(feature). Da questo nodo dipartono tanti archi quanti sono i possibili valori che la caratteristica può assumere, fino a
raggiungere le foglie che indicano la categoria associata alla decisione. Particolare attenzione normalmente è posta per i nodi
di decisione binaria.

Una buona “domanda” divide i campioni di classi eterogenee in dei sottoinsiemi con etichette abbastanza omogenee,
stratificando i dati in modo da mettere poca varianza in ogni strato.

A > 0.75

B > 0.2

y = Y1 y = Y2

B > 0.6

C > 0.8

y = Y1 y = Y2

y = Y2

Figura 4.5: Esempio di Decision Tree.

Per permettere questo è necessario definire una metrica che misuri questa impurità. Definiamo X come un sottoinsieme
di campioni di un particolare insieme di addestramento formato da m possibili classi. X è di fatto una variabile aleatoria,
che assume solo valori discreti (il caso continuo è comunque uguale). È possibile associare ad ogni valore discreto xi, che
può assumere X, la distribuzione di probabilità p(xi) = pi. X è un data set formato da m classi e pi è la frequenza relativa
della classe i all’interno dell’insieme X.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

entropia

indice di Gini

errore di classificazione

pi

I
(·)

Figura 4.6: Confronto tra metriche di misura dell’impurità nel caso di problema di classificazione binario.
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Data la definizione di X, negli alberi di decisione sono largamente usate le seguenti metriche:

Entropia Dalla teoria dell’informazione, l’entropia IH di X vale:

IH(X) = −
m∑
i=1

pi log2 pi (4.46)

Indice di Gini L’indice di impurità di Gini è definito come

IG(X) = 1−
m∑
i=1

p2
i (4.47)

Errore di Classificazione Dalla teoria bayesiana:

IE(X) = 1−max
i
pi (4.48)

Intuitivamente un nodo con distribuzione delle classi (0, 1) ha impurità minima, mentre un nodo con distribuzione uniforme
(0.5, 0.5) ha impurità massima.

Una “domanda” hj(x), che ha k possibili risposte, divide l’insieme E nei sottoinsiemi E1, . . . , Ek.
Per testare quanto bene la condizione viene eseguita, bisogna confrontare il grado di impurità dei nodi figli con l’impurità

del nodo padre: maggiore è la loro differenza, migliore è la condizione scelta.
Data una metrica I(·) che misuri l’impurità, il guadagno ∆ è un criterio che può essere usato per determinare la bontà

della divisione:

∆ = I(E)−
k∑
i=1

N(Ei)
N(E)

I(Ei) (4.49)

dove N(E) è il numero di campioni nel nodo padre e N(Ei) è il numero di campioni nel nodo figlio i-esimo.
Se viene usata come metrica l’entropia, il guadagno ∆ è conosciuto come Information Gain [TSK06].
Gli alberi di decisione inducono algoritmi che scelgono una condizione di test che massimizza il guadagno ∆. Siccome

I(E) è uguale per tutti i possibili classificatori e N(E) è costante, massimizzare il guadagno è equivalente a minimizzare la
somma pesata delle impurità dei nodi figli:

ĥ = arg min
hj

k∑
i=1

N(Ei)I(Ei) (4.50)

La miglior domanda hj(x) è quella che minimizza tale quantità.
Nel caso di classificatori binari, la metrica di Gini è ampiamente utilizzata, in quando il guadagno da minimizzare si

riduce a
p1n1

p1 + n1
+

p2n2

p2 + n2
(4.51)

con p1, n1 numero di campioni positivi e negativi che il classificatore sposta nel ramo sinistro e p2, n2 numero di campioni
nel ramo destro.

Gli alberi di decisione si adattano sia molto bene che velocemente ai dati di addestramento e conseguentemente, se non
limitati, soffrono in maniera sistematica del problema di overfitting. Normalmente agli alberi viene applicato un algoritmo
di raffinamento (pruning) per ridurre, ove possibile, il problema di overfitting. Gli approcci di pruning sono solitamente
due: pre-pruning o post-pruning. Il pre-pruning si limita a fermare la creazione dell’albero sotto determinate condizioni per
evitare una eccessiva specializzazione (esempio massima dimensione dell’albero). Il post-pruning invece raffina un albero già
creato, eliminando quei rami che non soddisfano alcune condizioni su un validation set precedentemente selezionato.

Questa tecnica di creazione di un albero di decisione viene solitamente indicata come Classification and regression trees
(CART) [B+84]. Infatti, nel caso reale in cui le caratteristiche analizzate sono grandezze statistiche, non si parla di creare
un albero di classificazione, ma più propriamente di costruire un albero di regressione. Trovare la partizione ottima dei dati
è un problema NP-completo, perciò normalmente si fa uso di algoritmi ingordi greedy come quello mostrato in sezione.

4.6.2 ADAptive BOOSTing

Uno dei classificatori Ensemble che ha attirato più interesse da parte dei ricercatori negli ultimi anni è sicuramente AdaBoo-
st [FS95]. L’idea base di AdaBoost è quella di costruire una lista di classificatori assegnando, in maniera iterativa, un peso
ad ogni nuovo classificatore considerando la sua capacità di riconoscere campioni non correttamente identificati dagli altri
classificatori già coinvolti nell’addestramento. Tutti questi classificatori coinvolti voteranno con il peso loro assegnato e la
scelta finale avverà per maggioranza.
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Le tecniche di Boosting permettono di generare un classificatore nella forma di modello additivo:

FT (x) = f1(x) + f2(x) + . . .+ fT (x) =

T∑
t=1

ft(x) (4.52)

con f1, . . . , fT singoli classificatori.
Esaminiamo il caso di classificazione binaria, e sia S = (x1, y1) . . . (xm, ym) ∈ (X × {−1, 1}) l’insieme degli m campioni

disponibili per l’addestramento.
Una scelta abbastanza diffusa nell’ambito di fitting di modelli è quella di usare la regressione ai minimi quadrati (me-

trica ottima in caso di rumore gaussiano per esempio) per ottenere il modello additivo FT (x), minimizzando la quantità∑
(yi − FT (xi))

2
. Tuttavia, a seguito di numerosi esperimenti, si è visto che la funzione costo quadratica non è la scelta

ottima nei problemi di classificazione.
L’approccio di AdaBoost suggerisce invece che l’unione di tutti questi classificatori minimizzi una funzione costo differente,

migliore, ovvero la funzione di perdita esponenziale (exponential loss):

min
F

m∑
i=1

e−yiF (xi) (4.53)

Siccome la minimizzazione globale della funzione (4.53) solitamente è impossibile, si può procedere in due modi

� ottimizzando un classificatore per volta in maniera ciclica fino a giungere a una situazione stabile (generalized backfitting
algorithm);

� aggiungendo un nuovo classificatore per volta al modello additivo (“greedy” forward stepwise approach)

AdaBoost affronta il problema della classificazione attraverso il secondo approccio.
Sotto queste considerazioni l’obiettivo del processo di addestramento si riduce a individuare un classificatore addizionale

f(x) che minimizzi di volta in volta la quantità

fT+1 = arg min
f

m∑
i=1

e−yi(FT (xi)+f(xi)) = arg min
f

m∑
i=1

wie
−yif(xi) (4.54)

avendo definito wi = e−yiFT (xi) e sfruttando le proprietà dell’esponenziale.
AdaBoost è una tecnica che risponde a tutte queste esigenze.
Si supponga pertanto di avere a disposizione H = {h1, . . . , hT } classificatori binari, ognuno dei quali, valutando la

caratteristica xi, con 1 ≤ i ≤ m, restituisca una opinione yi = {−1,+1}.
Sia la funzione FT (x;α), definita come

FT (x;α1, . . . , αT ) =

T∑
t=1

αtht(x) (4.55)

una funzione il cui segno rappresenta l’ipotesi di classificazione e la sua magnitudine riflette la bontà della predizione. Il
modello di equazione (4.55) è chiamato Extended Additive Model o Adaptive Basis-Function Model.

L’obiettivo è ottenere un classificatore forte H(xi) come somma lineare pesata dei classificatori ht, il cui segno determini
l’ipotesi globale:

H(xi) = sgn

(
T∑
t=1

αtht(xi)

)
= sgnFT (xi;α) (4.56)

Questa è una votazione per maggioranza: viene scelto come vincitrice l’ipotesi votata da più classificatori, ognuno con peso
differente αt. Sono proprio le costanti αt, i pesi assegnati a ogni classificatore, il risultato fornito da questa tecnica di
addestramento.

Per permettere di assegnare un voto al classificatore, è necessario che a ogni campione in ingresso xi sia assegnato un certo
peso wi: più il peso è alto più il campione è stato classificato in maniera non corretta fino a questo punto dell’addestramento
mentre più il peso è basso più è stato classificato correttamente. Alla prima iterazione, tutti i pesi sono posti uguali, pari

a w
(0)
i = 1/m, in modo da avere una esatta distribuzione statistica. Varianti come l’Asymmetric AdaBoost assegnano pesi

differenti alle diverse categorie coinvolte.
Sia ui = yiht(xi) la funzione che esprime il successo (+1) o il fallimento (−1) del classificatore ht a valutare il campione

xi. Dati i pesi associati a ogni campione, è possibile per ogni classificatore calcolare W−1, la somma dei pesi associati gli
insuccessi, e W+1, la somma dei pesi associati alle classificazioni corrette, ovvero attraverso la definizione di ui, in forma
compatta

Wb =
∑
ui=b

wi (4.57)
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con b = +1, successo, e b = −1, insuccesso.
Sia εt la misura dell’errore del classificatore ht calcolata come

εt =
∑

yi 6=ht(i)

w
(t)
i =

∑
ui=−1

w
(t)
i = W− (4.58)

somma dei pesi associati ai soli campioni classificati in maniera errata, e sia

rt = W+ −W− =

m∑
i=1

w
(t)
i ui (4.59)

la media ponderata, usando i pesi wi, delle performance ui di classificazione.
Le iterazioni dell’algoritmo di AdaBoost sono le seguenti:

1. un Oracolo fornisce un classificatore ht (la scelta è di fatto lasciata all’utente, cercando di selezionare il classificatore
che minimizza l’errore εt, ma non è obbligatorio che debba essere per forza il migliore);

2. viene calcolato l’errore εt prodotto del classificatore ht sui campioni in ingresso. Quando non si riesce a trovare un
classificatore per il quale εt > 1/2, l’addestramento non può proseguire e deve venire pertanto terminato;

3. dato l’errore, al classificatore ht viene assegnato un peso αt, calcolato come descritto in seguito;

4. ad ogni campione xi la distribuzione associata w
(t+1)
i viene aggiornata attraverso la funzione

w
(t+1)
i =

1

Zt
w

(t)
i e−αtui =

1

Zt
w

(t)
i e−yift(xi) (4.60)

Il peso associato ai campioni che hanno avuto successo nella classificazione viene diminuito di una quantità proporzionale
a e−αt , mentre ai campioni che sono stati classificati in maniera errata il peso è aumentato di eαt . Zt è un fattore

di normalizzazione scelto in modo tale che
∑
w

(t)
i = 1 ma assume anche un significato importante come spiegato

immediatamente sotto.

Il parametro di normalizzazione Zt vale

Zt =

m∑
i=1

w
(t)
i e−αtui = e−αtW+ + eαtW− (4.61)

e, risultato importante di AdaBoost, si può dimostrare che l’errore di classificazione viene limitato superiormente da

1

m
{i : H(xi) 6= yi} ≤

T∏
t=1

Zt (4.62)

Per questo motivo Zt è esattamente la quantità da minimizzare per ottenere il classificatore ottimo. Conseguenza diretta di
questo risultato, si può vedere AdaBoost come uno schema che minimizza

∏
t Zt.

La scelta ottima di αt (e di riflesso quella di ht) è quella dove la funzione (4.61) assume il minimo, ovvero

αt =
1

2
log

(
1− εt
εt

)
=

1

2
log

W+

W−
=

1

2
log

(
1 + rt
1− rt

)
(4.63)

Con questa particolare scelta di αt, Zt assume il minimo e vale

Zt = 2
√
εt(1− εt) = 2

√
W−W+ (4.64)

Dall’equazione (4.64) si evince che Zt viene minimizzato scegliendo il classificatore ht che ha il minore valore di εt ovvero
massimo W+.

Scegliendo come peso quello di equazione (4.63) che minimizza Zt, dopo ogni iterazione di AdaBoost i pesi associati a
campioni identificati correttamente vengono diminuiti di un fattore exp(−αt) ovvero

√
W−/W+, mentre i pesi associati a

campioni valutati erroneamente dall’ipotesi ht vengono aumentati di un fattore exp(αt) ovvero
√
W+/W−.

Questo algoritmo è quello che viene definito in letteratura AdaBoost.M1 o Discrete AdaBoost [FHT00]. Le ipotesi ht(x)
usate da AdaBoost sono feature che possono assumere i soli valori {+1,−1}.

Il funzionamento intuitivo di AdaBoost è molto semplice: AdaBoost per ogni nuovo classificatore aggiunto alla serie si
concentra sui pattern in ingresso che finora sono stati classificati peggio.

AdaBoost ha diverse interpretazioni: come classificatore che massimizza il margine, regressione logistica a un modello
additivo, come minimizzatore a discesa del gradiente a passi discreti ma anche come regressione con tecnica di Newton.

AdaBoost, come SVM, ottiene come risultato quello di massimizzare il margine di separazione tra le classi, anche se con
metriche differenti. In questo modo, entrambi, riescono ad essere meno sensibile a problemi come l’overfitting.
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Figura 4.7: Confronto tra loss function: 0/1-loss, logistica, esponenziale e quadratica

4.6.3 AdaBoost e le sue varianti

Il problema di Boosting si può generalizzare e può essere visto come un problema dove è necessario cercare dei predittori
ft(x) che minimizzino la funzione costo globale:

m∑
i=1

φ (yi (f1(xi) + . . .+ fn(xi))) (4.65)

dove φ ∈ C1 è una funzione convessa, non crescente con limz→∞ φ(z) = 0.
Dal punto di vista analitico, AdaBoost è un esempio di ottimizzatore a discesa del gradiente (coordinate-wise gradient

descent) che minimizza la potential function φ(z) = e−z, ottimizzando un coefficiente αt per volta [LS10], come si vede
dall’equazione (4.54).

Un elenco, non esaustivo ma che permette di fare luce su alcune peculiarità di questa tecnica, delle varianti di AdaBoost
è:

AdaBoost con astensione

AdaBoost può essere esteso anche a casi di classificatori con astensione, dove le uscite possibili sono hj(xi) ∈ {−1, 0,+1}.
Ampliando la definizione (4.57), per semplicità si indichino con W− gli insuccessi, W0 le astensioni e W+ i successi del
classificatore ht.

Anche in questo caso Zt assume il minimo con lo stesso valore di αt del caso senza astensione, cfr. (4.63), e con tale scelta
Zt varrebbe

Zt = W0 + 2
√
W−W+ (4.66)

Tuttavia esiste una scelta più conservativa di αt proposta da Freund e Shapire

αt =
1

2
log

(
W+ + 1/2W0

W− + 1/2W0

)
(4.67)

che permette di fissare un limite superiore a Zt.

Real AdaBoost

Real AdaBoost generalizza il caso precedente ma soprattutto generalizza lo stesso modello additivo esteso [FHT00]. Invece
che usare ipotesi dicotomiche ht(x) e associare ad esse un peso αt si cerca direttamente la feature ft(x) che minimizza
l’equazione (4.54).

Real AdaBoost permette di usare classificatori deboli che forniscono la distribuzione di probabilità pt(x) = P [y =
1|x,w(t)] ∈ [0, 1], probabilità che la classe y sia effettivamente +1 data l’osservazione della caratteristica x.

Data una distribuzione di probabilità pt(x), la feature ft(x), che minimizza l’equazione (4.54), è

ft(x) =
1

2
log

P [y = +1|x,w(t)]

P [y = −1|x,w(t)]
=

1

2
log

pt(x)

1− pt(x)
(4.68)

Tale risultato è pari a metà della della trasformazione logistica. Siccome l’obiettivo rimane sempre quello di minimizzare la
funzione costo esponenziale, l’aggiornamento dei pesi rimane ancora quello di equazione (4.60).

Sia Discrete che Real AdaBoost, scegliendo un classificatore debole che rispetti l’equazione 4.68, fanno in modo che
AdaBoost converga asintoticamente a

lim
T→∞

FT (x) =
1

2
log

P [y = +1|x]

P [y = −1|x]
(4.69)
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dimostrando come l’algoritmo di AdaBoost sia una procedura iterativa che combina diversi classificatori deboli per appros-
simare un classificatore Bayesiano.

Real AdaBoost può essere usato anche con un classificatore discreto come il Decision Stump. Applicando direttamente
l’equazione (4.68) ai due possibili stati di uscita del Decision Stump (risulta comunque facile ottenere il minimo di Zt per
via algebrica) le risposte del classificatore devono assumere i valori

f(x) =

{
1
2 log WTP

WFP
x > θ

1
2 log WFN

WTN
x ≤ θ (4.70)

con i valori W∗, somma dei pesi associati ai Falsi Positivi (FP), Falsi Negativi (FN), Veri Positivi (TP) e Veri Negativi (TN).
Con questa scelta di valori, Zt assume come valore notevole

Zt = 2
(√

WTPWFP +
√
WFNWTN

)
(4.71)

metrica da usare per scegliere la miglior feature x e soglia θ.

Gentle AdaBoost

I pesi associati agli outlier in Real AdaBoost possono essere molto elevati a causa della presenza del logaritmo in equazione.
Risulta in questo caso rendere più “gentile” la regressione.

Gentle AdaBoost generalizza ulteriormente il concetto di Ensemble Learning a modello additivo [FHT00] usando una
regressione con passi tipici dei metodi di Newton:

FT+1(x) = FT (x) + ft(x) = FT (x) + E
w(t)

[y|x] (4.72)

L’ipotesi ft(x), da aggiungere al modello additivo all’iterazione t, viene scelta fra tutte le possibili ipotesi fk come quella
che ottimizza una regressione ai minimi quadrati pesata

ft = arg min
fk

∑
i

wi(yi − fk(xi))
2 (4.73)

ma per ogni iterazione viene usato l’aggiornamento dei pesi di AdaBoost (4.60), ovvero la funzione costo esponenziale.
Anche Gentle AdaBoost può essere usato con il Decision Stump. In questo caso il minimo di (4.73) dell’algoritmo di

decisione assume una forma notevole in

f(x) =

{
WTP−WFP

WTP+WFP
x > θ

WFN−WTN

WTN+WFN
x ≤ θ (4.74)

LogitBoost

Per motivi storici, AdaBoost non manifesta esplicitamente un formalismo statistico. La prima cosa che si nota è che la risposta
del classificatore di AdaBoost non è una probabilità, in quanto non limitata tra [0, 1]. Oltre a questo problema, parzialmente
risolto da Real AdaBoost, minimizzare la loss-function (4.53) non sembra un approccio statistico come lo potrebbe essere
invece massimizzare la verosimiglianza. È possibile tuttavia dimostrare che la funzione di costo di AdaBoost massimizza un
funzione molto simile alla Bernoulli log-likelihood.

Per queste ragioni è possibile estendere AdaBoost alla teoria della regressione logistica, descritta in sezione 3.7.
La regressione logistica additiva assume la forma

log
P [y = +1|x]

P [y = −1|x]
= FT (x) =

T∑
t=1

ft(x) (4.75)

espressione interessante se confrontata con quella di AdaBoost di equazione (4.69). Invertendo l’equazione (4.75) si ottiene
la relazione logistica

p(x) = P [y = +1|x] =
eFT (x)

1 + eFT (x)
=

1

1 + e−FT (x)
(4.76)

che associa una stima della probabilità al modello additivo F (x).
Il problema diventa quello di trovare una loss function adeguata a questa rappresentazione, ovvero individuare una

variante di AdaBoost che massimizza esattamente la Bernoulli log-likelihood [FHT00].
Massimizzare la verosimiglianza di (4.76) equivale a minimizzare la log-loss

T∑
t=1

log (1 + exp(−yiFT (xi))) (4.77)
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LogitBoost per primo estende AdaBoost al problema dell’ottimizzazione logistica di una funzione FT (x) sotto la funzione
costo φ(z) = log (1 + e−z), massimizzando la Bernoulli log-likelihood usando iterazioni di tipo Newton.

I pesi associati a ogni campione derivano direttamente dalla distribuzione di probabilità

zi =
y∗i−p(xi)

p(xi)(1−p(xi))
wi = p(xi)

1−p(xi)
(4.78)

con y∗ = {0, 1} e scegliendo l’ipotesi ft(x) come regressione ai minimi quadrati di zi a xi usando i pesi wi. La stima futura
di p(xi) deriva direttamente dall’equazione (4.76).

Asymmetric-AdaBoost

Asymmetric-AdaBoost presenta una variante nella regola di aggiornamento dei pesi [VJ01]. Il problema di AdaBoost è che
non permette un diretto controllo sul peso da assegnare agli errori di classificazione nelle diverse classi e non permette di
minimizzare esplicitamente il numero di falsi positivi, ma solo l’errore di classificazione. Le varianti Asymmetric-AdaBoost

modificano invece ad ogni iterazione t i pesi associati ai campioni positivi e negativi di un fattore di costo c
(t)
+ e c

(t)
−

rispettivamente.

Cascade

A prescindere dall’utilizzo i meno dei classificatori Cascade [VJ02], i pesi vengono modificati di un fattore βt = εt/(1− εt) =
W−/W+ solo nel caso di classificazione corretta, altrimenti i pesi rimangono invariati. Il peso associato a un classificatore
viene assegnato come αt = − log βt, valore doppio rispetto al peso assegnato da AdaBoost.M1.

MAdaBoost

L’algoritmo MAdaBoost presenta un aggiornamento diverso dei pesi, per cercare di ridurre il contributo degli outlier (o esempi

troppo complessi) nell’addestramento. Il peso w
(t)
i massimo che può assumere un campione viene limitato superiormente dal

valore w
(0)
i , valore che assume il peso all’inizio dell’algoritmo.

Questo comportamento può essere rappresentato da una funzione costo del tipo

φ(z) =

{
1− z z ≤ 0
e−z z > 0

(4.79)

4.7 Reti Neurali

input layer

hidden layers

output layer

Figura 4.8: Esempio di topologia di una rete neurale.

La ricerca sul Machine Learning (e in generale la Visione Artificiale) ha sempre cercato di trarre spunto per lo sviluppo
degli algoritmi dal cervello umano. Le reti neurali artificiali (artificial neural networks ANN) si basano sul concetto di
“neurone artificiale” ovvero una struttura che, similarmente ai neuroni degli esseri viventi, applicano una trasformazione non
lineare (detta funzione di attivazione) ai contributi pesati dei diversi ingressi del neurone:

yk = fk

(∑
i

wk,ixk,i + bk

)
(4.80)
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dove xk,i sono i vari ingressi relativi al k-esimo neurone a cui sono associati i pesi wk,i, yk è la rispota del neurone e la funzione
di attivazione f , fortemente non lineare, normalmente è una funzione gradino, una sigmoide o una funzione logistica. Il bias
b a volte viene simulato con un ingresso costante xk = +1.

La rete neurale più semplice, composta da uno stadio di ingresso e uno stadio di uscita, è assimilabile al modello di
perceptrone (perceptron) introdotto da Rosenblatt nel 1957. Similarmente al cervello degli esseri viventi, una rete neurale
artificiale consiste nella connessione di diversi neuroni artificiali.

La geometria di una rete neurale feedforward, la topologia normalmente utilizzata in applicazioni pratiche, è quella del
MultiLayer Perceptron MLP e consiste nella combinazione di molteplici strati nascosti di neuroni che collegano lo stadio degli
ingressi con lo stadio delle uscite, stadio che sarà l’ingresso dello strato successivo. Un perceptrone multistrato è assimilabile
a una funzione

La fase di addestramento consiste nello stimare i pesi wki che minimizzano l’errore tra le etichette di addestramento e i
valori predetti dalla rete fw(x):

S(w) =
∑
i

‖yi − fw(xi)‖2 (4.81)

La stima dei pesi wki si può ottenere con tecniche note di ottimizzazione: di norma viene sfruttata la tecnica della back
propagation che di fatto è una discesa del gradiente con la chain-rule per il calcolo delle derivate, essendo le MLP strutture
stratificate.

4.7.1 Le funzioni di attivazione

La funzione di attivazione (activation function) del neurone artificiale trasforma i valori di ingresso nelle uscite. Funzioni di
attivazione comuni sono

� gradino (Heaviside) h(x) =

{
1 if x ≥ 0
0 if x < 0

� sigmoide σ(x) = 1
1+e−x

� softsign s(x) = 1
1+|x|

� tangente iperbolica tanh(x) = e2x−1
e2x+1

� rampa r(x) = max(0, x)

Originariamente erano usate praticamente solo le funzioni di attivazioni sigmoidali (sigmoide e tangente iperbolica) ma
di recente viene anche utilizzata la classe di funzioni rampa che, rispetto alle funzioni sigmoidali, sono funzioni non limitate.
I Neuroni Artificiali con la funzione attivazione rampa sono definiti Rectified Linear Units (ReLUs) [KSH12a].

4.8 Apprendimento Profondo

Le reti neurali, e in particolare il loro addestramento tramite backpropagation, presentano diverse problematiche pratiche:

� richiedono dati di addestramento etichettati, mentre nei contesti basati su grandi moli di dati (big data) la maggior
parte dei dati può non essere categorizzata;

� il tempo di addestramento scala male sia con l’aumentare della dimensione della rete sia con l’aumentare della quantità
di dati;

� l’ottimizzazione può bloccarsi in minimi locali, rendendo la rete sub-ottima;

� l’addestramento supervisionato di modelli profondi (reti con molti strati nascosti) è un problema di ottimizzazione
particolarmente complesso.

Per affrontare queste sfide, si è sviluppata una branca del machine learning nota come deep learning, che sfrutta
architetture profonde e tecniche avanzate per migliorare l’efficacia dell’apprendimento.

Gli esseri umani affrontano problemi complessi suddividendoli in sotto-problemi e livelli multipli di rappresentazione
astratta. Analogamente, il deep learning consente a un sistema di apprendere rappresentazioni gerarchiche dei dati, mappando
direttamente funzioni complesse tra ingresso e uscita, senza dipendere da caratteristiche progettate manualmente.

Questo approccio permette di generare astrazioni di alto livello, spesso non esplicitabili dagli esseri umani, ma più gestibili
dal calcolatore.

Con l’aumento della disponibilità di dati e delle applicazioni del machine learning, le tecniche di apprendimento automatico
stanno evolvendo rapidamente. L’obiettivo del deep learning è costruire rappresentazioni di alto livello dei dati attraverso
l’uso di strati multipli di operazioni non lineari, come nelle Deep Neural Networks (DNN).



4.8. APPRENDIMENTO PROFONDO 83

4.8.1 Representation Learning

Il Feature Learning o Representation Learning rappresenta un ponte tra le tecniche tradizionali di machine learning e il
deep learning. L’idea è quella di utilizzare tecniche di apprendimento non supervisionato per ridurre la dimensionalità del
problema, conservando il più possibile l’informazione, e successivamente impiegare questi dati trasformati per la classificazione
supervisionata.

Le prestazioni di un algoritmo di machine learning dipendono fortemente dalla rappresentazione dei dati in ingresso.
Gran parte degli sforzi è dedicata alla progettazione di trasformazioni che convertano i dati grezzi in un formato ottimale
per la classificazione.

Tra le tecniche di apprendimento non supervisionato utili per la rappresentazione troviamo:

� Segmentazione K-means

� Reti di Hopfield

� Sparse Coding

� Principal Component Analysis (PCA, sezione 2.10.1)

� Restricted Boltzmann Machines (RBM, sezione 4.8.2)

� AutoEncoder (sezione 4.8.3)

Queste tecniche mirano a ridurre la dimensionalità preservando l’informazione più rilevante, ovvero quella che meglio
descrive i campioni di addestramento.

4.8.2 Restricted Boltzmann Machines

h1 h2 h3 hj hm

v1 v2 vi vn

Figura 4.9: Restricted Boltzmann Machines.

Il punto di svolta tra le tecniche non profonde e le tecniche profonde di addestramento è considerato il 2006 quando Hinton e
altri all’University of Toronto introducono le Deep Belief Networks (DBNs) [HOT06], un algoritmo che “avidamente” addestra
una struttura a strati addestrando uno strato alla volta sfruttando un algoritmo di addestramento non-supervisionato. La
peculiarità delle DBN consiste nel fatto che gli strati sono costituiti da Restricted Boltzmann Machine (RBM) [Smo86, FH94].

Sia v ∈ {0, 1}n una variabile stocastica binaria associata allo stato visibile e h ∈ {0, 1}m una variabile stocastica binaria
associata allo stato nascosto. Dato uno stato (v,h) l’energia della configurazione degli strati visibili e nascosti è data
da [Hop82]

E(v,h) = −
n∑
i=1

aivi −
m∑
j=1

bjhj −
n∑
i=1

m∑
j=1

wi,jvihj (4.82)

dove vi e hj sono gli stati binari dello strato visibile e dello strato nascosto rispettivamente mentre ai, bj sono i pesi e wi,j
sono i pesi associati tra di loro. Una Boltzmann Machine è simile ad una rete di Hopfield, con la differenza che tutti gli
output sono stocastici. Si può pertanto definire la Boltzmann Machine come un caso speciale di modello di Ising che a sua
volta è un caso particolare di Markov Random Field. Allo stesso modo le RBM possono essere interpretate come reti neurali
stocastiche dove i nodi e le connessioni corrispondono ai neuroni e alle sinapsi, rispettivamente.

La probabilità della configurazione congiunta (a,b,W) è data dalla distribuzione di Boltzmann:

P (v,h) =
1

Z(·)
e−E(v,h) (4.83)

dove la funzione di partizionamento Z è data da

Z =
∑
v,h

e−E(v,h) (4.84)

somma delle energie di tutte le possibili coppie di stati visibili e nascosti.
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La parola restricted fa riferimento al fatto che non sono ammesse interazioni diretta tra le unità appartenenti allo stesso
strato ma solo tra strati limitrofi.

Dato un input v, lo stato binario nascosto hj viene attivato con probabilità:

p(hj = 1|v) = σ

(
bj +

∑
i

viwi,j

)
(4.85)

dove σ(x) è la funzione logistica 1/(1 + exp(−x)). Allo stesso modo è facile ottenere lo stato visibile dato lo stato nascosto:

p(vi = 1|h) = σ

ai +
∑
j

hiwi,j

 (4.86)

Stimare i parametri del modello (a,b,W) in modo da modellare correttamente la distribuzione dei dati di addestramento è
un compito computazionalmente oneroso. Tuttavia, nel 2002 Hinton propose l’algoritmo di Contrastive Divergence (CD), che
permette un addestramento molto più efficiente delle RBM, rendendole finalmente utilizzabili su larga scala. Una descrizione
dettagliata e pratica dell’addestramento delle RBM si può trovare in [Hin12].

4.8.3 Auto-Encoders

Gli Auto-Encoders sono particolari tipi di reti neurali non supervisionate che mirano a codificare l’ingresso x in una rap-
presentazione compatta c(x), tale da permettere la ricostruzione dell’ingresso stesso. In questo senso, gli Auto-Encoders
possono essere visti come un’alternativa alle RBM addestrate con l’algoritmo di Contrastive Divergence, con cui condividono
l’obiettivo di apprendere rappresentazioni latenti significative.

La rete è composta da due parti:

� un encoder c(·) che trasforma l’ingresso in una rappresentazione latente;

� un decoder f(·) che cerca di ricostruire l’ingresso a partire dalla rappresentazione latente.

L’obiettivo è minimizzare la negative log-likelihood della ricostruzione:

− logP (x|c(x)) (4.87)

Nel caso in cui la distribuzione dei dati sia gaussiana, questa espressione si riduce alla classica regressione ai minimi quadrati
(vedi sezione 2.8).

Se invece gli ingressi xi sono binari (o seguono una distribuzione binomiale), la funzione costo diventa:

− logP (x|c(x)) =
∑
i

xi log fi (c(x)) + (1− xi) log (1− fi(c(x))) (4.88)

dove f(·) è il decoder associato all’encoder c(·).
La funzione c(x) rappresenta una compressione con perdita (lossy compression). Essa è efficace nel rappresentare i dati

visti durante la fase di addestramento non supervisionato, ma può risultare sub-ottimale per dati non appartenenti al dominio
di addestramento.

4.8.4 Reti Neurali Profonde

Nelle reti neurali tradizionali, l’ottimizzazione dei pesi avviene a partire da valori iniziali scelti casualmente. Questa scelta,
sebbene semplice da implementare, comporta che all’aumentare della profondità della rete le prestazioni tendano a degradare,
mentre architetture più superficiali (con uno o due strati nascosti) risultano generalmente più stabili e facili da addestrare.

Storicamente, l’addestramento di reti neurali multistrato (MLP) tramite discesa del gradiente ha incontrato due ostacoli
principali:

� la presenza di numerosi minimi locali che ostacolano la convergenza;

� la comparsa di ampi plateau nella superficie di errore, che rallentano drasticamente l’ottimizzazione.

Di conseguenza, l’idea di utilizzare reti molto profonde per modellare problemi complessi è stata a lungo considerata
impraticabile.

A partire dal 2012, grazie alla disponibilità di grandi quantità di dati (Big Data), alla crescente potenza di calcolo offerta
dalle GPU e allo sviluppo di tecniche di ottimizzazione più efficaci (come Adam) 3.3.4, le reti neurali profonde hanno vissuto
una vera e propria rinascita.
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Un punto di svolta fondamentale fu la vittoria di AlexNet [KSH12b] alla competizione ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) del 2012: per la prima volta, una rete neurale convolutiva profonda superò nettamente gli
approcci tradizionali, segnando l’inizio dell’era moderna del deep learning.

Da allora, le reti profonde sono diventate lo standard de facto in numerosi ambiti del machine learning. In particolare,
l’elaborazione di dati strutturati come le immagini ha tratto enorme beneficio dalle reti neurali convolutive (CNN), che
sfruttano la struttura spaziale del segnale visivo per apprendere in maniera più efficiente rappresentazioni gerarchiche e
invarianti.

4.8.5 Reti Neurali Convolutive

Figura 4.10: Esempio dell’architettura di una Rete Neurale Convolutiva, la LeNet5.

Le Convolutional Neural Networks (CNN) rappresentano una naturale evoluzione delle reti neurali profonde per il trat-
tamento di dati strutturati spazialmente, come le immagini. A differenza dei classici MultiLayer Perceptron (MLP), le CNN
sfruttano la correlazione locale dei pixel e la ridondanza spaziale attraverso strati convolutivi in cui i pesi sono condivisi.
Questa architettura permette di apprendere automaticamente caratteristiche gerarchiche e invarianti rispetto alla traslazio-
ne, riducendo significativamente il numero di parametri da ottimizzare e migliorando l’efficienza dell’apprendimento. Nei
paragrafi seguenti verranno descritti i principali componenti di una CNN, tra cui i layer convolutivi, le funzioni di attivazione,
il pooling e le architetture tipiche di addestramento profondo.

Le CNN sono reti neurali multi-livello simili ai MultiLayer Perceptron, ma con una struttura peculiare: almeno uno degli
strati è costituito da insiemi di neuroni che condividono i pesi, detti strati convolutivi (convolutional layer).

In uno strato convolutivo, l’attivazione di un neurone dipende dal prodotto scalare tra un kernel (o filtro) e una regione
locale dell’ingresso:

ai,j =
∑
k

∑
l

∑
m

wk,l,m xi+k,j+l,m + b = w>xi,j + b (4.89)

dove w rappresenta i pesi del filtro, xi,j la porzione locale dell’immagine centrata in (i, j) e b un eventuale bias.

La convoluzione può essere applicata con stride diversi da 1, ottenendo cos̀ı un layer di attivazione sottocampionato
rispetto all’ingresso. Poiché i filtri riducono progressivamente le dimensioni delle mappe di attivazione, è frequente introdurre
un padding per mantenere costante la dimensione in uscita.

Le mappe di attivazione (activation maps) vengono trasformate da una funzione di attivazione non lineare, tipicamente
una ReLU. Successivamente, uno strato di pooling viene spesso inserito per ridurre la dimensionalità e introdurre invarianza
locale: il max pooling è la scelta più comune, mentre l’average pooling o l’L2-norm pooling erano più diffusi in passato.

Le CNN sono progettate per trarre vantaggio da ingressi bidimensionali multicanale. Una CNN prende in genere come
ingresso un tensore di ordine 3 o 4; ad esempio, un’immagine w×h con 3 canali (R,G,B) rappresenta un tensore di ordine 3.
Ogni strato convolutivo può contenere k kernel differenti, generando in uscita mappe di attivazione di dimensione w×h× k.

L’architettura di una rete profonda (Deep Neural Network, DNN) può includere:

� strati convolutivi (C);

� strati di pooling (S);

� strati di normalizzazione;

� strati completamente connessi (MLP);

� funzioni di perdita.
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All’ultimo stadio (loss layer) viene applicato un metodo di classificazione tradizionale (MLP, AdaBoost o SVM) sulla
rappresentazione ridotta dell’ingresso, conservando la maggior parte dell’informazione utile.

L’addestramento delle DNN avviene tipicamente tramite varianti della discesa stocastica del gradiente (vedi sezione 3.3.3),
ottimizzando iterativamente i pesi dei filtri e degli strati completamente connessi sulla base dell’errore di classificazione.

4.8.6 Reti Ricorrenti e Transformers (per sequenze e immagini)

Messaggio di ingresso

Tokenizzazione
[x1, x2, x3]

Embeddings
X ∈ Rn×d

x1 = [0.1, 0.3, ...], x2 = [0.7, 0.1, ...], . . .

Proiezioni lineari
Q = XWQ, K = XWK , V = XWV

Q,K ∈ Rn×dk , V ∈ Rn×dv

Self-Attention

αi,j = softmax(
QiK

>
j√

dk
)

zi =
∑
j αi,jVj

Output della self-attention
Z ∈ Rn×dv

Figura 4.11: Schema concettuale del meccanismo di self-attention in un Transformer.

Le Convolutional Neural Networks (CNN ) hanno rappresentato una svolta per l’elaborazione delle immagini statiche,
grazie alla capacità di catturare gerarchie di caratteristiche locali attraverso filtri convolutivi e pooling. Tuttavia, le CNN
tradizionali non sono adatte a gestire dati sequenziali come testo, segnali temporali o video, in cui l’ordine e la relazione
temporale tra gli elementi è cruciale. Per affrontare questi problemi, sono state introdotte le Reti Neurali Ricorrenti (RNN ), in
cui i neuroni presentano connessioni ricorrenti che consentono di mantenere una memoria dello stato passato. Le RNN hanno
trovato applicazione in compiti come il riconoscimento del parlato, la traduzione automatica, l’analisi di serie temporali e la
descrizione automatica di immagini (image captioning). Tuttavia, le RNN tradizionali soffrono di difficoltà nell’apprendere
dipendenze a lungo termine, a causa del problema del gradiente evanescente o esplodente. Per mitigare questi limiti sono
state sviluppate architetture più sofisticate come le Long Short-Term Memory (LSTM) e le Gated Recurrent Unit (GRU),
capaci di controllare quali informazioni mantenere o dimenticare attraverso meccanismi di gating.

Nonostante ciò, la prima generazione di reti neurali profonde sequenziali si basava su un paradigma encoder-decoder, in
cui l’informazione della sequenza in ingresso veniva compressa in un tensore di dimensioni ridotte, che doveva preservare il
maggior numero possibile di informazioni utili per il compito. Questo approccio ha tuttavia un limite intrinseco: elementi
rilevanti dell’input possono essere trascurati o attenuati durante la compressione.

Un cambiamento fondamentale è arrivato con il “meccanismo di attenzione” (attention mechanism). L’idea alla base
dell’attenzione è semplice ma potente: invece di comprimere tutte le informazioni in un unico vettore, il modello può
“concentrarsi” dinamicamente sulle parti più rilevanti della sequenza di ingresso. I pesi di attenzione vengono calcolati
in base alla rilevanza di ciascun elemento rispetto agli altri, permettendo di superare le limitazioni delle rappresentazioni
compresse negli stati ricorrenti.

Sia X ∈ Rn×d la matrice di input della sequenza, dove n è il numero di token (le singole unità in cui l’algoritmo divide
la sequenza di ingresso, variabile da sequenza a sequenza) e d è la dimensione degli embedding (un vettore numerico che
rappresenta ciascun token, fisso per il modello e capace di codificare informazioni semantiche e sintattiche).

Le matrici, chiamate di query (Q), key (K) e value (V ), si ottengono tramite proiezioni lineari:

Q = XWQ, K = XWK , V = XWV (4.90)
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dove:

� WQ,WK ∈ Rd×dk e WV ∈ Rd×dv sono matrici di pesi apprese durante l’addestramento;

� Q,K ∈ Rn×dk e V ∈ Rn×dv .

Il meccanismo di self-attention può allora essere espresso in forma scalare (per singolo token) come:

αi,j = softmax

(
QiK

>
j√

dk

)
, zi =

n∑
j=1

αi,jVj (4.91)

dove:

� Qi,Kj ∈ Rdk sono rispettivamente la query del token i e la key del token j;

� Vj ∈ Rdv è il value del token j;

� αi,j è lo scalare che indica quanto il token i presta attenzione al token j;

� zi ∈ Rdv è la nuova rappresentazione del token i risultante dalla combinazione pesata dei value.

� La funzione softmax, che normalizza i pesi αi,j tra 0 e 1, è definita come:

softmax(x)i =
exi∑n
j=1 e

xj
, i = 1, . . . , n (4.92)

dove x è il vettore di input (nel nostro caso x = QiK
>

√
dk

per la riga i).

In termini intuitivi, l’attenzione può essere vista come una generalizzazione dinamica dei metodi di ponderazione come
Bag of Words o TF-IDF. Tuttavia, mentre TF-IDF assegna pesi statici ai termini, l’attenzione attribuisce pesi contestuali
e dipendenti dal compito, consentendo al modello di focalizzarsi selettivamente sulle parti più rilevanti. Semanticamente, la
matrice Z risultante ha la stessa lunghezza dell’ingresso (n token in, n token out), ma ogni token è arricchito con informazioni
provenienti dal contesto globale della sequenza.

Il meccanismo di attenzione ha portato direttamente allo sviluppo dei Transformers [VSP+17], oggi lo standard de facto
per la modellazione di sequenze in linguaggio naturale, visione artificiale e apprendimento multimodale. Nei Transformers,
l’operatore centrale è il self-attention, che consente di modellare in modo parallelo e diretto le relazioni tra tutti gli elementi
della sequenza. Rispetto alle RNN, i Transformers offrono vantaggi significativi in termini di parallelizzazione, stabilità
numerica e capacità di apprendere dipendenze a lungo raggio.

Nel campo della visione artificiale, l’applicazione dei Transformers ha portato allo sviluppo dei Vision Transformers
(ViT) [DBK+20], in cui un’immagine viene suddivisa in piccole regioni (patch) trattate come una sequenza, analogamente
alle parole in un testo. Questi modelli hanno dimostrato prestazioni competitive o superiori rispetto alle CNN su vari compiti
di classificazione, riconoscimento e segmentazione, soprattutto in presenza di grandi quantità di dati.

In applicazioni pratiche un solo modulo di self-attention non risulta sufficiente per estrarre abbastanza informazione
dai token di ingresso. Il meccanismo di multi-head self-attention estende l’idea di self-attention permettendo al modello di
guardare la sequenza sotto diverse prospettive contemporaneamente. In pratica:

� Si adottano h teste (heads) diverse. Per ciascuna head p = 1, . . . , h, si hanno matrici di proiezione separate:

Q(p) = XWQ,(p), K(p) = XWK,(p), V (p) = XWV,(p), (4.93)

dove ciascuna matrice WQ,(p),WK,(p),WV,(p) ∈ Rd×dk .

� Ogni head calcola una self-attention (scala, softmax, combinazione) nel suo sottospazio. Si usa la forma matriciale
compatta, dove Attention è l’operatore scaled dot-product attention:

Z(p) = Attention
(
Q(p),K(p), V (p)

)
= softmax

(
Q(p)(K(p))>√

dk

)
V (p) (4.94)

� Le uscite delle varie head vengono concatenate:

Zconcat =
[
Z(1) ; Z(2) ; . . . ; Z(h)

]
∈ Rn×(h·dv) (4.95)

e poi proiettate nuovamente in uno spazio di dimensione d (la dimensione del modello), tramite una matrice di uscita
WO ∈ R(h·dv)×d:

Z = ZconcatW
O (4.96)
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Tabella 4.1: Esempi di geometria (layers, embedding, heads) per modelli Transformer noti.
Modello Layers d h dk = d/h
Transformer (base) [VSP+17] 6 encoder + 6 decoder 512 8 64
BERT-Base 12 encoder 768 12 64
BERT-Large 24 encoder 1024 16 64
GPT-3 (175B) molti decoder 12288 96 128

� Spesso si sceglie dv = dk, e d = h · dk, cos̀ı che la concatenazione seguita dalla proiezione restituisca una dimensione
coerente con l’input del layer successivo.

� Questo permette di modellare diverse “tipologie” di attenzione (es. relazioni sintattiche, semantiche, dipendenze locali
vs globali) nello stesso layer.

Oggi, RNN e Transformers rappresentano strumenti complementari: le prime restano utili in scenari con sequenze rela-
tivamente brevi o risorse limitate, mentre i secondi costituiscono la base delle architetture più avanzate del deep learning
moderno. L’evoluzione dai meccanismi ricorrenti a quelli basati su attenzione ha segnato un cambio di paradigma: dall’i-
dea di memoria compressa ad una rappresentazione dinamica e contestuale, dove il modello decide autonomamente “cosa
guardare” per ogni elemento della sequenza.

4.9 Generalizzare l’addestramento

È importante osservare che le tecniche di Machine Learning sono molto di più di discorso di mera ottimizzazione. Uno degli
obiettivi che ci si pone durante l’addestramento è fare in modo che il sistema sia capace di classificare nuovi campioni che
ancora non ha visionato. Una via per combattere l’overfitting è la “regolarizzazione”. Esistono diverse tecniche in letteratura
per la regolarizzazione: le principali sono la regolarizzazione L1/L2 e l’uscita anticipata (early-stopping).

4.9.1 Regolarizzazione L1 ed L2

La regolarizzazione L1 ed L2 consiste nell’inserire un termine aggiuntivo alla funzione costo, penalizzante per alcune
configurazioni. Regolarizzare, per esempio, la funzione costo

S(β,X) = −
∑
i

logP (Y = yi|xi;β) (4.97)

significa aggiungere un termine, funzione solo di β, in maniera da ottenere la nuova funzione costo del tipo

E(β,X) = S(β,X) + λR(β) (4.98)

con R(β) una funzione regolarizzante.
Una funzione regolarizzante molto diffusa è

R(β) =

∑
j

|βj |p
1/p

(4.99)

Valori comuni per p sono 1 o 2 (per questo viene chiamata regolarizzazione L1 o L2). Quando p = 2 può essere definita
in letteratura anche come weight decay. Questo genere di funzioni di regolarizzazione penalizzano pertanto i parametri con
valori troppi elevati.

4.9.2 Uscita anticipata

L’uscita anticipata combatte direttamente l’overfitting monitorando le prestazioni del modello su un insieme di esempi
addizionale chiamato insieme di validazione (validation set). Quando la funzione obiettivo sul set di validazione smette di
diminuire per un certo numero di iterazioni e anzi comincia a peggiorare l’addestramento viene interrotto in quanto c’è il
sospetto di iniziare ad overfittare il problema.

4.10 Valutazione delle prestazioni

Dato un classificatore addestrato su un determinato insieme di addestramento (Training Set) è necessario valutarlo su un
altro insieme (Validation Set o Certification Set). Da questo confronto è possibile estrarre degli indici che permettono di
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valutare il classificatore e permettono di confrontare diversi classificatori tra loro. È assolutamente indispensabile che gli
indici di prestazione vengano calcolati su un insieme di campioni non usati durante la fase di addestramento (il validation
set) in modo da rilevare problemi come l’overfitting dei dati ovvero la mancata generalizzazione.

Fissati i parametri del classificatore si può creare la tabella di contingenza (Confusion Matrix ):

Valore Vero
p n

Classificazione
p’ VP FP
n’ FN VN

I Falsi Positivi (FP) vengono indicati anche come Falsi Allarmi. I Falsi Negativi (FN) come miss.
Dalla tabella vengono normalmente estratti alcuni valori di prestazione, come:

� Accuracy è il rapporto tra il Numero di Predizioni Corrette sul Numero totale di predizioni = (VP+VN)/(VP+VN+FN+FP);

� Error Rate è il Numero totale di predizioni errate sul Numero totale di predizioni = (FP+FN) / (VP+VN+FN+FP);

� Precision (o specificity o PPV ) è la probabilità che un positivo ritornato dal classificatore sia corretto = VP / (VP+FP);

� Recall (o hit-rate o TPR) è la percentuale di positivi riconosciuti correttamente = VP / (VP+FN);

� Miss-Rate o FNR è l’opposto della Recall = 1-Recall = FN/(VP+FN).

Ogni classificatore ha uno o più parametri che, se modificati, cambiano il rapporto tra i riconoscimenti corrette e il
numero di falsi positivi. Risulta pertanto difficile poter confrontare in maniera obiettiva due classificatori perché magari
uno presenta, a parità di tale soglia, un numero di individuazioni corrette più elevato dell’altro ma magari un numero più
alto di falsi positivi. Per confrontare pertanto le prestazioni di diversi classificatori binari ottenuti da diverse sessioni di
addestramento si fa normalmente uso di curve al variare di questa soglia interna del classificatore.

Le curve di prestazioni che si possono trovare sono

� La curva ROC (Receiver Operating Characteristic) è un grafico cartesiano dove lungo le ascisse è indicato il numero
di falsi positivi (percentuali FPR, per fotogramma o assoluti) e in ordinata è presente la percentuale di corretti
riconoscimenti (True Positive Rate TPR), generati dal classificatore al variare della soglia. Ogni classificatore per
essere definito tale deve avere una curva ROC migliore del classificatore casuale, ovvero la retta che congiunge i punti
(0, 0) e (1, 1) del grafico ROC.

� Precision-Recall (PRC ) che concentra l’analisi principalmente sui positivi. L’area sotto la PRC è chiamata Average
Precision (AP). In problemi reali di detection il numero di Veri Negativi sono altissimi e perciò è necessario concentrarsi
sui falsi positivi. La curva PRC ha il grosso vantaggio di nascondere la scala dei Falsi Positivi: normalmente infatti
questi sono indicati per fotogrammi, per minuto, o su un altra unità di misura.

� Detection error Tradeoff (DET ) che permette di rappresentare sugli assi gli errori negativi (miss) e gli errori positivi
(false alarm). È una curva che concentra l’analisi puramente sugli errori.

È infine da notare che questi indici si riferiscono a qualunque classe di problemi che contempli il concetto di risultato
corretto o sbagliato. È pertanto applicabile non solo ai classificatori, ma per esempio alle associazioni di punti caratteristici
e altro ancora.

Recentemente, per poter fare un confronto più snello per le prestazioni di un classificatore, sono state proposte del-
le funzioni che applicate alle curve ROC permettono di ricavare un unico scalare rappresentante un voto della bontà di
classificazione. Tali funzioni sono solitamente delle medie di campionamenti della curva ROC nelle sole zone di interesse
pratico.



Capitolo 5

Punti Caratteristici

L’individuazione (estrazione) di punti chiave (keypoint detection), la loro caratterizzazione (feature description) e infine
confronto (matching) sono tematiche strettamente legate all’interno della visione artificiale. Le applicazioni che fanno uso
di punti chiave spaziano dalla creazione di immagini panoramiche alla ricostruzione tridimensionale, dall’odometria visuale
all’inseguimento di oggetti e in moltissimi altri casi di utilizzo.

Il concetto di punto chiave richiama il fatto che non tutti ma solo alcuni punti dell’immagine hanno una probabilità
elevata di essere individuati senza ambiguità durante un confronto. Sono punti notevoli, stabili, facilmente individuabili.
Nell’ultima decade, come in quasi tutti i campi della Visione Computazionale, sono stati fatti grandi passi in avanti nello
sviluppo di local invariant features, punti caratteristici che permettono alle applicazioni di definire una geometria locale
dell’immagine e codificarla in maniera tale che sia invariante alle trasformazioni dell’immagine, quali traslazione, rotazione,
scala e deformazioni affini.

In questo capitolo verranno trattate le tematiche più strettamente inerenti agli algoritmi di estrazione dei punti chiave. Il
discorso invece della descrizione del punto sarà trattato nel capitolo seguente siccome è un argomento ortogonale tra quello
di descrivere i punti e il concetto di classificazione.

Un elenco, non esaustivo, di algoritmi per individuare punti chiave è

Harris Corner Harris formalizza da un punto di vista matematico il concetto di bordo e, attraverso lo studio degli autovalori
della matrice di covarianza nell’intorno di un punto, permette di ricavare la presenza o meno di uno spigolo. È invariante
a cambiamenti di luminosità, a trasformazioni geometriche quali traslazioni e rotazioni, e minimamente a variazioni di
scala (sezione 5.2);

KLT il Kanade-Lucas-Tomasi sfrutta una variante di Harris (Shi-Tomasi) come corner detector ed esegue il confronto
sfruttando rappresentazioni piramidali della scena (dettagli in 7.2);

AST La classe degli Advance Segment Test (sezione 5.5) identifica un punto caratteristico osservando la differenza di
luminosità dei punti su una circonferenza;

SIFT studia l’immagine in multisoluzione ed è invariante a trasformazioni simili (sezione 5.3);

SURF una variante di SIFT più performante basata sull’immagine integrale (sezione 5.4).

5.1 Individuatore Hessiano

Il problema dell’individuazione di punti notevoli che possano essere facilmente riconosciuti tra due immagini è stato ini-
zialmente risolto spostando il problema verso quello di individuare punti angolari (corner) nell’immagine, ovvero scartando
quelle porzioni dell’immagine senza tessitura o con solo bordi.

L’operatore Hessiano (Hessian detector) [Bea78], basato sulla matrice Hessiana derivata dall’espansione in serie di Tay-
lor nell’intorno del punto da descrivere, cerca quelle parti dell’immagine che mostrano delle forti derivate nelle direzioni
ortogonali. Tale algoritmo è basato sull’analisi della matrice delle derivate seconde ovvero l’Hessiana

H(x, σ) =

[
Ixx(x, σ) Ixy(x, σ)
Ixy(x, σ) Iyy(x, σ)

]
(5.1)

L’algoritmo calcola le derivate seconde dell’immagine Ixx, Ixy, Iyy per ogni punto dell’immagine e individua i punti nei
quali il determinante dell’Hessiana

det (H(x, σ)) = Ixx(x, σ)Iyy(x, σ)− I2
xy(x, σ) (5.2)

diventa massimo. Questa ricerca è normalmente attuata sull’immagine del determinante dell’Hessiana a cui viene applicata
una Non-Maxima Suppression su una finestra 3× 3. Il massimo della risposta del deteminante Hessiano sono normalmente

90
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localizzati sugli angoli e in zone dell’immagine con forte tessitura. L’utilizzo del determinante dell’Hessiana rende questo
algoritmo invariante alla rotazione.

In applicazione pratiche non viene mai usata l’immagine originale ma una versione filtrata passa basso attraverso una
gaussiana.

5.2 Förstner-Harris

L’algoritmo di Förstner-Harris [FG87, HS88] è stato esplicitamente disegnato per ottenere una elevata stabilità geometrica.
Esso definisce punti caratteristici quei punti che hanno un massimo locale nel confronto ai minimi quadrati alla propria
versione sottoposta a traslazione. Questo algoritmo ha avuto cos̀ı tanto successo perchè permette di individuare le va-
riazione dell’intensità dell’immagine nell’intorno di un punto usando la matrice di auto-correlazione tra le derivate prime
dell’immagine.

Si definiscano le immagini dei gradienti (queste possono essere generate da un operatore differenziale, Sobel, Prewit o
Roberts) Ix(x, y) e Iy(x, y) rispettivamente gradiente orizzontale e gradiente verticale dell’immagine da analizzare.

Da queste due immagini è possibile calcolare una funzione C(x, y), rappresentate la matrice di covarianza (autocorrela-
zione) delle immagini dei gradienti in un intorno di (x, y), definita come

C(x, y) =

[ ∑
δ∈Ω I

2
x(δ)w(δ)

∑
δ∈Ω Ix(δ)Iy(δ)w(δ)∑

δ∈Ω Ix(δ)Iy(δ)w(δ)
∑
δ∈Ω I

2
y (δ)w(δ)

]
(5.3)

con δ ∈ Ω intorno di (x, y) e w(δ) un kernel opzionale, normalmente o una gaussiana centrata in (x, y), per permettere di
pesare in maniera differente i punti nell’intorno, o una finestra costante su Ω. Originariamente w(δ) erano filtri molto piccoli
ma, man mano che la potenza di calcolo è aumentata, si è passati a kernel gaussiani via via maggiori.

Di fatto in Harris si usano due filtri di convoluzione: uno derivativo per calcolare le immagini derivate e uno integrale per
calcolare gli elementi della matrice. La dimensione di questi filtri e l’utilizzo di filtro gaussiano per pesare i punti rimanda
alla lettura della sezione seguente riguardo la scala di individuazione delle feature.

La matrice C è la matrice dei momenti del secondo ordine. Per individuare punti caratteristici si possono analizzare gli
autovalori λ0 e λ1 della matrice C (si legga per una trattazione più approfondita la sezione 2.10.1). Gli autovalori della
matrice di auto-correlazione C permettono di caratterizzare il tipo di immagine contenuta nella finestra intorno al punto
dato.

Se sono presenti due autovalori molto elevati il punto è un corner, se è presente un solo autovalore di valore elevato è un
edge, altrimenti è una zona ragionevolmente piatta, ovvero in forma di funzione come

C = min(λ0, λ1) (5.4)

i cui massimi locali rappresentano i corner ricavati dall’algoritmo di Shi-Tomasi [ST94].
Per una matrice 2× 2 gli autovalori si ottengono come soluzioni del polinomio caratteristico quadratico

p(x) = x2 − trace(C)x+ det(C) (5.5)

Harris, per evitare di calcolare esplicitamente gli autovalori di C, introduce un operatore H(x, y) definito come

H(x, y) = det(C)− α trace(C)2 (5.6)

dove α è un parametro compreso tra 0 e 0.25 e solitamente posto a 0.04.

80

6040

40

2
0

20

20

00

0
0

0 2 4 6 8 10
0

2

4

6

8

10

λ0

λ
1

Figura 5.1: Risposta nel piano degli autovalori fornita dall’equazione di Harris a diversi valori della soglia avendo posto
α = 0.04. L’area interessata è molto simile a quella fornita dal metodo di Shi-Tomasi ma senza la necessità di calcolare
esplicitamente gli autovalori.

Per Harris il punto (x, y) è un punto caratteristico (corner) se H(x, y) > Hthr, con Hthr soglia da definire. Il parametro
α regola la sensitività del rilevatore di feature. Qualitativamente alzare α rimuove i bordi mentre alzare Hthr rimuove le
zone piatte (figura 5.1).
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5.3 Invarianza alla scala e alla rotazione

Harris è un individuatore di punti notevoli non invariante alle variazioni di scala. Per superare questa serie di limiti, Linde-
berg [Lin94, Lin14] introduce il concetto di selezione automatica della scala, permettendo di individuare i punti caratteristici
a un determinato livello di risoluzione. La rappresentazione piramidale della scena, algoritmo computazionalmente efficiente
ampiamente usato in precedenza, diventa di fatto un caso particolare di questa rappresentazione scala-spazio.

Sia G(x, y; t) la gaussiana bidimensionale di varianza t > 0, di equazione

G(x, y; t) =
1

2πt
e−

x2+y2

2t (5.7)

(cfr. sezione 2.2).
La convoluzione L(x, y; t) tra l’immagine I(x, y) e la gaussiana G(x, y; t)

L(x, y; t) = G(x, y; t) ∗ I(x, y) (5.8)

genera la rappresentazione scala-spazio (scale-space representation) dell’immagine stessa. La varianza t = σ2 del kernel
gaussiano è chiamata parametro di scala (scale parameter). La rappresentazione dell’immagine alla scala degenere t = 0 è
l’immagine originale stessa.

È da notare che applicare un filtro gaussiano a un immagine non crea nuove strutture: tutta l’informazione generata dal
filtro era già contenuta nell’immagine originale.

Figura 5.2: Rappresentazione scala-spazio di una immagine 512× 512: dall’immagine originale t = 0 alle scale 1, 4, 16, 64
e 256.

Il fattore di scala t è un numero continuo ma, per motivi computazionali, vengono usati passi discreti di questo valore,
normalmente successioni esponenziali, come t = 2i o t = 1

2e
i.

Applicare a una immagine scala-spazio un operatore derivata, per la proprietà commutativa tra la convoluzione e la
derivata, è uguale ad eseguire la convoluzione dell’immagine originale con la derivata della gaussiana:

Lxα(·; t) = ∂xαL(·; t) = (∂xαg(·; t)) ∗ f(·) (5.9)

con α notazione multi-indice della derivata. Allo steso modo è possibile estendere a un qualsiasi fattore di scala la definizione
di tutti i filtri bordo o punti caratteristici. Attraverso il lavoro di Lindeberg è stato possibile estendere il concetto dei Corner
di Harris a casi invarianti di scala (metodi Harris-Laplace e Hessian-Laplace [MS02]).
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Alcuni operatori interessanti per trovare punti caratteristici sono per esempio il modulo del gradiente |∇L|, il laplaciano
∇2L e il determinante dell’hessiana detH(L). Tutti questi operatori sono invarianti alle rotazioni, ovvero il punto di
minimo/massimo esiste indipendentemente dalla rotazione che assume l’immagine.

Tra questi operatori, uno molto diffuso per individuare punti caratteristici è il Laplaciano della Gaussiana (LoG)
normalizzato (scale-normalized Laplacian operator):

∇2
nL(x, y, t) = t(

∂2

∂x2
+

∂2

∂y2
)G = − 1

tπ

(
1− x2 + y2

2t

)
e
−
x2 + y2

2t (5.10)

Attraverso l’operatore LoG, è possibile individuare punti caratteristici come massimi o minimi locali nelle coordinate
spaziali e scala.

Per esempio, un cerchio di raggio r ha la massima risposta al laplaciano al fattore di scala σ = r/
√

2.

(a) (b)

Figura 5.3: Confronto tra l’immagine LoG normalizzata (a) e DoG (b)

Lowe [Low04], nell’algoritmo Scale-invariant feature transform (SIFT ), per aumentare le prestazioni, approssima il
Laplaciano della Gaussiana (LoG) con una Differenza tra Gaussiane (DoG):

D(x, y;σ) = (G(x, y; kσ)−G(x, y;σ)) ∗ I(x, y)
≈ L(x, y; kσ)− L(x, y;σ)
≈ (k − 1)σ2LoG(x, y;σ)

(5.11)

Questo procedimento è più performante in quanto l’immagine gaussiana a scala kσ può venire calcolata dall’immagine
gaussiana σ applicando un filtro (k − 1)σ, più piccolo e perciò nel complesso molto più veloce rispetto ad eseguire la
convoluzione kσ con l’immagine originale.

Se in LoG i punti caratteristici erano i minimi/massimi locali, sia nello spazio che nella scala, dell’immagine del laplaciano,
in questo caso i punti caratteristici sono i punti minimo e massimo nell’immagine differenza tra le immagini scala σ, kσ, . . . , knσ
attraverso le quali viene processata l’immagine (figura 5.4).

sc
al

e

Figura 5.4: Individuazione di minimi e massimi locali: per ogni pixel e per ogni scala viene confrontato un intorno 3× 3× 3.

Con l’introduzione del passo k, il dominio della variabile σ viene di fatto suddiviso in passi logaritmici discreti, raccolti
in ottave, e ogni ottava viene suddivisa in S sottolivelli. In questo modo σ assume i valori discreti

σ(o, s) = σ02o+
s
S ↔ k = 2

1
S (5.12)
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con σ0 fattore base di scala.
I punti caratteristici, trovati come massimo/minimo in scala e spazio, entrambi discreti, vengono interpolati usando una

regressione a una quadrica tridimensionale per trovare il punto caratteristico con precisione subpixel e subscala.
Tra un ottava e quella successiva l’immagine viene sottocampionata di un fattore 2: oltre all’analisi a scale multiple

all’interno di ogni ottava, l’immagine viene processata nuovamente nell’ottava successiva dimezzando la dimensione orizzontale
e verticale e tale procedimento viene ripetuto più volte.

La seconda fase di un algoritmo di individuazione e associazione di punti caratteristici consiste nell’estrarre un descrittore
per eseguire i confronti, descrittore centrato nel punto caratteristico individuato. Di fatto, per essere invariante alla scala il
descrittore deve essere estratto al medesimo fattore di scala associato al punto caratteristico.

Per essere invariante invece alla rotazione il descrittore deve essere estratto da una immagine che ha subito una qualche
forma di normalizzazione rispetto alla direzione dominante estratta in intorno del punto valutato.

Da questa immagine ruotata alla scala del punto caratteristico è possibile estrare un descrittore che da importanza ai
bordi nell’intorno per essere infine inviariante alla luminosità.

Tra le innumerevoli varianti va segnalato PCA-SIFT che usa PCA per ridurre le dimensioni del problema a un descrittore
di soli 36 elementi. PCA viene usato in una fase precedente di addestramento.

5.4 SURF

L’algoritmo Speeded Up Robust Features [BETVG08] prende spunto dall’algoritmo SIFT e dalla teoria delle rappresentazioni
scala-spazio per proporne una versione ottimizzata dove si sfruttano hessiane approssimate utilizzando l’immagine integrale,
sia per individuare i punti caratteristici che per estrarne i descrittori.

SURF è invariante alla traslazione, scala e rotazione ma esiste una variante semplificata, indicata con “U-SURF”, che è
solo invariante a variazioni di traslazione e scala: in questo caso l’area intorno al punto individuato non viene normalizzata
rispetto alla rotazione nel momento in cui viene estratto il descrittore.

In SURF i punti caratteristici vengono rilevati calcolando massimi locali sul determinante dell’immagine Hessiana definita
come:

H(x, y; t) =

[
∂
∂x2G(t) ∗ I ∂

∂xyG(t) ∗ I
∂
∂yxG(t) ∗ I ∂

∂y2G(t) ∗ I

]
=

[
Dxx Dxy

Dxy Dyy

]
(5.13)

immagine formata dalle convoluzioni tra le derivate di secondo ordine della gaussiana di varianza t = σ2 e l’immagine nel
punto (x, y). Per motivi di prestazioni le derivate delle gaussiane vengono quantizzate a numeri interi e approssimate a regioni
rettangolari (box filters), ovvero alcune zone rettangolari intorno al punto vengono pesate positivamente, altre negativamente
e la loro somma forma l’elemento della matrice H.

La banda di questi filtri approssimati si può stimare come

σ =
1.2

9
l (5.14)

con l della dimensione del filtro. Il filtro 9× 9, il più piccolo possibile, per esempio approssima le derivate della gaussiana di
varianza σ = 1.2.

L’immagine determinante viene calcolata come

det(H) = DxxDyy − (wDxy)
2

(5.15)

dove w è un fattore che tiene conto della quantizzazione, cerca di compensare i vari errori di arrotondamento, e normalmente
viene posto w = 0.912 costante. Il determinante infine viene normalizzato rispetto alla dimensione della scala coinvolta, in
modo da poterlo confrontare a scale differenti.

L’immagine viene analizzata per più ottave (ogni ottava ha un fattore di scala doppio rispetto all’ottava precedente).
Ogni ottava è divisa in un ugual numero di livelli di scala. Il numero di scale per ottava è limitato dalla natura strettamente
quantizzata del filtro e le gaussiane approssimate non sono ben equispaziate come nel caso di SIFT. Di fatto 4 intervalli per
ottava è l’unico numero di suddivisioni possibile.

All’interno di ogni ottava, al variare della scala s e della posizione, viene eseguita una Non-Maxima Suppression 3× 3× 3
sull’immagine del determinante di H. I minimi/massimi locali, interpolati attraverso una quadrica tridimensionale come per
SIFT, sono i punti interessanti individuati da SURF. La scala è posta uguale alla varianza del filtro associato s = σ.

Dai punti di massimo cos̀ı trovati, usando sempre l’immagine integrale, viene estratta l’orientazione dominante nell’intorno
del punto (intorno di raggio 6s e campionato a passo s). Anche questo caso vengono usate feature di Haar di lato 4s e pesate
con una gaussiana di distribuzione σ = 2s.

Attraverso l’informazione sull’orientazione viene generato un descrittore basato sulle direzioni dei gradienti campionando
l’area in un intorno di 20s, divisa in 4× 4 regioni e pesando i punti con una gaussiana σ = 3.3s. All’interno di ogni regione
vengono calcolati dx, dy, |dx| e |dy|. Sia l’orientazione che l’istogramma dei gradienti sono estratti alla scala di rilevamento
della feature.



5.5. AST 95

5.5 AST

L’ultima classe di estrattori di punti caratteristici cade sotto il nome di Accelerated Segment Test sviluppate da Rosten. DI
questo algoritmo esistono al momento tre versioni leggermente differenti.
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Figura 5.5: FAST: i 16 pixel sulla circonferenza di raggio 3 su cui eseguire il test di consecutività.

La prima versione di Features from Accelerated Segment Test FAST [RD05] è probabilmente quella più intuitiva: in questo
caso sono indicati come caratteristici quei punti che hanno una sequenza continua di n pixel, lungo a una circonferenza di
raggio dato, tutti più (o meno) luminosi del pixel centrale usato come riferimento per il tono di grigio. Nel caso, per esempio,
di FAST-9 vengono analizzati i 16 pixels sulla circonferenza di raggio 3 e si verifica se sussistono 9 pixel contigui tutti sopra o
tutti sotto una certa soglia rispetto al pixel centrale. Nelle versioni successive [RD06] ottimizza l’estrazione attraverso l’uso
di alberi di decisione addestrati per individuare punti caratteristici che massimizzano la quantità locale di informazione. Tali
alberi processano sempre i pixel sulla circonferenza.

Questo approccio è tipico degli ultimi anni quando, grazie all’abbondare di dataset pubblici, è stato fatto largo utilizzo di
classificatori per costruire individuatori di punti caratteristici stabili. Di fatto, date delle primitive che descrivono l’intorno
di un punto, l’utilizzo di una tecnica di ottimizzazione permette di individuare quelle che mostrano maggiore stabilità nel
particolare compito. L’articolo di Rosten fra l’altro produce un ottimo survey sulle tecniche di estrazione di punti caratteristici
precedenti.

Nell’ultima variante (FAST-ER) viene infine estesa l’area da analizzare non solo ai punti di una circonferenza, ma a tutti
i pixel nell’intorno del punto centrale.



Capitolo 6

Descrittori

Un altro concetto che ha una collocazione trasversale tra le tematiche di visione artificiale è quello di descrittore (Visual
Descriptor). Il descrittore infatti viene usato in diverse tematiche: viene usato per eseguire il confronto tra punti caratteristici
o per generare la mappa di disparità nella visione stereoscopia, per fornire una rappresentazione compatta di una porzione
dell’immagine per velocizzare la sua individuazione o ricerca, e grazie a questa soluzione compatta che però preserva gran
parte dell’informazione, viene usata per generare lo spazio delle caratteristiche negli algoritmi di classificazione.

A seconda della trasformazione che subisce l’immagine da cui si vogliono caratterizzare i punti, il descrittore deve
soddisfare alcuni principi di invarianza

traslazione É quella più facile e viene automaticamente risolta dall’estrattore di punti caratteristici;

scala É un’altra trasformazione che normalmente viene risolta dall’estrattore di punti caratteristici;

luminosità Le immagini possono subire una variazione di luminosità;

rotazione Le immagini possono rappresentare la stessa scena ruotata;

prospettiva I cambi di prospettiva deformano in maniera complessa la porzione di mondo osservata.

Prima che venisse introdotto il concetto di descrittore compatto, il modo universalmente diffuso per confrontare due punti
caratteristici era la correlazione tra le aree intorno al punto:

d(p1,p2) =
∑
δ∈Ω

wδ(I1(p1 + δ)− Ī1)(I2(p2 + δ)− Ī2) (6.1)

con Ω una finestra di dimensione fissa centrata nel punto delle due immagini e Īn il valor medio dell’immagine all’interno
della finestra Ω. wδ è un peso opzionale (ad esempio una gaussiana) per assegnare contributi diversi ai pixel vicini e lontani
dal punto. La correlazione è invariante ai cambiamenti di luminosità ma richiede un elevato peso computazionale. In questo
caso il descrittore è esattamente la porzione di immagine intorno al punto individuato [Mor80].

Un approccio simile alla correlazione, non invariante alla luminosità ma più performante dal punto di vista computazionale,
è la SAD (Sum of Absolute Differences):

d(p1,p2) =
∑
δ∈Ω

|I1(p1 + δ)− I2(p2 + δ)| (6.2)

Per rendere la SAD invariante alla luminosità vengono normalmente eseguiti i confronti non sull’immagine originale, ma sulle
immagini derivata orizzontale e derivata verticale. Questo ragionamento sembra molto semplice ma può essere ulteriormente
generalizzato nel concetto di eseguire il confronto non sull’immagine originale, ma tra una o più immagini estratte attraverso
l’ausilio di differenti kernel, kernel che provvedono a fornire al descrittore alcuni livelli di invarianza.

É altres̀ı da notare che il confronto tra i pixel tra le immagini è comunque un algoritmo di tipo O(n2): eseguire questi
confronti per punto richiede comunque un elevato peso computazionale e molteplici accessi in memoria. Soluzioni moderne
vogliono superare questo limite prevedendo l’estrazione di un descrittore dall’intorno del punto di dimensione inferiore alla
quantità di pixel rappresentati che però massimizzi l’informazione contenuta in essa.

Sia SIFT (sezione 5.3) che SURF (sezione 5.4) estraggono i loro descrittori sfruttando le informazioni sulla scala e sulla
rotazione estratti dall’immagine (é possibile estrarre queste informazioni in maniera comunque indipendete e pertanto si
possono applicare a qualunque classe di descrittori per renderli invarianti a scala e rotazione). I descrittori ottenuti da SIFT
e SURF, sono differenti versioni del medesimo concetto, ovvero dell’istogramma dell’orientazione del gradiente (sezione 6.2),
esempio di come comprimere in uno spazio di dimensioni ridotte la variabilità intorno al punto.

Tutti i descrittori usati attualmente non usano direttamente i punti dell’immagine come descrittore, ma è facile vedere
che basta un sottoinsieme abbastanza ben distribuito dei punti per realizzare comunque una descrizione accurata del punto.

96
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In [RD05] viene creato un descrittore con i 16 pixel presenti lungo la circonferenza discreta di raggio 3. Tale descrizione può
essere resa ancora più compatta passando alla forma binaria dei Local Binary Pattern descritti in seguito o non vincolata
alla circonferenza, come in Census o in BRIEF. Un altro approccio è campionare in maniera opportuna lo spazio dei
kernel [GZS11], estraendo da m coordinate intorno al punto chiave, i valori che assumono convoluzioni dell’immagine originale
(Sobel orizzontale e verticale), in modo da creare un descrittore di appena 2m valori.

É da notare che, per motivi prettamente computazionali di riutilizzo di risorse, spesso ad ogni particolare estrattore di
punti caratteristici viene associato uno specifico estrattore di descrittori.

Da questa introduzione si capisce che descrivere un punto chiave con un insieme di dati inferiore ma allo stesso tempo
sufficientemente descrittivo è un discorso che torna utile anche quando si parla di classificazione. Il concetto di descrittore
nasce nel tentativo di estrarre informazioni locali dell’immagine che ne permettano di conservare buona parte dell’informa-
zione. In questo modo è possibile eseguire confronti (relativamente) veloci tra punti tra immagini, o usare tali descrittori
come caratteristiche su cui addestrare classificatori.

6.1 Feature di Haar

Le Feature di Haar (il nome deriva dalla somiglianza con le wavelet di Haar) indica una serie di filtri per immagini formati
come sommatoria e sottrazioni di sottoparti puramente rettangolari dell’immagine stessa [PP99]. Esempi di feature di
Haar sono mostrati in figura 6.1. Il valore risultante del filtro è la somma dei toni di grigio dei pixel sottesi alle aree in
bianco, sottratto il valore dei pixel sottesi alle aree indicate in nero. Per loro natura tali filtri possono venire efficacemente
implementati usando l’immagine integrale (sezione 1.14).

Le Feature di Haar vengono usate come approssimazione di convoluzioni per il calcolo di punti caratteristici nell’algoritmo
di SURF, o come caratteristiche di ingresso ad alberi di decisione per ottenere classificatori deboli.

Figura 6.1: Esempi di Feature di Haar. Nelle aree chiare e nelle aree scure l’area sottesa viene sommata o sottratta
rispettivamente.

Anche se la forma potrebbe essere potenzialmente qualsiasi, il numero di basi per le feature è normalmente limitato (si
cerca se possibile di evitare feature troppo complesse e pesanti computazionalmente).

Oltre al tipo di feature è necessario selezionare la sotto-area di applicazione: da ogni sotto-finestra dell’area da analizzare
infatti è possibile estrarre un valore a seguito dell’applicazione di una tra queste tante feature. Indicare quali sono le feature
più discriminanti è lavoro dell’attività di addestramento (Decision Stump ordinati con AdaBoost) o attraverso tecniche come
PCA.

6.2 Istogramma dell’Orientazione del Gradiente

L’istogramma dell’orientazione del gradiente Histogram of Oriented Gradient (HOG) è una delle tecniche che recentemente
ha avuto più successo per descrivere in maniera efficace un area. Tale metodo è infatti usato per la prima volta con successo
in SIFT per descrivere i punti caratteristici e insieme ad SVM per ottenere classificatori molto performanti [DT05].

Data la finestra all’interno della quale estrarre il descrittore, viene calcolato modulo e fase di un operatore gradiente
(un filtro derivativo, Sobel, o qualsiasi altro) per ogni punto. La fase cos̀ı estratta viene quantizzata: normalmente vengono
calcolati da 6 a 9 bin e, opzionalmente, la fase viene calcolata con periodicità π ignorando pertanto il segno del gradiente.

Le idee alla base di HOG sono sia usare la fase del gradiente per avere un descrittore compatto ma invariante fortemente
alla luminosità ma anche quella di scomporre la finestra in esame in sottoparti, chiamate celle, eventualmente sovrapposte e
potenzialmente di qualunque forma e dimensione. Se normalmente le celle di HOG sono quadrate, é possibile trovare celle
rettangolari in R-HOG o circolari in C-HOG.

Da ogni sottoparte in cui viene scomposta l’immagine viene estratto un pezzo di descrittore formato dall’istogramma
del modulo del gradiente. Le versioni più usate di HOG cercano di normalizzare localmente la luminosità e il contrasto.
Per fare questo, celle spazialmente limitrofe vengono raggruppate in blocchi. Per ogni blocco viene estratto un fattore di
normalizzazione con il quale correggere il peso di ogni sotto cella.

Il bin dell’istogramma per ogni cella in cui è scomposta l’area rappresentano il descrittore, descrittore da usare nei
confronti di punti o negli addestramenti per riconoscimento di oggetti.
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(a) (b)

(c) (d)

Figura 6.2: Calcolo dell’istogramma del gradiente: dalle celle, anche sovrapposte, in cui viene scomposta l’immagine (a) si
calcolano modulo (b) e fase (c) dei gradienti e per ogni cella viene costruito un istogramma (d).

6.3 Descrittore da Canale Integrale

Figura 6.3: Immagine dei canali usati da ICF. Da sinistra l’immagine originale e a seguire le immagini dei differenti canali:
8 canali per la fase del gradiente quantizzata, 1 canale con il modulo del gradiente e 3 canali per le componenti di LUV
rispettivamente.

Le varianti di HOG presentano forme delle celle variabili e ci si è accorti che un modo per velocizzare il calcolo dell’isto-
gramma del modulo delle fasi era sfruttare nuovamente l’immagine integrale: pertanto, a cavallo tra HOG e le Feature di
Haar, recentemente hanno mostrato interessanti prestazioni le Integral Channel Feature essendo di fatto una generalizzazione
di HOG che sfrutta l’immagine integrale.

I valori caratteristici che si possono estrarre derivano dalla sommatoria di aree calcolate non direttamente sull’immagine
originale ma da differenti immagini secondarie, ottenute attraverso elaborazioni non-lineari dalla zona da caratterizzare. Tra
le possibili elaborazioni quelle più diffuse sono i canali della fase del gradiente già visti in HOG, l’immagine della magnitudine
del gradiente, l’immagine stessa a toni di grigio e, se disponibili, due canali aggiuntivi rappresentanti la crominanza. Per
quanto riguarda il gradiente viene spesso calcolato con Sobel ma diversi esperimenti mostrano che il semplice filtro derivativo
produce risultati comunque soddisfacenti. Anche in questo caso la fase di Sobel può essere utilizzata con o senza segno, a
seconda delle particolari applicazioni.

Lo scalare rappresentante la caratteristica da estrarre è semplicemente la somma di un area rettangolare all’interno di
uno dei canali calcolati.
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6.4 Descrittori Binari

Uno dei problemi dei descrittori tradizionali è che sono formati da un vettore di un certo numero di valori, normalmente, a
causa di eventuali normalizzazioni, a virgola mobile: come conseguenza sia per estrarre questo vettore che poi per eseguire
la fase di confronto è necessario un elevato tempo computazionale.

Una delle alternative più promettenti è quella di estrarre come descrittore un vettore binario. Il vettore binario occupa
meno spazio in memoria e per eseguire il confronto è sufficiente calcolare la distanza di Hamming tra le rispettive stringhe
binarie. La distanza di Hamming si calcola in maniera molto efficiente calcolando lo XOR delle stringhe binarie e contando
i bit attivi (POPCOUNT).

6.4.1 Trasformazione Census

011001110000...

Figura 6.4: Calcolo della trasformazione di Census in un intorno di un punto: l’intorno di un punto viene binarizzato rispetto
al valore del punto stesso e da questa sogliatura viene costruita una stringa binaria.

La trasformazione Census (Census-Transformation) [ZW94] consiste nel descrivere la porzione di un immagine intorno a
un punto attraverso una stringa di bit. Per ogni pixel dell’immagine viene analizzata in maniera ordinata l’area circostante,
di dimensioni e forma fissate, e ogni pixel di quest’area viene confrontato con il pixel generatore. Se il pixel ha una intensità
di grigio maggiore viene associato un bit 1 mentre se ha intensità inferiore viene associato il bit 0:

τ(x) =

{
1 I(x) < I(0)
0 otherwise

(6.3)

Attraverso la scansione dell’area in maniera ordinata è possibile generare una stringa binaria. Un esempio della trasfor-
mazione Census di un area 5 × 5 è mostrata in figura 6.4: da quest’area viene generata una stringa binaria da 25-1 bit (il
pixel centrale è di fatto ininfluente).

La trasformazione Census mostra il suo potenziale nel caso di confronti: due punti generici invece che essere confrontati
attraverso una SAD dell’area circostante, vengono confrontati attraverso la distanza di Hamming tra le rispettive stringhe
binarie della trasformata di Census.

Attraverso la costruzione della stringa binaria, sfruttando la differenza di tono di grigio, la trasformazione Census è
abbastanza invariante alla luminosità.

6.4.2 Local Binary Pattern (LBP)

Figura 6.5: Pixel considerati durante l’estrazione di un descrittore LBP a 8 bit, al variare del raggio della circonferenza.

Nella prima versione di LBP [OPM02], il descrittore risultava indistinguibile alla trasformata di Census su una finestra
3 × 3: per ogni punto immagine vengono esaminati gli 8 pixel nel vicinato, sogliati attraverso il pixel centrale e in questo
modo viene generata una stringa di 8 bit, equivalente pertanto a un descrittore intero compreso tra 0 e 255.

Questo concetto originale è stato in seguito esteso a n punti lungo una circonferenza di raggio ρ centrata nel pixel di cui
si vuole calcolare la caratteristica (figura 6.5). Siccome il punto del raggio normalmente non cade esattamente su un pixel,
si può eseguire una interpolazione bilineare per stimare il valore da sogliare per costruire la stringa binaria.

L’operatore LBP produce 2n possibili valori per ogni punto dell’immagine. Nel caso in cui l’immagine venga ruotata, i
valori dei pixel si muovono lungo la circonferenza e come conseguenza ruotano anche i bit all’interno della stringa binaria. È
possibile ottenere un operatore LBP invariante alla rotazione, normalizzando la stringa attraverso una qualche trasformazione.
Una di queste trasformazioni è, per esempio, eseguire n rotazioni sulla stringa binaria e prendere, tra tutte le risultati, quella
di valore minimo:

LBPr.i. = min
i

RORi(LBP) i ∈ [0, n− 1] (6.4)
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6.4.3 BRIEF

La trasformata di Census non impone una forma specifica all’area su cui eseguire i confronti per generare la stringa binaria.
Questo limite viene affrontato in [CLSF10], uno dei primi lavori che formalizza il problema della costruzione di descrittori
binari discriminanti.

La maggior parte dei descrittori binari si ispira a Census, generalizzandolo: invece di confrontare ogni pixel con il solo
centro dell’area, si effettuano confronti tra coppie di pixel selezionate in modo opportuno. La funzione di confronto è definita
come:

τ(x,y) =

{
1 Ĩ(x) < Ĩ(y)
0 otherwise

(6.5)

dove x e y sono coordinate di due pixel all’interno della patch attorno al punto da descrivere, e Ĩ(·) rappresenta l’intensità
del pixel su una versione filtrata (tipicamente passa basso) dell’immagine originale.

La selezione delle coppie di pixel (la ”maschera”) avviene tramite un processo di addestramento su immagini campione,
con l’obiettivo di massimizzare la capacità discriminante del descrittore.

In letteratura esistono numerosi approcci che affrontano il problema della scelta dei punti e del tipo di filtraggio da
applicare all’immagine.

Figura 6.6: Esempio di descrittore BRIEF 256bit.

6.4.4 ORB

ORB (Oriented FAST and Rotated BRIEF) [RRKB11] nasce dalla combinazione tra il rilevatore di keypoint FAST e il
descrittore BRIEF, modificato per essere invariante alla rotazione. Poiché FAST non fornisce informazioni sull’orientamento,
ORB lo calcola determinando il centroide dell’intensità luminosa all’interno della patch attorno al keypoint: il vettore che
collega il punto al centroide è rigido rispetto alle rotazioni e sufficientemente robusto alle variazioni di illuminazione.

Utilizzando questo angolo, ORB ruota il pattern BRIEF (impiegando pattern ruotati precalcolati, ad esempio quantiz-
zando l’angolo giro in 30 settori) per generare un descrittore binario robusto alla rotazione, noto come rBRIEF. Inoltre,
applicando FAST e BRIEF a diversi livelli di una piramide di immagini, si ottiene anche invarianza alla scala.

ORB offre prestazioni comparabili a quelle di SIFT e SURF in termini di accuratezza, ma con una velocità significativa-
mente superiore e, soprattutto, senza vincoli di brevetto.

6.5 Machine Learning

Con l’evoluzione delle tecniche di Machine Learning il concetto di descrittore è andato via via sparendo lasciando spazio a
una teoria molto più armonica riguardante il concetto di informazione. Vedere alcuni algoritmi come le RBN (sezione 4.8.2)
e le CNN (sezione 4.8.5) in qualità di auto-encoder quando collegate a un decoder portano il concetto di descrittore al
limite ovvero permettono di estrarre il numero minimo di caratteristiche che permettono la ricostruzione di una porzione
dell’immagine (sotto una determinata metrica).



Capitolo 7

Tracking

A valle dell’estrazione dei punti caratteristici e del loro descrittore ci sta un discorso sull’associazione dei descrittori e sul
concetto di flusso ottico denso.

7.1 Confronto e Associazione di descrittori

Come conclusione a questo capitolo è necessario spendere infine due parole sul discorso del confronto.
Siano I1 e I2 due immagini da analizzare e siano p1 e p2 due punti, probabilmente caratteristici, individuati rispettiva-

mente nella prima e nella seconda immagine. Per sapere se questi due punti immagine rappresentano il medesimo punto,
normalmente non osservato dallo stesso punto di vista e pertanto affetto da trasformazioni affini (traslazioni, cambi di scala,
rotazioni), omografiche e probabilmente cambi di luminosità, è necessario definire una qualche forma di metrica d(p1,p2)
per eseguire tale confronto. Associato ad ogni descrittore è possibile definire una particolare metrica. In generale le metriche
più diffuse sono la L1 (Manhattan, SAD) e la L2 (Euclidea, SSD).

Siccome i punti estratti dalle due immagini saranno sicuramente più di uno, deve essere eseguita una scansione e verrà
associato a ogni punto della prima immagine solo quel punto della seconda che ha una distanza minima rispetto alla metrica
selezionata:

p̂2 = arg min
i

d(p1,p2,i) (7.1)

Solitamente, per ridurre il numero di confronti errati, viene confermata l’associazione solo se la metrica è inferiore a una
data soglia e il rapporto tra il miglior confronto e il secondo miglior confronto è inferiore a una seconda soglia di unicità.

Infine, dopo aver trovato p2, la miglior associazione del punto p1 sulla seconda immagine, si può verificare che p2 non
abbia sulla prima immagine associazioni migliori.

7.2 Lucas-Kanade

Il metodo di stima del flusso ottico di Lucas-Kanade [LK81] è un metodo per stimare il movimento di caratteristiche
interessanti in scene successive di un video. L’obiettivo è quello di associare un vettore movimento (u, v) ad ogni pixel
“interessante” della scena confrontando due immagini consecutive.

L’algoritmo fa le seguenti assunzioni:

� La luminosità tra immagini consecutive non cambia;

� Le due immagini devono essere temporalmente vicine in maniera che gli oggetti non abbiano uno scostamento signifi-
cativo (l’algoritmo lavora bene con oggetti in lento movimento);

� L’immagine contiene oggetti con sufficiente tessitura in scala di grigi (l’algoritmo originale non usa esplicitamente il
colore) il cui gradiente cambia graduatamente.

Partendo dell’equazione del flusso ottico per ogni punto (x, y):

I(x+ uδt, y + vδt, t+ δt) = I(x, y, t) (7.2)

dove I(t) è un immagine e I(t+ δt) la consecutiva. Con l’espansione in serie di taylor al primo ordine:

I(x+ uδt, y + vδt, t+ δt) = I(x, y, t)
I(x, y, t) + ∂I

∂x (x, y, t)uδt+ ∂I
∂y (x, y, t)vδt+ ∂I

∂t (x, y, t)δt = I(x, y, t)
∂I
∂x (x, y, t)u+ ∂I

∂y (x, y, t)v + ∂I
∂t (x, y, t) = 0

(7.3)
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L’algoritmo di Lucas-Kanade assume che il cambiamento di luminosità di un pixel della scena venga totalmente compensato
dal gradiente della scena stessa ovvero

Ixu+ Iyv + It = 0 (7.4)

dato il gradiente temporale It e il gradiente spaziale (Ix, Iy).
Ovviamente il singolo pixel non contiene abbastanza informazione per risolvere questo problema. Per raccogliere più

osservazioni viene assunto che un intorno del pixel abbbia lo stesso moto, ovvero
Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

...
...

Ix(pn) Iy(pn)


[
u
v

]
= −


It(p1)
It(p2)

...
It(pn)

 (7.5)

dove p1 . . .pn sono i punti nell’intorno del punto da stimare. La soluzione può essere ottenuta attraverso il metodo delle
normal equations [∑

IxIy
∑
IxIy∑

IxIy
∑
IyIy

] [
u
v

]
=

[∑
IxIt∑
IyIt

]
(7.6)

Se si nota questa è anche la matrice dei punti caratteristici sfruttata poi da Shi-Tomasi o da Harris (vedi 5.2): i punti
caratteristici di questa matrice sono punti che vengono facilmente tracciati con l’algoritmo di Lucas-Kanade.

Quando il moto è più grande di un pixel è necessario un algoritmo iterativo per risolvere il problema e un approccio
coarse-to-fine per evitare i minimi locali: esisterà una scala per la quale il moto del pixel sarà inferiore ad un pixel.



Capitolo 8

Pin-Hole Camera

In questo capitolo viene affrontato il problema di descrivere il processo attraverso il quale la luce incidente sugli oggetti viene
impressa su un sensore digitale. Tale concetto è fondamentale nell’elaborazione delle immagini in quando fornisce la relazione
che lega i punti di un’immagine con la loro posizione nel mondo, ovvero permette di determinare la zona del mondo associata
a un pixel dell’immagine o, viceversa, individuare l’area dell’immagine che raccoglie una determinata regione in coordinate
mondo.

Il modello proiettivo universalmente accettato, detto della Pin-Hole Camera, è basato su semplici rapporti geometrici1.

In figura 8.1 è mostrato uno schema molto semplificato di come avviene la formazione dell’immagine sul sensore. Il punto
osservato (xi, yi, zi)

>, espresso in coordinate camera, viene proiettato su una cella del sensore (ũi, ṽi)
>. Tutti questi raggi

passano per uno stesso punto: il punto focale (pin-hole).

f zi
(0, 0, 0)

(0, 0)

(ũi, ṽi)

(xi, yi, zi)

Figura 8.1: Il modello di camera pin-hole. Un punto mondo in coordinate camera viene proiettato sul piano immagine.

Analizzando la figura 8.1 si vede come i rapporti tra triangoli simili generati dai raggi ottici descrivono l’equazione che
permette di proiettare un generico punto (xi, yi, zi)

>, espresso in coordinate camera (uno dei sistemi di riferimento in cui si
può operare), in coordinate sensore (ũi, ṽi)

>: [
ũi
ṽi

]
=
f

zi

[
xi
yi

]
(8.1)

dove f è la distanza focale (distanza tra il pin-hole e il sensore). È da precisare che le coordinate (xi, yi, zi)
>, espresse in

coordinate camera, in questo libro seguono la regola della mano sinistra (molto usata in computer graphics), contrapposta
alla regola della mano destra (più usata in applicazioni robotiche) invece scelta per esprimere le coordinate mondo. L’utilizzo
della coordinata z per esprimere la distanza è un obbligo puramente matematico a causa delle trasformazioni che verranno
presentate fra poco.

Le coordinate sensore (ũi, ṽi)
> non sono le coordinate immagine ma sono ancora delle coordinate “intermedie”. È quindi

necessario applicare una ulteriore trasformazione per ottenere le coordinate immagine:[
ui
vi

]
=

[
Duũi
Dv ṽi

]
+

[
u0

v0

]
(8.2)

dove le coordinate (u0, v0) (principal point) tengono conto dello scostamento dell’origine delle coordinate nell’immagine
memorizzata rispetto alla proiezione del punto focale sul sensore.

Du e Dv sono fattori di conversione tra le unità del sistema di riferimento del sensore (metri) con quelle immagine (pixel)
e tengono conto dei diversi fattori di conversione coinvolti. Con l’avvento dei sensori digitali normalmente Du = Dv.

1La maggior parte dei modelli ricade nel modello pinhole inteso come modello dove tutti i fasci luminosi passano per uno stesso punto: esistono
tuttavia modelli che generalizzano il modello pinhole a camere catadiottriche, per esempio il modello di Mei, o altri modelli diversi come il double
sphere.
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In mancanza di informazioni, reperibili dai vari datasheet, su f , Du e Dv, c’è la tendenza ad accorpare queste variabili
in due nuove variabili chiamate ku e kv, le lunghezze focali efficaci misurate in pixel, ottenibili in maniera empirica dalle
immagini, come si vedrà nella sezione sulla calibrazione. Queste variabili, coinvolte nella conversione tra coordinate sensore
e coordinate immagine, sono tra loro in relazione come

ku = Duf = u0

tanαu
kv = Dvf = v0

tanαv

(8.3)

con αu e αv angoli approssimabili alla semiampiezza dell’apertura della camera (orizzontale e verticale rispettivamente).
Quando l’ottica non è distorta e il sensore ha pixel quadrati, ku e kv tendono ad assumere lo stesso valore.

A causa della presenza del rapporto, l’equazione (8.1) non è chiaramente rappresentabile in un sistema lineare. Tuttavia
risulta possibile modificare tale scrittura, aggiungendo un incognita λ e un vincolo ulteriore, per poter rappresentare in forma
di sistema lineare tale equazione. Per fare questo verrà sfruttata la teoria presentata in sezione 1.4 riguardante le coordinate
omogenee. Grazie alle coordinate omogenee si mostra facilmente che il sistema (8.1) si può scrivere comeλ uiλ vi

λ

 = λ

uivi
1

 = K

xiyi
zi

 (8.4)

risolto per λ = zi. Per questo motivo λ si sottointende e si usano invece le coordinate omogenee: per ottenere il punto in
coordinate non omogenee bisogna infatti dividere le prime due coordinate per la terza, ottenendo l’equazione (8.1). L’utilizzo
delle coordinate omogenee permette di rendere implicita la divisione per la coordinata z.

La matrice K, unendo le trasformazioni (8.2) e (8.3), può essere scritta come:

K =


u0

tanαu
kγ u0

0
v0

tanαv
v0

0 0 1

 =

ku kγ u0

0 kv v0

0 0 1

 (8.5)

Tale matrice non dipendendo, come vedremo successivamente, da fattori che non siano altri che quelli della camera stessa,
è detta matrice dei fattori intrinseci. La matrice K è una matrice triangolare superiore, definita da 5 parametri.

Con i sensori digitali moderni e la costruzione di telecamere non manualmente ma con macchine a controllo numerico
precise, è possibile porre lo skew factor kγ , un fattore che tiene conto del fatto che l’angolo tra gli assi nel sensore non sia
esattamente 90 gradi, a zero.

Ponendo kγ = 0, l’inversa della matrice (8.5) si può scrivere come:

K−1 =


1

ku
0 −u0

ku

0
1

kv
− v0

kv
0 0 1

 (8.6)

La conoscenza di questi parametri (vedi sezione 8.5 riguardante la calibrazione) determina la possibilità di trasformare un
punto da coordinate camera a coordinate immagine o, viceversa, generare la retta in coordinate camera sottesa a un punto
immagine.

Con questa modellazione, in ogni caso, non si è tenuto conto dei contributi dovuti alla distorsione della lente. Il modello
della pin-hole camera è infatti valido solamente se le coordinate immagine che si utilizzano si riferiscono a immagini senza
distorsione.

8.1 Distorsione della lente

La totalità delle telecamere commerciali devia dal modello della pin-hole camera e tale deviazione è generalmente tanto
maggiore quanto grande è il campo visivo della camera: siccome ogni ottica è composta da un certo numero di lenti, la
distorsione deriva dalle non idealità nella fase di produzione e di assemblaggio dell’ottica. Ottenere infatti una lente non
distorcente è un processo estremamente costoso e soprattutto nelle applicazioni a basso costo dove bisogna fare affidamento
a ottiche economiche risulta un problema molto evidente.

Queste non idealità generano una distorsione non lineare difficilmente modellizzabile e, anche per il fatto che tale distor-
sione dipende dall’interazione tra la lente e il sensore, i produttori di lenti normalmente non forniscono, o non riescono a
fornire, informazioni geometriche su come rappresentare tale distorsione.

È importante osservare che il modello della pin-hole camera è valido solamente se l’immagine su cui si lavora è non
distorta pertanto calibrare, ovvero correggere la distorsione geometrica, è un prerequisito per ricostruire in maniera accurata
la tridimensionalità della scena osservata.
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Dal punto di vista del raggio ottico, la distorsione introdotta dalla lente si pone tra il mondo e il pin-hole. L’equazione
della camera pin-hole modificata con la distorsione dell’ottica si trasforma in

p = Kfd([Rt]x) (8.7)

Con questo formalismo la distorsione fd trasforma un punto da coordinate non-distorte in coordinate distorte. Questa
scelta, rispetto alla formulazione inversa, viene da considerazioni puramente pratiche: siccome l’obiettivo è quello di avere
un immagine in uscita densa e non-distorta (si veda la discussione in sezione 1.12), è necessario calcolare quella funzione che
trasforma appunto un punto non-distorto in un punto distorto.

In generale i contributi distorcenti della lente si dividono in radiali (diretti lungo la direttrice che unisce il punto al centro
di distorsione) o tangenziali (che sono perpendicolari alla direttrice). I contributi tangenziali (e altri contributi qui non
citati) sono normalmente piccoli mentre la distorsione radiale è sempre rilevabile e, man mano che la focale diventa corta, in
generale aumenta di intensità.

Questa sezione si occupa di ricavare una relazione generale tra il punto ideale (x, y) e l’effettivo punto immagine distorto
osservato (x̆, y̆).

In tutta l’immagine esiste un solo punto (xd, yd), definito centro di distorsione, dove la distorsione non produce effetti.
Per questo punto (x, y) = (x̆, y̆).

Per definire la distorsione è necessario operare in una nuova serie di coordinate, relative al centro di distorsione:

x̄ = x− xd
ȳ = y − yd

(8.8)

Il centro di distorsione è normalmente vicino a (0, 0) ma non c’è nessuna garanzia che coincida con il principal point. In
diversi articoli viene infatti proposto, come approssimazione, ignorare il centro di distorsione e far coincidere il centro di
distorsione con il principal point o considerare solamente il termine di decentering distortion.

La formulazione classica di Brown-Conrady [Bro66] modella la distorsione della lente sotto forma di scostamento:

x̆ = x+ δx(x̄, ȳ)
y̆ = y + δy(x̄, ȳ)

(8.9)

Tali scostamenti possono essere suddivisi per contributi:

radial distortion Lo scostamento dovuto alla distorsione radiale ha equazione

δrx = x̄fr(r)
δry = ȳfr(r)

(8.10)

dove fr(r) è una funzione solo del raggio r =
√
x̄2 + ȳ2, distanza euclidea tra il punto e il centro di distorsione, e con

il vincolo fr(0) = 1.

La funzione fr(r) della distorsione radiale non è un modello conosciuto ma può essere approssimata attraverso i primi
termini dello sviluppo in serie:

fr(r) = 1 + k1r
2 + k2r

4 + k3r
6 + . . . (8.11)

La presenza delle sole potenze multiple di 2 è dovuta alla simmetria della funzione fr.

thin prism distortion imperfezioni del costruttore e disallineamento tra il sensore e la lente, introducono ulteriori distor-
sioni asimmetriche. Si modella solitamente come

δ
(p)
x = s1r

2 + s3r
4 + . . .

δ
(p)
y = s2r

2 + s4r
4 + . . .

(8.12)

Tali contributi sono spesso inadeguati tuttavia per descrivere gli effetti di decentramento dell’ottica.

decentering distortion È normalmente causata dall’assemblaggio errato della lente e dei diversi componenti che compon-
gono l’ottica. Il modello di Brown-Conrady rappresenta il contributo di decentramento nella forma

δ
(t)
x = (p1(r2 + 2x̄2) + 2p2x̄ȳ)(1 + p3r

2 + . . .)

δ
(t)
y = (p2(r2 + 2ȳ2) + 2p1x̄ȳ)(1 + p3r

2 + . . .)
(8.13)

Questo contributo è costituito sia da una parte radiale che da una parte tangenziale.
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Inserendo tutti questi contributi all’interno dell’equazione (8.9), il modello Brown-Conrady complessivo si scrive come

x̄ = x− xd
ȳ = y − yd
r =

√
x̄2 + ȳ2

x̆ = x+ x̄(k1r
2 + . . .) + (p1(r2 + 2x̄2) + 2p2x̄ȳ)(1 + p3r

2 + . . .) + s1r
2 + . . .

y̆ = y + ȳ(k1r
2 + . . .) + (2p1x̄ȳ + p2(r2 + 2ȳ2))(1 + p3r

2 + . . .) + s2r
2 + . . .

(8.14)

Di fatto la distorsione radiale è dominante e, in buona parte delle applicazioni, i primi termini sono più che sufficienti.
Per esempio OpenCV modella la distorsione con il modello R3P1 : 3 termini radiali (k1, k2, k3) e il termine di

decentramento di primo grado (p1, p2).
I coefficienti della distorsione sono ricavati con diverse tecniche disponibili in letteratura applicate ad immagini acquisite

in ambiente strutturato (griglie di calibrazione). Normalmente viene usato un minimizzatore non lineare e, o si lavora su
rette e si itera fino a che tutte le curve dell’immagine non diventino rette plumb-line method [DF01], o si forza che i punti su
un piano di coordinate note rappresentino una omografia. Tali tecniche sono applicabili solamente se si opera in coordinate
immagine (approccio 1).

Per calibrare la distorsione in coordinate camera normalizzate (approccio 2) bisogna che contemporaneamente distorsione
e parametri intrinseci della camera vengano calcolati [Zha99]. Una stima iniziale dei parametri intrinseci può venire da un
minimizzatore lineare ma la stima finale si ottiene solo attraverso un minimizzatore non lineare.

La tecnica ampiamente usata per stimare i parametri della distorsione è ottimizzare l’osservazione di punti caratteristici
sull’immagine la cui posizione in coordinate mondo è conosciuta in modo da forzare una proiezione prospettica completa
(sezione 8.5.6).

8.2 Coordinate Mondo e Coordinate Camera

u

v

(0, 0)

(u0, v0)

Figura 8.2: Coordinate Immagine (Image coordinates)

x

y

z

Figura 8.3: Coordinate Camera (Camera coordinates)

x

y

z

Figura 8.4: Esempio di coordinate “Veicolo” o “Mondo”: Front-Left-Up o ISO 8855 (World coordinates)

Quando si opera su problemi pratici risulta necessario passare da un sistema di riferimento solidale con la camera,
dove il punto (0, 0, 0)> coincide con il fuoco (pin-hole), a un sistema di riferimento più generico, che meglio si adatti alle
esigenze dell’utilizzatore, dove la camera è posizionata in un punto generico del “mondo” e orientata rispetto ad esso in modo
arbitrario. Questo discorso si applica a qualsiasi sensore generico, anche non video, definendo delle relazioni che permettono
di passare i punti da coordinate mondo a coordinate sensore e viceversa.

È necessario a questo punto fare una precisazione sulla terminologia legata ai sistemi di riferimento in questo libro: viene
definito come sistema di riferimento “mondo” il sistema che di volta in volta è considerato assoluto e fisso, rispetto al quale
viene posizionato il sensore. In figura 8.4 per esempio l’origine del sistema “mondo” è associato a un punto del veicolo (il
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punto frontale per esempio). In questo caso il sistema “veicolo” (body) o “mondo” (world) sono sinonimi. Questa distinzione
però viene meno nel caso in cui ci sia un veicolo in movimento rispetto a un “mondo” che nuovamente si può definire il
sistema di riferimento fisso. In tal caso avremo le coordinate sensore, quelle locali del veicolo/body e infine quelle del mondo.
Solitamente però il sistema di assi che contraddistingue sensore, veicolo e mondo viene mantenuto consistente.

Se in coordinate camera il ruolo speciale che assume la coordinata z è dovuto a motivazioni puramente matematiche,
ovvero all’uso di coordinate omogenee che in fase di proiezione obbliga la divisione delle prime due componenti per la terza,
in coordinate “sensore” questo limite viene meno. Anche se non vincolante in nessuna maniera, in questo libro è usato come
sistema “sensore”, “body” e “mondo” quello presentato in figura 8.4 (ISO 8855) che assegna all’asse z l’altezza del punto dal
suolo.

Pertanto, per arrivare all’equazione definitiva della pin-hole camera si parte dall’equazione (8.4) e si applicano le seguenti
considerazioni

� gli assi sono scambiati tra loro attraverso una permutazione Π (che è comunque una rotazione) per ottenere il sistema
di riferimento finale;

� il sensore deve essere ruotato attraverso una trasformazione wRb e di conseguenza non coincide con gli assi del sistema
di riferimento “mondo”;

� il pin-hole non coincide ora con il punto (0, 0, 0)> ma giace in un generico punto t0 = (x0, y0, z0)> espresso in coordinate
mondo.

La conversione da coordinate “mondo” a coordinate “camera”, essendo una composizione di rotazioni, è anche essa una
rotazione di equazione R = cRw = ΠwR−1

b .
Sia (xi, yi, zi)

> un punto in coordinate “mondo” e (x̃i, ỹi, z̃i)
> il medesimo punto in coordinate “camera”. La relazione

che lega questi due punti si può scrivere comex̃iỹi
z̃i

 = R

xiyi
zi

− t0

 = R

xiyi
zi

+ t̃0 (8.15)

dove R è una matrice 3 × 3 che converte da coordinate mondo a coordinate camera, tiene conto delle rotazioni e della
variazione del segno degli assi tra coordinate mondo e coordinate camera (vedi appendice A), mentre il vettore

t̃0 = −Rt0 (8.16)

rappresenta la posizione del pin-hole t0 rispetto all’origine del sistema mondo, rappresentato però nel sistema di coordinate
camera.

Va ricordato che le matrici di rotazione sono matrici ortonormali: hanno determinante 1, conservano pertanto distanze e
aree, e l’inversa di una matrice di rotazione è la sua trasposta.

La matrice R e il vettore t0 possono venire accorpati in forma di matrice 3×4 sfruttando le coordinate omogenee. Grazie
a questa rappresentazione, è possibile scrivere in maniera estremamente compatta la proiezione di un punto, espresso in
coordinate mondo, omogenee a (xi, yi, zi)

>, in un punto di coordinate immagine, omogenee a (ui, vi)
>:

λ

uivi
1

 = K[R|̃t0]


xi
yi
zi
1

 (8.17)

Da questa equazione risulta abbastanza esplicito che ad ogni punto dell’immagine (ui, vi) sono associati infiniti punti del
mondo (xi, yi, zi)

> che vivono su una retta al variare del parametro λ.
Sottointendendo λ e raccogliendo le matrici si ottiene l’equazione finale della pin-hole camera (che non tiene, né deve

tener conto, della distorsione): uivi
1

 = K[R|̃t0]


xi
yi
zi
1

 = P


xi
yi
zi
1

 (8.18)

avendo definito P = K[R|̃t0] matrice proiettiva (camera matrix ) che verrà usata in seguito [Str87]. La matrice P è una
matrice 3× 4 ed, essendo rettangolare, non è invertibile.

È da sottolineare che ponendo un vincolo aggiuntivo sui punti, per esempio zi = 0, la matrice P si riduce a una matrice
3× 3, invertibile, che è esattamente la matrice omografica (vedi sezione 8.3.1) della trasformazione prospettica dei punti del
suolo. La matrice Pz=0 è un esempio di trasformazione IPM (Inverse Perspective Mapping) per ottenere una vista dall’alto
(Bird eye view) della scena inquadrata [MBLB91].
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La relazione inversa di quella di equazione (8.17), che trasforma punti immagine in coordinate mondo, si può scrivere
come: xiyi

zi

 = λR−1K−1

uivi
1

+ t0 = λv(ui, vi) + t0 (8.19)

dove risulta ben evidente che a ogni punto dell’immagine corrisponde una retta (al variare di λ) nel mondo che passa per il
pin-hole (t0) e diretta nella direzione

v(ui, vi) = R−1K−1

uivi
1

 (8.20)

con v : R2 → R3 funzione che associa a ogni punto immagine il vettore che congiunge il pin-hole con il punto sensore
corrispondente.

Usando direttamente la Camera Matrix P = [P3×3|p4] è possibile ottenere un risultato equivalente all’equazione (8.19)
nella forma xiyi

zi

 = λP−1
3×3

uivi
1

−P−1
3×3p4 (8.21)

in modo da non usare esplicitamente le matrici dei parametri intrinseci ed estrinseci. Le due formulazioni sono ovviamente
equivalenti.

8.2.1 Proprietà della matrice di rotazione

La matrice di rotazione verrà spesso indicata nel testo, in modo da compattarne la scrittura, come array del linguaggio C:

R =

r0 r1 r2

r3 r4 r5

r6 r7 r8


La matrice di rotazione è una matrice molto sovradimensionata: i suoi 9 parametri linearmente indipendenti sono di fatto

generati da 3 variabili in modo non lineare (si veda appendice).

Senza esplicitare gli angoli da cui la matrice è generata, risulta possibile fornire qualche vincolo aggiuntivo. La matrice
di rotazione ha la proprietà di non modificare le distanze essendo ortonormale e det(R) = 1. Ogni riga e ogni colonna
devono avere modulo unitario, ed ogni riga e ogni colonna sono ortonormali tra loro, in quanto basi ortonormali dello spazio.
Conoscendo pertanto due vettori riga o colonna della matrice r1, r2 è possibile determinare la terza base come prodotto
vettoriale dei precedenti due:

r3 = r1 × r2 (8.22)

Allo stesso modo il prodotto scalare tra due vettori riga o due vettori colonna deve dare valore nullo, in quanto ortogonali
tra di loro. Sotto tali vincoli, esistono due soluzioni esatte, di cui una è:

R =

 r0 r1 (1− r2
0 − r2

1)
1
2

r3 r4 s(1− r2
3 − r2

4)
1
2

(1− r2
0 − r2

3)
1
2 s(1− r2

1 − r2
4)

1
2 (r2

0 + r2
1 + r2

3 + r2
4 − 1)

1
2

 (8.23)

dove s = sgn(r1r4 + r2r5), mentre l’altra soluzione ha esattamente i segni invertiti. Conoscendo una sottomatrice 2 × 2 è
possibile ricavare gli altri elementi della matrice stessa a meno di un segno, basandosi sempre sul fatto che ogni riga e colonna
hanno norma unitaria.

8.2.2 Risultati Notevoli

Possiamo usare la matrice di rotazione e l’equazione della pin-hole (8.18) per mostrare qualche risultato notevole. Definiamo,
dal sistema, la funzione fpm di R3 in R2 chiamata perspective mapping definita come:

fpm(x, y, z) =

(
ku
r0x+ r1y + r2z

r6x+ r7y + r8z
+ u0, kv

r3x+ r4y + r5z

r6x+ r7y + r8z
+ v0

)
(8.24)

funzione del modello della pin-hole camera scritta in maniera esplicita. Per semplicità si è supposto il pin-hole coincidere
con l’origine del sistema di riferimento.
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I punti di fuga e calibrazione

Per ogni immagine esistono 3 punti di fuga, strettamente legati alla scelta degli assi di riferimento.
Prendiamo per esempio il primo asse. Nel nostro sistema di riferimento la coordinata x è la distanza (per le altre 2

coordinate il discorso è similare). Portiamo tale coordinata a infinito mantenendo le altre costanti. Quello che si ottiene è il
punto

lim
x→∞

fpm(x, y, z) =

(
ku
r0

r6
+ u0, kv

r3

r6
+ v0

)
(8.25)

Usando le matrici omogenee è possibile ottenere lo stesso risultato, con un formalismo più compatto.
Prendendo la trasformazione prospettica (8.17) e mandando via via x → ∞, y → ∞ e z → ∞, i punti immagine (in

coordinate omogenee) che si ottengono, rappresentati i punti di fuga nelle 3 direzioni, sono esattamente le colonne della
matrice [vxvyvz] = K ·R, ovvero :

vx = Kr1

vy = Kr2

vz = Kr3

(8.26)

avendo indicato con la sintassi ri le colonne della matrice R. Questo è un primo esempio di calibrazione della camera che
sfrutta una conoscenza dell’immagine, ovvero la posizione dei punti di fuga.

In particolare, ponendosi nel caso semplificato u0 = 0, v0 = 0 e kγ = 0, i punti di fuga si trovano in

vx =

(
ku
r0

r6
, kv

r3

r6

)
vy =

(
ku
r1

r7
, kv

r4

r7

)
vz =

(
ku
r2

r8
, kv

r5

r8

) (8.27)

È da notare che siccome le 3 colonne di R sono ortonormali basta conoscere 2 punti di fuga per ottenere sempre il terzo
(vedi sezione precedente).

Horizon Line

Se mandiamo a infinito non una variabile ma più di una otteniamo più di un punto. Per x→∞ ma con y = mx il vanishing
point degenera in una linea di equazione

kv(r3r7 − r4r6)u+ ku(r6r1 − r7r0)v + kukv(r4r0 − r3r1) = 0 (8.28)

linea dell’orizzonte.

Punti e Linee degeneri

Come un punto nell’immagine proiettata degenera in una linea, una linea di equazione au+ bv+ c = 0 diventa nell’immagine
proiettata

aku(r0x+ r1y + r2z) + bkv(r3x+ r4y + r5z) + c(r6x+ r7y + r8z) = 0

ovvero

(aku r0 + bkvr3 + cr6)x+ (akur1 + bkvr4 + cr7)y + (akur2 + bkvr5 + cr8)z = 0 (8.29)

che rappresenta il piano degenere (con normale come da equazione) in tre dimensioni che passa per l’origine (il pin-hole).

8.3 Trasformazioni omografiche notevoli

È possibile fare un breve elenco di quali trasformazioni in visione artificiale si possono rappresentare attraverso un’omografia.
Le trasformazioni descritte in questa sezione permettono, data la conoscenza dell’orientazione della camera e dei parametri

intrinseci, di ricavare la matrice H che determina la trasformazione e, viceversa, ottenendo la matrice omografica attraverso
l’associazione di punti tra le due immagini, di ricavare alcuni parametri che legano tra loro le viste. È infatti importante far
notare come, per tutte le trasformazioni dove è coinvolta una omografia (cambio di punto di vista, proiezione prospettica,
IPM e rettificazione), quando è richiesta la conoscenza dei parametri necessari per generare la trasformazione, si possono
comunque ricavare implicitamente le matrici rappresentative conoscendo come (almeno) 4 punti dell’immagine vengono
trasformati (si veda per i dettagli la sezione 8.5.1). I parametri ottenuti dalla scomposizione della matrice omografica sono
parametri ottenuti da una minimizzazione algebrica. La soluzione a massima verosimiglianza richiede una minimizzazione
non lineare ma usa come punto di partenza il risultato ottenuto da questa fase.
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8.3.1 Perspective Mapping e Inverse Perspective Mapping

Usando l’omografia è possibile realizzare la trasformazione di inverse perspective mapping (o bird eye view) invertendo
semplicemente la matrice della perspective mapping.

La matrice omografica H = PZ della proiezione prospettica di un piano, perspective mapping, relativa a un piano z
costante, dove normalmente z = 0 essendo il suolo il piano più importante, si può ricavare in maniera molto semplice in
quanto:

PZ = K ·RZ (8.30)

dove RZ è la matrice di rototraslazione di un piano che può essere espressa come

RZ =
[
r1 r2 zr3 + t̃

]
=

r0 r1 r2z + t̃x
r3 r4 r5z + t̃y
r6 r7 r8z + t̃z

 (8.31)

avendo indicato il vettore t̃ come traslazione espressa in coordinate camera, come in equazione (8.16).
Questa matrice è molto importante e verrà discussa diffusamente nella sezione 8.5 della calibrazione.
La trasformazione (8.30) essendo un’omografia è invertibile. Quando trasforma in maniera densa tutti i punti immagine

in punti mondo si chiama Inverse Perspective Mapping, mentre quando trasforma tutti i punti mondo in punti immagine si
indica come Perspective Mapping. In entrambi i casi viene proiettato correttamente solo il piano z.

È sempre interessante notare come anche il modello più semplice della camera pin-hole a 9 parametri (6 estrinseci e 3
intrinseci) non è ricavabile dagli 8 parametri vincoli che la matrice omografica fornisce. Tuttavia, conoscendo i parametri
intrinseci, è possibile ottenere una stima della rotazione e della posizione della camera (sezione 8.5), in quanto l’equazione 8.30
diventa invertibile:

RZ = K−1H (8.32)

8.3.2 Vanishing Point e linea dell’orizzonte

Proprio per il fatto di essere limitato a trasformazioni di piani, è possibile calcolare in maniera molto agevole il limite della
coordinata x e y attraverso la trasformazione (8.30) come

limx→∞H(x, y, 1)> =
(
h0

h6
, h3

h6

)
limy→∞H(x, y, 1)> =

(
h1

h7
, h4

h7

) (8.33)

Questi limiti sono i vanishing point (cfr. sezione 8.2.2) dell’immagine.

8.3.3 Cambio di punto di vista

L’equazione generica che mette in relazione i punti immagine tra due punti di vista generici si può scrivere comeu2

v2

1

 ≡ K2

RK−1
1

u1

v1

1

+ t

 (8.34)

dove t = t1 − t2 è il vettore che congiunge i due pin-hole e R è l’orientazione relativa tra le due viste come indicato in
sezione1.9. Trattazione più accurata viene lasciata nel capitolo 9 sulla stereoscopia.

In genere non è possibile trasformare una vista generata da una camera nella vista generata da un altra. Ciò risulta
possibile solo se si vuole rimappare correttamente solamente i punti di un determinato piano o quando le camere condividono
lo stesso pin-hole.

Il secondo caso lo vedremo nella prossima sezione. Nel primo caso è possibile rimappare i punti da una visuale a quelli di
un’altra sfruttando la combinazione di una Perspective Mapping seguita da una Inverse Perspective Mapping e sfruttando
l’ipotesi che la scena osservata sia composta solamente da un piano (per esempio il suolo). I punti immagine vengono
proiettati in coordinate mondo su una camera 1 e riproiettati di nuovo in coordinate immagine su una seconda camera 2
con parametri intrinseci ed estrinseci differenti. Siccome si riproietta sempre un piano, anche la composizione di questa
trasformazione è ancora una omografia:

H = H2 ·H−1
1 (8.35)

le trasformazioni omografiche infatti si combinano con la semplice moltiplicazione tra matrici. Espandendo l’equazione (8.35)
con (8.30) si ottiene:

H = K2 ·RZ2 ·RZ
−1
1 ·K

−1
1 (8.36)

Dal punto di vista teorico il fatto di dover forzare un piano z costante incide solamente se il vettore traslazione cambia.
Nel caso in cui il vettore di traslazione venga modificato tra le due viste ed esistano punti non appartenenti al piano indicato
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avviene una rimappatura errata tra le due viste (la trasformazione omografica non è più rispettata). La trasformazione (8.35)
può servire per individuare anche ostacoli verticali all’interno di tecniche come il Ground Plane Stereo e il Motion Stereo.

Questa matrice omografica si può generalizzare conoscendo gli elementi della trasformazione delle due viste (R, t) e
l’equazione del piano (n, d), dove n̂ è la normale al piano e d è la distanza tra la prima camera con il piano stesso. In questo
caso infatti, un punto x1 della prima vista appartenente al piano soddisfa l’equazione

n̂>x1 = d (8.37)

e questo punto è in relazione con il medesimo punto, visto però dalla seconda camera in accordo con l’equazione

x2 = Rx1 + t (8.38)

Unendo queste due equazioni si ottiene il vincolo omografico

H = K2

(
R +

1

d
tn̂>

)
K−1

1 (8.39)

Una omografia può essere sempre decomposta in
[
R, 1

dt, n̂
]

(esistono 4 decomposizioni possibili e va scelta quella che soddisfa
i punti in ingresso).

8.3.4 Rettificazione

Il caso di pura rotazione è un caso particolare: una camera che ruota intorno al suo centro ottico acquisisce immagini di una
scena 3D come se la scena fosse rappresentata su un piano infinitamente lontano dal pin-hole.

Nel caso in cui t = 0, ovvero le coordinate dei due pin-hole delle due viste siano coincidenti t1 = t2, la trasformazione (8.34)
si riduce di dimensione e si ottiene un’equazione compatibile con un’omografia e di conseguenza valida per qualunque punto
dell’immagine indipendentemente dalla presenza o meno di un piano dominante. Pertanto, nel caso in cui tra le due viste il
pin-hole sia in comune (pertanto pura rotazione o modifica dei parametri intrinseci), è possibile realizzare una trasformazione
perfetta per tutti i punti dell’immagine. Tale processo di proiezione di punti da una camera a un altra modificando parametri
intrinseci e rotazione è chiamato rettificazione.

Per rettificare un immagine, ovvero per generare un’immagine 1 densa partendo dai punti dell’immagine 2, è necessario
utilizzare la matrice omografica

H1,2 = K2R2R
−1
1 K−1

1 (8.40)

che permette di ricavare tutti i punti dell’immagine 1 dai punti dell’immagine 2, ovvero per ogni pixel (u1, v1) dell’immagine
che si vuole generare si applica la trasformazione omografica H e si ricava il punto (u2, v2) dell’immagine sorgente da cui
copiare il valore del pixel.

Attraverso la trasformazione (8.40) è possibile trasformare un’immagine acquisita da una camera di parametri (K2,R2)
in un’immagine di una camera virtuale di parametri (K1,R1).

Discorso che si applica a tutte le omografie, un metodo per ottenere la matrice H senza la conoscenza dei parametri
intrinseci ed estrinseci ma solo attraverso corrispondenze tra le viste delle due camere è mostrato in sezione 8.5.1. L’omografia
può poi essere fattorizzata per riottenere i parametri che l’hanno generata.

8.4 Inverse Perspective Mapping

Si sono viste nelle sezioni precedenti esempi di prospettiva inversa: la possibilità di ricavare il punto 3D dato un punto
immagine 2D e la conoscenza di un vincolo nel mondo sulla cui superficie il punto giace. É sempre possibile infatti creare
un sistema tra il raggio ottico (8.19) è una varietà in R3:{

x = λVp + t
f(x) = 0

(8.41)

avendo chiamato V = R−1K. Questa stessa formulazione si usa in grafica computazionale per indicare le tecniche di
RayTracing. Generalizziamo in questa sezione diverse casistiche.

Intersezione raggio ottico e piano Un generico piano in R3 scritto nella forma

n̂ · x + q = 0 (8.42)

è un vincolo per permettere l’intersezione tra il raggio ottico (8.19) e il piano (8.42). Il sistema (8.41) è lineare e può essere
risolto per λ e da λ inserita nella prima equazione determinare il punto 3D. É possibile realizzare anche una applicazione
lineare associata all’intersezione piano retta nella forma x ≡ A4×3p avendo definito

A4×3 =

[(
n̂>t− q

)
I + tn̂>

n̂>

]
V (8.43)
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Intersezione raggio ottico e una sfera La varietà ha equazione

‖x− x0‖2 = r2 (8.44)

che unita al sistema (8.41) permette di ottenere

λ2 ‖Vp‖2 + 2λ (Vp) · (t− x0) + ‖t− x0‖2 = r2 (8.45)

La soluzione dell’equazione di secondo grado può pertanto avere 0 (nessuna intersezione), 1 (raggio ottico tangente alla sfera)
o 2 radici (il raggio ottico interseca la sfera).

8.5 Calibrazione

La fase di calibrazione della camera permette di ricavare (alcuni o tutti) i parametri che permettono al modello pin-hole di
poter essere utilizzato per proiettare punti da coordinate mondo a coordinate camera. In inglese la calibrazione della camera,
ovvero il ricavare i parametri intrinseci e/o estrinseci, si chiama Camera resectioning in quando il concetto di Camera
Calibration si può riferire anche al problema della calibrazione fotometrica del sistema.

Le tecniche di calibrazione si possono dividere in due categorie a seconda di quale modello della camera pin-hole si vuole
ricavare

implicita dove vengono estratti gli elementi della matrice proiettiva P o la matrice omografica H in modo da poter proiettare
punti da un sistema di coordinate a un altro disinteressandosi della struttura interna del sensore;

esplicita dove vengono estratti i parametri fisici del sistema coinvolti nella proiezione prospettica.

La calibrazione implicita solitamente è un processo più veloce e con un numero sufficiente di punti rappresenta abbastanza
bene la realtà anche se, come vedremo fra poco, la versione lineare che minimizza una quantità algebrica, non è lo stimatore
a massima verosimiglianza. La calibrazione implicita infine ignora alcune non-linearità sempre presenti nei sistemi fisici. La
calibrazione esplicita, oltre a rappresentare correttamente il modello con il numero minimo di parametri, permette più libertà
di azione nell’uso dei parametri ottenuti, per poter fare operazioni sulle immagini o per poter variare dinamicamente alcuni
parametri del sistema, e permette di implementare lo stimatore alla massima verosimiglianza.

Per permettere l’applicazione delle tecniche di calibrazione mostrate in questa sezione è necessario avere dei vincoli tra gli
spazi proiettivi coinvolti, per esempio punti in coordinate immagine e i corrispondenti punti in coordinate mondo. Attraverso
questa relazioni è possibile ricavare i parametri che rappresentano il modello proiettivo usato.

Il confine che separa la calibrazione implicita da quella esplicita tende a volte a venire meno: da una modalità è possibile
sotto opportune condizioni passare all’altra.

� Con la Direct Linear Transformation, sezione 8.5.1, è possibile calibrare implicitamente il sistema, conoscendo la
posizione di punti in coordinate mondo e in coordinate immagine, ricavando la matrice di proiezione P, o la matrice
di proiezione di un singolo piano H, non esplicitando nessun parametro della camera. Usando poi l’equazione (8.32),
si può ricavare la matrice [Rt] dei parametri estrinseci, avendo tuttavia informazione sui parametri intrinseci.

� Si è già accennato in precedenza (vedi sezione 8.2.2) come è possibile ricavare la matrice di rotazione data la conoscenza
della matrice dei parametri intrinseci e dalla posizione dei punti di fuga.

� Se si conosce la matrice di rotazione R è possibile ottenere in forma esplicita il valore degli angoli che l’hanno generata
(potrebbero esistere più soluzioni in questo caso).

� Se si riesce ad ottenere la matrice dei parametri intrinseci K è immediato ricavare in maniera esplicita i parametri
intrinseci della camera.

� Zhang, sezione 8.5.4, propone un modo per ricavare i parametri intrinseci della camera se si conoscono le posizioni
relative di punti appartenenti allo stesso piano, osservato però da più punti di vista.

8.5.1 Calibrazione implicita

L’idea base della Direct Linear Transformation proposta da Abdel-Aziz e Karara [AAK71] permette di calcolare direttamente
i coefficienti delle matrici (8.50), (8.53) o della matrice (8.18) disinteressandosi completamente dei parametri e dalla struttura
del modello della trasformazione prospettica. In tale articolo viene anche presentato un approccio per risolvere problemi
sovradimensionati attraverso la tecnica della Pseudoinversa.

Dato il sistema (8.18) è necessario ricavare i 12 parametri della matrice proiettiva P per avere una calibrazione del sistema
implicita ovvero dove non si conoscono i parametri (da 9 a 11 a seconda del modello) interni che han generato gli elementi
della matrice stessa. Tale rappresentazione della camera pin-hole è ovviamente ideale (senza non-linearità dal modello).
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La funzione prospettica scritta in forma implicita è

uivi
1

 = P


xi
yi
zi
1

 =

p0 p1 p2 p3

p4 p5 p6 p7

p8 p9 p10 p11



xi
yi
zi
1

 (8.46)

dove gli elementi p0 . . . p11 sono scritti in ordine row-major. È possibile rigirare il sistema (8.46) in modo da avere 2 coppie
di vincoli lineari per ogni punto di cui si conoscono le sue coordinate in immagine e in coordinate mondo:

[
xi yi zi 1 0 0 0 0 −uixi −uiyi −uizi −ui
0 0 0 0 xi yi zi 1 −vixi −viyi −vizi −vi

] p0

...
p11

 = 0 (8.47)

Tale tecnica si chiama DLT (direct linear transformation). Siccome ogni punto fornisce 2 vincoli, per ottenere questi 12 para-
metri sono necessari almeno 6 punti non linearmente dipendenti ovvero che non appartengano allo stesso piano e tantomeno
alla medesima retta.

Essendo un sistema omogeneo, la sua soluzione sarà il sottospazio nullo di R12, kernel della matrice dei termini noti.
Per questo motivo la matrice P è conosciuta a meno di un fattore moltiplicativo e ne consegue che ha solo 11 parametri
liberi (sono anche di meno considerando che una telecamera moderna ha solo 3-4 parametri intrinseci e i 6 estrinseci).
Avendo rigirato il sistema la propagazione del rumore sui punti non è più lineare e questa soluzione non soddisfa la massima
verosimiglianza. La matrice P ottenuta attraverso questo procedimento, anche se nasconde la struttura interna del sensore,
permette di proiettare un punto da coordinate mondo a coordinate immagine e da un punto in coordinate immagine ricavare
la retta che sottende tale punto nel mondo.

Il risultato è generalmente instabile usando solo 6 punti e perciò la stima viene normalmente effettuata processando più
punti del minimo e si sfruttano tecniche come la pseudoinversa per determinare una soluzione che minimizzi gli errori di
misura.

Generalizzazione nel caso di coordinate omogenee

L’equazione 8.46 può essere generalizzata al caso di punto “immagine” in coordinate omogenee (ui, vi, wi):

uivi
wi

 ≡ P


xi
yi
zi
1

 (8.48)

Il problema è uguale a quello visto in precedenza, la soluzione omogenea esiste e l’equazione risolutiva omogenea (8.47)
si generalizza in [

wixi wiyi wizi wi 0 0 0 0 −uixi −uiyi −uizi −ui
0 0 0 0 wixi wiyi wizi wi −vixi −viyi −vizi −vi

]( p0

.

.

.
p11

)
= 0 (8.49)

per ogni i.
Questa formulazione è utile quando il modello proiettivo non segue il modello pin-hole ma è sempre possibile ricavare le

coordinate “camera” dei raggi ottici sottesi al pixel e pertanto disponibili in formato omogeneo.

Calcolo DLT dell’omografia

Solitamente per ridurre il numero di elementi della matrice P si può aggiungere il vincolo che tutti i punti coinvolti nel
processo di calibrazione appartengano a un piano particolare (per esempio al terreno). Ciò significa porre la condizione
zi = 0 ∀i, che implica l’eliminazione di una colonna (relativa all’asse z) della matrice che si riduce alla dimensione 3 × 3,
diventa invertibile e si può definire omografica (vedi sezione 1.10).

Definiamo pertanto la matrice H = PZ (crf. con (8.30)) come

λ

uivi
1

 = H

xiyi
1

 (8.50)

Come si è visto nella sezione 8.3 tale matrice è molto utile perché permette fra le altre cose di rimuovere la prospettiva
dall’immagine, sintetizzando una visuale fronto-parallela del piano, con una trasformazione dal nome di rettificazione ortogo-
nale, bird eye view o inverse perspective mapping. Tale trasformazione vale pertanto sia che si voglia rimuovere la prospettiva
(perspective mapping o inverse perspective mapping), sia che si voglia riproiettare un piano tra due immagini (ground plane



114 CAPITOLO 8. PIN-HOLE CAMERA

stereo), sia generare un immagine con differenti parametri (rettificazione, immagini panoramiche) attraverso l’utilizzo di un
piano virtuale.

Come nel caso precedente è possibile trasformare la relazione non lineare (8.50) in modo da ottenere dei vincoli lineari:

[
xi yi 1 0 0 0 −uixi −uiyi −ui
0 0 0 xi yi 1 −vixi −viyi −vi

]h0

...
h8

 = 0 (8.51)

Siccome anche questa matrice è definita a meno di un fattore moltiplicativo, ha solo 8 gradi di libertà e si può pertanto porre
un vincolo ulteriore.

Se si dispone di un risolutore di sistemi lineari abbastanza moderno il vincolo aggiuntivo |H| = 1 è automaticamente
soddisfatto durante il calcolo del kernel della matrice dei termini noti (fattorizzazione QR o decomposizione SVD).

Un altro metodo più semplice ed intuivo consiste nel porre come vincolo aggiuntivo h8 = 1: in questo modo, invece che
risolvere un sistema omogeneo, si può risolvere un problema lineare tradizionale. Il sistema (8.50) si può anche in questo
caso riarrangiare in modo da ottenere dei vincoli lineari nella forma:

[
xi yi 1 0 0 0 −xiui −yiui
0 0 0 xi yi 1 −xivi −yivi

]h0

...
h7

 =

(
ui
vi

)
(8.52)

Questo è un sistema (non omogeneo) di due equazioni in 8 incognite h0 . . . h7 e ogni punto, di cui si conoscono sia la posizione
nel mondo su un piano sia la posizione nell’immagine, fornisce 2 vincoli.

L’avere imposto h8 = 1 tuttavia implica che il punto (0, 0) non può essere una singolarità dell’immagine (es. linea
dell’orizzonte), e in generale non è una scelta ottima dal punto di vista della precisione della soluzione come già discusso in
precedenza.

È importante notare che la soluzione dipende fortemente dalla normalizzazione scelta. La scelta |H| = c può essere
chiamata standard least-squares.

In entrambi i casi sono richiesti almeno 4 punti per ottenere un omografia H e ogni punto in più permette di ottenere
una soluzione di errore inferiore. Questi sistemi, quando sovradimensionati, possono essere risolti usando il metodo della
pseudoinversa 1.1.

La matrice H è definita da 4 parametri intrinseci e dai 6 parametri estrinseci. La separazione dei parametri intrinseci
dai parametri estrinseci suggerisce di estrarre tali parametri in maniera indipendente in modo da irrobustire la calibrazione.
Dopotutto i parametri intrinseci possono essere ricavati con un certo grado di precisione offline e valgono per tutti i possibili
posizionamenti della camera (si veda poi 8.5.4).

Definiamo la matrice RZ (cfr. con (8.31)) come

λ

ũiṽi
1

 =

r0 r1 px
r3 r4 py
r6 r7 pz

xiyi
1

 = RZ

xiyi
1

 (8.53)

avendo indicato con (ũi, ṽi) le cosidette coordinate immagine normalizzate (coordinante omogenee al punto (x̃i, ỹi, z̃i)
> in

coordinate camera).
La matrice H è definita a meno di un fattore di scala, mentre RZ permette di definire la scala in quanto presenta ancora

due colonne ortonormali. La conoscenza delle due colonne della matrice di rotazione permette di ricavare la terza e perciò
tale calibrazione diventa valida per punti anche fuori dal piano z = 0.

Come è stato fatto in precedenza, un sistema non-lineare in 3 equazioni omogenee, quando opportunamente riarrangiato,
fornisce due vincoli lineari:

Ax = 0

A =

[
xi yi 0 0 −ũixi −ũiyi 1 0 −ũi
0 0 xi yi −ṽixi −ṽiyi 0 1 −ṽi

]
x = (r0, r1, r3, r4, r6, r7, px, py, pz)

>

(8.54)

(Abdel-Aziz e Karara [AAK71]). È dunque possibile costruire un sistema di 2×N equazioni per tutti gli N punti di controllo,
per cercar di ottenere le 9 incognite. La matrice è definita a meno di un fattore moltiplicativo, ma in questo caso la struttura
interna della matrice RZ può essere di aiuto per ricavare i parametri estrinseci (cfr. sezione 8.5.3). Di fatto le due colonne
della matrice devono essere ortonormali:

r2
0 + r2

3 + r2
6 = 1

r2
1 + r2

4 + r2
7 = 1

r0r1 + r3r4 + r6r7 = 0
(8.55)

Questi vincoli non lineari aggiuntivi sono frutto del fatto che tale matrice è definita esplicitamente da solo 6 parametri (3
rotazioni e la traslazione).
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Rappresentazione geometrica

Le equazioni (8.47) e (8.51) si possono ricavare anche da considerazioni puramente geometriche in quanto i vettori immagine e
camera devono essere paralleli (il fattore lambai è puramente moltiplicativo e sul vettore al massimo incide una trasformazione
affine):

p×Px = 0 m′ ×Hm = 0 (8.56)

Questa formulazione compatta è quella che normalmente viene indicata come DLT [HZ04] e si applica a tutte quelle
trasformazioni lineari conosciute a meno di un fattore moltiplicativo per trasformare tale problema in un problema omogeneo.

8.5.2 Calcolo MLE dell’omografia

Per quanto riguarda il punto di vista computazionale, l’equazione (8.51) è mal condizionata in quanto ogni colonna rappresenta
una quantità con un ordine di grandezza differente. Per ottenere dal punto di vista lineare una soluzione corretta è richiesta
una fase precedente di normalizzazione. Hartley e Zisserman [HZ04] ricordano che la normalizzazione nella DLT è un passo
essenziale e non si può ritenere puramente opzionale.

Il calcolo dell’omografia in equazione (8.52) tuttavia ha il difetto di non tenere conto dell’errore di misura sui punti. Di
fatto la decomposizione SVD minimizza qualcosa che per puro caso assomiglia l’errore sul termine noto (cosa che invece
proprio non viene fatta nel caso (8.51)) e in ogni caso non si riesce a valutare l’errore sulla matrice dei parametri. In questo
caso specifico, dove si minimizza ai minimi quadrati un errore puramente matematico senza corrispondente geometrico, si
parla di algebraic least squares (ALS ).

Siccome la DLT minimizza un errore algebrico e non geometrico, anche se dal punto di vista computazionale la DLT
normalizzata è migliore, potrebbe restituire risultati peggiori dal punto di fitting geometrico dei dati. La versione del
sistema (8.51) normalizzato ai minimi quadrati viene indicato con normalized algebraic least squares (NALS ).

Per superare il limite del calcolo sull’errore algebrico, è necessario tornare al problema originale e non cercare di
trasformarlo in un problema lineare ma risolverlo, per esempio in maniera iterativa, attraverso un minimizzatore non lineare.

Se il rumore è presente solo su una delle due immagini, una funzione costo appropriata, con significato geometrico, è la
distanza euclidea tra i punti misurati e i punti trasformati. Questo è chiamato normalmente errore di trasferimento (transfer
error) e minimizza una funzione costo non lineare della forma

arg min
H

∑
‖m′i −Hmi‖2 (8.57)

dove m′i è il punto immagine affetto da rumore gaussiano bianco, mentre il punto mi è un punto perfettamente conosciuto.
In tal caso la funzione che minimizza l’errore geometrico è anche quella che rappresenta la miglior stima del risultato dal
punto di vista bayesiano (Maximum Likelihood Estimator o MLE ).

Tuttavia quando entrambi i dati sono affetti da rumore la funzione costo (8.57) non è ottimale. Il modo più semplice per
estendere la soluzione precedente consiste nel cercare di minimizzare l’errore di trasferimento diretto e l’errore di trasferimento
inverso (symmetric transfer error):

arg min
H

∑
‖m′i −Hmi‖2 + ‖mi −H−1m′i‖2 (8.58)

In questo modo si tengono conto di entrambi i contributi nella soluzione del problema.
Questa tuttavia, non è ancora la soluzione ottima, almeno dal punto di vista statistico. Uno stimatore a massima

verosomiglianza deve infatti considerare correttamente il rumore su entrambi i dati quando presente (quello che Hartley e
Zisserman chiamano Gold Standard). La soluzione alternativa, di fatto quella più corretta, consiste nel minimizzare l’errore
di Riproiezione.

Questa soluzione incrementa di molto la dimensione del problema in quanto si pone come obiettivo (o comunque richiede
tra le incognite) anche quello di individuare i punti ottimi non affetti da rumore m̂i e m̂′i:

arg min
H

∑
‖m′i − m̂′i‖2 + ‖mi − m̂i‖2 (8.59)

sotto il vincolo m̂′i = Hm̂i.
Nel caso ancora più generale con rumore di covarianza misurato per ogni singolo punto la metrica corretta è la distanza

di mahalanobis (vedi sezione 2.4):

‖m− m̂‖2Γ = (m− m̂)>Γ−1(m− m̂) (8.60)

Nel caso in cui il rumore per punto sia costante la precedente espressione si riduce alla più intuitiva distanza euclidea.
Essendo una minimizzazione non lineare è richiesta tuttavia una soluzione iniziale da cui partire per trovare il minimo

che soddisfa l’equazione costo: la soluzione lineare è ancora utile ed è usata come spunto iniziale per individuare un minimo
sotto una metrica differente.
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Lo stimatore MLE richiede l’uso di una variabile sussidiaria m̂i in più per ogni punto e tecniche iterative per risolvere il
problema. È possibile usare come approssimazione della distanza geometrica, l’errore di Sampson, sezione 3.3.8. Il vincolo
omografico (1.75) che lega i punti delle due immagini può essere scritto sotto forma di varietà VH bidimensionale

h0u1 + h1v1 + h2 − h6u1u2 − h7v1u2 − h8u2 = 0
h3u1 + h4v1 + h5 − h6u1v2 − h7v1v2 − h8v2 = 0

(8.61)

da cui lo Jacobiano

JV =

[
h0 − h6u2 h1 − h7u2 −h6u1 − h7v1 − h8 0
h3 − h6v2 h4 − h7v2 0 −h6u1 − h7v1 − h8

]
(8.62)

da usare nel calcolo della distanza di Sampson [CPS05].

Propagazione dell’errore nel calcolo dell’omografia

Nel caso di errore su una singola immagine per calcolare come l’errore si propaga sulla matrice H è necessario calcolare lo
Jacobiano della funzione costo (8.57). Esplicitando la trasformazione omografica si ottiene [HZ04]

Ji =
∂r

∂h
=

1

ŵ′

[
m>i 0 −û′im>i /ŵ′

0 m>i −v̂′im>i /ŵ′
]

(8.63)

con mi = (ui, vi, 1)> e m̂′i = (û′i, v̂
′
i, ŵ
′
i)
> = Hmi. Attraverso la teoria mostrata in sezione 3.5 è possibile calcolare la

matrice di covarianza dei parametri dell’omografia data la covarianza sui punti m′i. Siccome la matrice di covarianza totale
Σ del rumore sui singoli punti sarà molto sparsa, in quando punti diversi si suppone che abbiano rumore indipendente, la
covarianza Σh sui parametri ottenuti vale [HZ04]

Σh =
(∑

J>i Σ−1
i Ji

)+

(8.64)

con Σi matrice di covarianza del rumore sul singolo punto.

8.5.3 Calibrazione secondo Tsai

La calibrazione della camera per diverse applicazioni richiede la conoscenza completa dei parametri intrinseci ed estrinseci.
Uno dei metodi più diffusi è sicuramente quello di Tsai [Tsa87] del 1985. Il pregio di Tsai è stato quello di dare ordine allo
stato dell’arte discusso in precedenza e fornire una nomenclatura unica ed accettata per i parametri della camera come qui
presentati.

Il modello della camera di Tsai è basato sulla proiezione prospettica della Pin-Hole Camera, ed è formato (nella sua forma
classica) da 11 parametri:

f Lunghezza focale della camera

k Coefficiente di distorsione radiale di primo ordine

Cx,Cy Coordinate del centro ottico della lente

Sx Un fattore di scala orizzontale

Rx, Ry, Rz Angoli di rotazione per la trasformazione tra coordinate mondo e coordinate camera

Tx, Ty, Tz Vettore di traslazione per la trasformazione tra coordinate mondo e coordinate camera

Tsai esegue sia una analisi di tutte le tecniche sviluppate finora per la calibrazione, e infine propone un sistema a moduli,
dove ogni modulo permette di ricavare una serie di questi parametri.

Principalmente fa notare che se la camera è distorta ma si pone il principal point coincidente con il centro di distorsione
valgono i rapporti:

ud
vd

=
uu
vu

(8.65)

e di conseguenza è possibile creare vincoli sotto questa condizione usando le coordinate distorte piuttosto che quelle non
distorte. Tale metodo pertanto è chiamato anche radial alignment constraint (RAC).

Inizialmente usando i parametri della camera forniti dal produttore calcola il vettore traslazione e rotazione da una griglia
con punti coplanari zi = 0 di coordinate note, sfruttando il vincolo

(r0xi + r1yi + t̃x)u′i = (r3xi + r4yi + t̃y)v′i (8.66)
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con (u′i, v
′
i) coordinate camera normalizzate usando i parametri della camera e della lente forniti dal produttore. Da questo

vincolo si può creare un sistema lineare sovradimensionato di tipo

[
xiu
′
i yiu

′
i u′i −v′ixi −v′iyi

]


r0
ty
r1
t̃y
tx
t̃y
r3
t̃y
r4
t̃y

 = v′i (8.67)

avendo posto t̃y 6= 0 (ovvero la griglia non deve passare per l’asse ottico). I rimanenti parametri della matrice R vengono
ottenuti usando l’equazione (8.23).

Successivamente procede nel ricavare i parametri intrinseci corretti usando questi valori per la matrice di rotazione e
traslazione.

8.5.4 Calibrazione con il metodo Sturm-Maybank-Zhang

Zhang [Zha99] e contemporaneamente Sturm e Maybank [SM99] individuano un metodo per ottenere una equazione lineare
per ricavare i parametri della camera, eseguendo anche un aggiornamento delle tecniche di calibrazione (sempre valide, ma
ormai relative agli anni 80) fatte principalmente da Tsai [Tsa87] e altri [WM94].

Questa tecnica sfrutta il calcolo di diverse matrici omografiche H ottenute dall’osservazione di un piano (per esempio
una griglia di calibrazione con marker equispaziati) e da queste cerca di ricavare i parametri intrinseci della camera in
maniera esplicita. Come già discusso in precedenza la matrice H, trasformazione omografica di un piano, possiede 8 gradi di
libertà ma non è possibile direttamente ricavare i 10 parametri espliciti che l’hanno generata. Metodi per ottenere la matrice
omografica date le corrispondenze tra punti immagine e punti del piano sono discussi in sezione 8.5.1.

La matrice H e in particolare l’equazione (8.30) può essere esplicitata come

H =
[
h1 h2 h3

]
= λK

[
r1 r2 t

]
(8.68)

dove λ è indicato per sottolineare la presenza di un fattore moltiplicativo, incognito, nel calcolo della matrice omografica.
Concentriamo l’attenzione sulla parte di matrice di rotazione formata dai vettori colonna r1 e r2 ortonormali tra loro.

Nonostante la presenza del fattore λ è infatti possibile esprimere delle relazioni basate sull’ortogonalità tra i vettori r1 e
r2 in modo da forzare i seguenti due vincoli:

h>1 Wh2 = 0
h>1 Wh1 = h>2 Wh2

(8.69)

avendo definito W, tralasciando lo skew per semplicità, come

W = (K−1)>K−1 =


1

k2
u

0 −u0

k2
u

0
1

k2
v

− v0

k2
v

−u0

k2
u

− v0

k2
v

u2
0

k2
u

+
v2

0

k2
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 (8.70)

matrice simmetrica. Tale equazione è l’equazione di una conica ed è in effetti l’equazione della “conica assoluta” [LF97].
Le 4 (o 5 incognite non trascurando lo skew) della matrice W sotto i 2 vincoli (8.69) possono essere risolte usando almeno

2 (o 3) piani diversi, ovvero matrici H le cui colonne non siano linearmente dipendenti tra loro.
Ottenuta la matrice W, con la decomposizione di Cholesky si può determinare infine la matrice originale. Alternativa-

mente Zhang fornisce le equazioni per ottenere i parametri intrinseci della camera direttamente dalla matrice W. Si può
infatti trasformare h>i Whj = v>ijw, con opportuni valori del vettore vij e con w, vettore da determinare, con i valori non
nulli della matrice triangolare superiore di W. In questo modo il sistema di equazioni (8.69) si trasforma nella soluzione di
un sistema lineare omogeneo in w.

Determinati i parametri intrinseci e la matrice K, per ogni matrice omografica H usata nella fase di ottimizzazione è
possibile stimare la rotazione e la traslazione: [

r1 r2 t
]

= λK−1H (8.71)

Le colonne r1 e r2 sono normalmente sufficienti per ricavare gli angoli di rotazione. Da ogni griglia è possibile ricavare tutti
i parametri estrinseci e misurare in questo modo l’errore di riproiezione.

Il sistema nel suo complesso è comunque mal condizionato e difficilmente si giunge a una soluzione stabile dopo ripetute
prove. I valori ottenuti attraverso questa tecnica lineare servono però come punto di inizio in una fase di Maximum Likelihood
Estimation per minimizzare gli errori di riproiezione (sezione 8.5.6).

Una sola nota: Zhang nel suo articolo fa coincidere il Principal Point con il centro di distorsione, cosa generalmente non
esatta.
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8.5.5 Il problemi P3P e PnP

La soluzione DLT è numericamente instabile mentre le tecniche di minimizzazione, non-lineari, ai minimi quadrati sono
tecniche iterative che richiedono come punto di partenza della minimizzazione una soluzione vicina all’ottimo (per esempio
la soluzione proposta da DLT). Attualmente non ci sono soluzioni definitive ed eleganti a questi problemi ma esistono diversi
approcci possibili, tutti comunque migliori dell’approccio DLT. Queste tecniche cadono sotto il nome di PnP (perspective-n-
point) e P3P (perspective-3-point) nel caso ottimo teorico in quanto bastano solo 3 punti per determinare la posa del sensore
video.

Tra gli approcci interessanti da menzionare ci sono quelli descritti in [LFNP09] e in [HR11]. Sono approcci abbastanza
lunghi e complessi ma forniscono stime della posa in maniera molto vicino a tecniche iterative che soffrono comunque di
problemi di minimo locale.

8.5.6 Maximum Likelihood Estimation

Quando si esegue la fase di calibrazione per mettere in relazione punti immagine con punti mondo è facile ipotizzare che il
punto in coordinate mondo abbia una precisione elevata mentre il valore del punto in coordinate immagine è conosciuto a
meno di rumore gaussiano a media nulla.

Le tecniche viste in precedenza (in particolare la DLT) sono mere approssimazioni della soluzione ottima e devono essere
usate come punto di partenza per una minimizzazione non lineare. Per ottenere la soluzione ottima è necessario minimizzare
la somma degli errori al quadrato tra la posizione misurata affetta da rumore e la posizione predetta dal modello. Lo
stimatore a massima verosimiglianza minimizza una funzione obiettivo del tipo

min
β
‖pi − f(xi, β)‖2 (8.72)

dove xi è un punto in coordinate mondo e pi è il corrispondente punto in coordinate immagine, affetto da rumore di
osservazione dovuta all’algoritmo di individuazione del punto e alla quantizzazione spaziale in pixel che qualunque sensore
applica ai raggi ottici. β sono i parametri della proiezione prospettica da stimare, preferibilmente quelli espliciti considerando
anche la distorsione dell’ottica.

8.6 Modello Fish-Eye Camera

Volendo generalizzare il concetto di camera pin-hole si possono introdurre piu classi di modelli camera. Ricordo che le camere
reali non sono mai camere ideali che si adattano perfettamente ad un determinato modelli di ottica. Esistono pertanto vari
modelli base che cercano più o meno di approssimare l’equazione della lente a cui sopra vanno comunque aggiunti vari termini
distorsivi.

In particolare le ottiche fish-eye sono lenti dove la distorsione barilotto è dominante e questo permette di ottenere, a
parità di lunghezza focale, angoli di vista molto elevati, fino a 180 gradi o superiori.

Sia pertanto ϑ l’angolo incidente del raggio ottico del punto camera (x, y, z) rispetto all’asse ottico (0, 0, 1). Questo angolo
vale ϑ = arctan ri che si ottiene da

ri =
√
x2

1 + y2
1 =

√
x2 + y2

z
(8.73)

dove infatti x1 = x/z e y1 = y/z. Attenzione che vale l’uguaglianza

ϑ = arctan

√
x2 + y2

z
= arccos

z√
x2 + y2 + z2

(8.74)

L’idea è quella di considerare tutti i modelli camera come manipolazione dell’angolo incidente ϑ in un angolo ϑ′ o spesso
viene definita una trasformazione r(ϑ) = fϑ′ che trasforma l’angolo del raggio incidente in un raggio in pixel.

Le varie lenti fish-eye seguono equazioni leggermente differenti tra loro, tra le quali è possibile segnalare tra i modelli
ideali (pertanto senza distorsione)

� lineare: r = fϑ

� ortografica: r = f sinϑ

� angolo solido costante: r = 2f sin(ϑ/2)

� stereografica: r = 2f tan(ϑ/2).

Il modello pin-hole si può vedere come caso particolare in quanto il rapporto tra l’angolo incidente di luce ϑ e la coordinate
del pixel segue la regola r = f tanϑ.
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Avendo assorbito in r anche la focale (perciò è un raggio in pixel), le equazioni sopra permettono di trasformare l’angolo
di luce incidente sull’ottica in un raggio proiettato sul sensore:

u =
x√

x2 + y2
r + u0 v =

y√
x2 + y2

r + v0 (8.75)

siccome l’angolo di fase rimane costante tra raggio incidente e raggio proiettato in assenza di distorsione tangenziale.
La classe di modelli ideali sopra non tiene conto di eventuali non linearità dell’ottica. Il modello di Kannala-Brandt [KHB09]

generalizza queste equazioni, parametrizzando una generica lente fish-eye nel termine r(ϑ) usando la classica espansione in
serie di Taylor che permette di inglobare sia i diversi modelli di lente presentati che eventuali distorsioni introdotte dell’ottica.

Ricordo che anche nelle camere fish-eye i raggi ottici passano tutti per lo stesso punto (pertanto i raggi passano tutti
sempre per un pin-hole) ma tutte le equazioni che si possono scrivere (e se ne vedranno diverse nel prossimo capitolo) in
forma lineare sfruttando le coordinate omogenee con un modello fish-eye di quelli qua elencati, non si possono più usare e
bisogna passare ad equazioni non lineari anche in coordinate omogenee.



Capitolo 9

Visione Multicamera

Questo capitolo tratta in generale gli algoritmi che coinvolgono l’analisi di immagini provenienti da più di una camera con
particolare attenzione al caso di visione steroscopica.

La visione stereoscopica (stereopsi) è il processo attraverso il quale è possibile stimare distanze e posizioni di oggetti
osservati da due sensori visivi e attraverso queste informazioni poter ricostruire la scena osservata. Tale discorso è facilmente
estendibile al caso in cui la scena sia osservata non da due ma da più camere (multiple view geometry).

Queste viste possono essere temporalmente coincidenti (per esempio nel caso della coppia di camere che formano una
stereocamera) o possono osservare la scena in punti dello spazio e del tempo differenti come accade per esempio quando si
processano immagini della stessa camera che si sposta nello spazio (motion stereo, structure from motion).

L’analisi stereoscopica può essere implementata principalmente attraverso due tecniche:

� Feature Matching dove punti notevoli tra due immagini vengono confrontati senza vincoli, se non quelli che verranno
in seguito mostrati, permettendo di individuare coppie omologhe di punti ma una ricostruzione sparsa della scena;

� Rectified Stereo dove i punti tra le immagini provenienti da camere allineate (in hardware o in software attraverso
rettificazione) sono sulla stessa riga su entrambe le camere e questo permette di semplificare il problema della ricerca
dei punti e ottenere ricostruzioni dense della scena osservata.

Condizione necessaria per attuare una ricostruzione tridimensionale completa della scena osservata, attraverso l’analisi di
più immagini acquisite da punti di vista differenti, è la conoscenza dei parametri intrinseci delle camere coinvolte e la posa
relativa tra di esse.

Se non si conosce la posa relativa questa può essere stimata attraverso l’analisi stessa delle immagini ma, come si vedrà
in seguito, la distanza tra le camere sarà ricavata a meno di un fattore moltiplicativo e di conseguenza anche la ricostruzione
tridimensionale sarà conosciuta a meno di tale fattore.

Se non si conoscono neanche i parametri intrinseci è sempre possibile mettere in relazione punti omologhi tra le due
immagini e grazie a questo processo accelerare il confronto tra KeyPoint ma non sarà possibile dire nulla sulla ricostruzione
tridimensionale della scena osservata (la ricostruzione è conosciuta a meno di una trasformazione affine).

9.1 Trasformazione di coordinate camera

Quando si parla di coordinate stereoscopiche è necessario fare una breve introduzione ai cambi di coordinate tra sistemi
camera. Questa sezione di fatto è il proseguo della discussione generale relativa a sensori vista in sezione 1.9.

Quando i sensori coinvolti sono sensori video, le matrici di rotazione coinvolte nelle equazioni della camera sono matrici
che convertono da coordinate mondo a coordinate camera e non, come indicato in precedenza, a coordinate sensore.

Nel caso della camera pin-hole, il generico punto mondo x viene rototraslato nel punto im, espresso in coordinate camera
del sensore i -esimo, attraverso la relazione:

im = iR (x− ti) = iRx− iRti (9.1)

che coinvolge la matrice di rotazione e permutazione iR, espressa nella forma della camera pin-hole ovvero matrice che
converte da coordinate mondo a coordinate camera. L’inversa di questa trasformazione esiste sempre e vale

x = iR−1 im + ti (9.2)

Pertanto, dato un punto in coordinate camera 1m osservato nel sistema di riferimento del primo sensore video, tale punto
viene rappresentato nel sistema di riferimento della seconda camera in

2m = 2R
(

1R
)−1 1m− 2R(t2 − t1)

= 2R1
1m + 2t

(9.3)
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avendo definito
2R1 = 2R

(
1R
)−1

2t = − 2R(t2 − t1)
(9.4)

con le matrici 1R e 2R ancora definite come nel modello pin-hole. In questo caso la matrice R è una matrice che converte
un punto dalle coordinate camera del primo sistema di riferimento nelle coordinate camera del secondo sistema. Le discus-
sioni in questo capitolo si rifaranno a sistemi camera e pertanto i parametri delle pose relative saranno quelli indicati in
equazione (9.4).

Le relazioni che legano punti tra due sensori dipendono solamente dalla loro posa relativa e di conseguenza le coordinate
1m e 2m del medesimo punto mondo x, osservato nei due sensori video, dovranno soddisfare sempre l’equazione (9.3).

9.1.1 Posa relativa in coordinate camera e in coordinate sensore

Come già ricordato più volte, per trasformare un sistema di riferimento camera in uno sensore è sufficiente applicare la
trasformazione

cRw = cΠb
wR−1

b ⇔
wRb = cR−1

w
cΠb (9.5)

dove cRw = R è la matrice di rotazione che viene usata nelle equazioni della camera pin-hole.
Per esempio, attraverso queste relazioni, è possibile ottenere le relazioni che legano le pose relative espresse in coordinate

camera con quelle espresse in coordinate sensore di equazione (1.66):

2bR1b = cΠ−1
b

2R 1R−1 cΠb
2bt2,1 = − cΠ−1

b
2R (t2 − t1)

(9.6)

con i parametri 1R, t1, 2R e t2 definiti come nel modello pin-hole ovvero matrici che trasformano da mondo a camera
e vettori espressi in coordinate mondo. Come si vede, questo risultato è totalmente compatibile con quello ottenuto in
equazione (9.4).

Queste relazioni permettono di ottenere i parametri della posa relativa (R, t) partendo dai parametri della camera pin-hole,
relazioni che permettono di convertire coordinate sensore 1 nelle coordinate sensore 2 come in equazione 1.64.

9.2 Il piano epipolare

Nei capitoli precedenti è stato fatto più volte notare che da una sola immagine non è possibile ottenere le coordinate mondo
dei punti che compongono l’immagine, senza informazioni addizionali.

x

t1 t2

p1 p2

e1 e2

Figura 9.1: Geometria epipolare tra due camere: t1 e t2 sono i pin-hole, e1 e e2 sono gli epipoli e il punto mondo x viene
proiettato nei due punti immagine p1 e p2 rispettivamente. Tutti i punti coinvolti appartengono al medesimo piano.

L’unica cosa che un generico punto dell’immagine p può fornire, data l’equazione (8.19) della camera pin-hole, è una
relazione tra le (infinite) coordinate mondo x sottese al punto immagine ovvero il luogo delle coordinate mondo che proiettate
darebbero esattamente quel particolare punto immagine. Tale relazione è l’equazione di una retta passante per il pin-hole t
e per il punto sul sensore corrispondente al punto p immagine. Riportando nuovamente l’equazione (8.19), è facile vedere
qual’è la dipendenza tra i parametri della camera i -esima, il punto immagine pi e la retta che rappresenta tutti i possibili
punti mondo x sottesi a pi:

x = λ(KiRi)
−1pi + ti = λvi(pi) + ti (9.7)

dove vi ha lo stesso significato che aveva in equazione (8.20), vettore direzione tra il pin-hole e il punto sensore. Come si
evince sia dall’esperienza che dalla relazione lineare che lega tali punti, si può dire che il punto sotteso x è conosciuto a meno
di un fattore di scala λ.

Nel caso della visione stereo abbiamo due sensori e pertanto dobbiamo definire due sistemi di riferimento con parametri
K1R1 e K2R2 rispettivi e posizione dei pin-hole t1 e t2 espressi sempre in coordinate mondo.
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La retta (9.7), luogo dei punti mondo associabili al punto immagine p1 visto nel primo sistema di riferimento, può essere
proiettata nella vista della seconda camera:

p2 = λK2R2(K1R1)−1p1 −K2R2(t2 − t1)
= λK2RK−1

1 p1 + K2t
= λK2RK−1

1 p1 + e2

(9.8)

dove compare una parte variabile, che dipende dal punto considerato e dal valore λ, e un vettore e2 sempre costante che non
dipende dal punto considerato.

Questo punto costante è l’epipolo. L’epipolo è il punto di intersezione di tutte le linee epipolari e rappresenta la proiezione
del pin-hole di una camera nell’immagine dell’altra ovvero il “punto di fuga” delle linee epipolari.

Date due camere le proiezioni delle coordinate dei pin-hole t1 e t2 sull’opposta immagine sono

e1 = P1t2 = K1R1(t2 − t1)
e2 = P2t1 = K2R2(t1 − t2)

(9.9)

dove P1 e P2 sono le matrici proiettive. I punti e1 e e2 sono gli epipoli. Se nell’equazione (9.9) inseriamo le definizioni di
posa relative espresse in (9.4), le coordinate immagine degli epipoli, intese come la proiezione su una immagine del pin-hole
dell’altra camera, sono

e1 = K1R
>t

e2 = K2t
(9.10)

sole funzioni della posa relativa tra le due camere.
La matrice R, per costruzione, converte da coordinate camera 1 a coordinate camera 2 e t rappresenta la posizione del

pin-hole della camera 1 espresso nel sistema di riferimento della camera 2.
Le rette generate dai punti della prima immagine passano tutte per uno stesso punto formato dalla proiezione del pin-hole

t1 sulla seconda immagine: di fatto il punto in coordinate mondo e i due epipoli creano un piano (il piano epipolare) dove
vivono le possibili soluzioni, i punti in coordinate camera, del problema della ricostruzione tridimensionale (figura 9.1).

La geometria epipolare è la geometria che lega due immagini acquisite da due punti di vista differenti. Le relazioni che
intercorrono tra le immagini tuttavia non dipendono dalla scena osservata ma dipendono solamente dai parametri intrinseci
delle camere e dalle pose relative.

Per ogni punto osservato, il piano epipolare è il piano formato dal punto in coordinate mondo e dai 2 centri ottici.
La linea epipolare è l’intersezione tra il piano epipolare e il piano immagine nella seconda immagine. Di fatto il piano

epipolare interseca in entrambe le immagini il piano nelle rette epipolari e definisce le corrispondenze tra le linee.
Nelle prossime sezioni verrà discusso sia come ricavare la retta lungo la quale un punto appartenente ad una immagine

deve trovarsi in un’altra immagine, sia come dati due (o più) punti omologhi ottenere il punto tridimensionale corrispondente.

9.3 Ricostruzione tridimensionale

L’obiettivo della visione stereoscopica (e in generale la visione multi-oculare) è quella di poter eseguire la ricostruzione
tridimensionale della scena osservata. Dall’individuazione del medesimo punto mondo proiettato tra diversi punti di vista
tra i quali è conosciuta la posa relativa è possibile eseguire la ricostruzione tridimensionale del punto osservato.

9.3.1 Triangolazione

x

t1 t2

p̂1

p̂2p1

p2

Figura 9.2: Esempio di triangolazione. Con la conoscenza della calibrazione delle camere, il punto mondo x può essere
ricavato dall’osservazione della sua proiezione su almeno due immagini (p1,p2, . . .). Tuttavia a causa del rumore le rette
risultanti non passano per il punto x e possono non intersecarsi tra loro. La soluzione alla massima verosimiglianza richiede
di minimizzare la somma al quadrato degli errori tra il punto osservato pi e il punto predetto p̂i.

Osservando la figura 9.2 è facile intuire che la soluzione del problema della triangolazione è il punto di incontro delle rette
epipolari generate dalle due immagini. Tale problema può essere facilmente esteso al caso di n camere dove la posa relativa
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tra di loro è conosciuta. In mancanza della conoscenza della posa assoluta questa potrebbe essere ottenuta direttamente
dalle immagini stesse usando tecniche come la matrice Essenziale (sezione 9.4).

A causa delle imprecisioni di individuazione dei punti omologhi (un discorso a parte si potrebbe fare per gli errori di
calibrazione) le rette formate dai raggi ottici sono in genere sghembe. In tal caso è necessario ricavare la soluzione più vicina
sotto qualche funzione di costo: la soluzione ai minimi quadrati è possibile sempre con n ≥ 2, sia con tecniche come la
Forward Intersections o la Direct Linear Transfer DLT.

Ogni raggio ottico sotteso al pixel immagine (ui, vi), con i = 1, . . . , n la vista i -esima, deve soddisfare l’equazione (9.7).
Il punto di intersezione (Forward Intersections) di tutti questi raggi è la soluzione di un sistema lineare, potenzialmente
sovradimensionato, con 3 + n incognite in 3n equazioni: x = λ1v1 + t1

. . .
x = λnvn + tn

(9.11)

dove con vi = R−1
i K−1

i

(
ui vi 1

)>
si è indicata la direttrice del raggio ottico in coordinate mondo. Le incognite sono il

punto mondo da stimare x e le distanze lungo l’asse ottico λi.
La soluzione in forma chiusa, limitata al caso di sole due rette, è disponibile in sezione 1.5.8. Questa tecnica si può

applicare al caso di una camera allineata con gli assi e la seconda posizionata relativamente alla prima in accordo con la
relazione (9.3).

Sfruttando le proprietà del prodotto vettoriale, si può arrivare alla stessa espressione usando le matrici di proiezione
prospettica e i punti immagine, espressi sotto forma di coordinate omogenee:

[p1]×P1x = 0
. . .
[pn]×Pnx = 0

(9.12)

con [·]× il prodotto vettoriale scritto in forma matriciale. Ognuno di questi vincoli fornisce tre equazioni ma solo 2 sono tra
loro linearmente indipendenti.Tutti questi vincoli possono essere infine riarrangiati in forma di sistema omogeneo nella forma

Ax = 0 (9.13)

dove A è una matrice 2n×4 con n il numero di viste nelle quali il punto x è osservato. La soluzione del sistema omogeneo (9.13)
si può ottenere con la decomposizione a valori singolari. Tale approccio è chiamato Direct Linear Transform (DLT) per
similitudine con la tecnica di calibrazione.

La minimizzazione in coordinate mondo tuttavia non è ottima dal punto di vista della minimizzazione del rumore. In
mancanza di ulteriori informazioni sulla struttura della scena osservata, la stima ottima (Maximum Likelihood Estimation)
è sempre quella che minimizza l’errore in coordinate immagine (reprojection) ma richiede un maggiore peso computazione e
utilizzo di tecniche non lineari, in quanto la funzione di costo da minimizzare è

arg min
x

n∑
i=1

‖pi − p̂i‖2 (9.14)

con p̂i ≡ Pix dove Pi è la matrice di proiezione dell’immagine i-esima (figura 9.2).
È un problema non-lineare non-convesso: sono presenti potenzialmente vari minimi locali e la soluzione lineare deve essere

usata come punto di inizio della minimizzazione.
Una ulteriore classe di tecniche, che sfruttano l’informazione ricavata dai vincoli epipolari e attraverso questa permettono

di stimare la posizione dei punti non affetti da rumore senza dover ricavare il punto tridimensionale, è mostrato in sezione 9.4.4.

9.3.2 Ricostruzione con camere rettificate

Se i punti (omologhi) tra le due immagini di una coppia stereo fossero sulla stessa riga dell’immagine (ovvero la stessa
coordinata v) è possibile sfruttare codice altamente ottimizzato per cercare le corrispondenze [LZ99] e ottenere immagini di
disparità dense.

Esiste una configurazione particolare di due camere in cui tale condizione viene rispettata ovvero quando i parametri
intrinseci sono uguali e gli assi ottici orientati perpendicolarmente al vettore che congiunge i pin-hole. Per esempio, nel caso
in cui il vettore che congiunge i pin-hole giaccia sull’asse y, la configurazione della coppia stereo, che permette di ottenere
punti omologhi sulla stessa riga, è quella che ha gli angoli di rotazione ρ = 0 e γ = 0 e angolo di pitch uguale.

Il procedimento software per ottenere questa configurazione, quando in hardware tale vincolo non è rispettato, consiste
nella rettificazione (vedi 8.3.4) ovvero, partendo da una immagine acquisita con un insieme di parametri (hardware), si
ottiene una nuova vista della stessa scena ma con parametri intrinseci, yaw, pitch e roll desiderati.

Attraverso questa considerazione, il problema della ricostruzione tridimensionale si può sempre ricondurre a una coppia
di camere perfettamente allineate tra di loro e tra gli assi e a una rototraslazione per trasformare le coordinate mondo da
questo sistema sensore all’effettivo sistema reale.
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Nelle sezioni successive verrà mostrato il caso particolare sia di camere perfettamente allineate rispetto agli assi, sia di
camere allineate ma inclinate (angolo di pitch non nullo), sia di camere arbitrariamente orientate.

9.3.3 Camere allineate

Nel caso di camere perfettamente allineate rispetto agli assi e aventi parametri intrinseci uguali (stessa focale e stesso principal
point) le equazioni per la ricostruzione tridimensionale si semplificano enormemente.

In questa condizione le equazioni della proiezione prospettica si riducono a

ui = −ku
y − yi
x− xi

+ u0

vi = −kv
z − zi
x− xi

+ v0

(9.15)

con (x, y, z) un punto in coordinate “mondo” (si veda la sezione successiva) e (ui, vi) coordinate del punto proiettato sull’im-
magine i-esima. Il punto (u0, v0) è il principal point che deve essere il medesimo per tutte le camere coinvolte e le camere si
è supposto che siano tutte perfettamente allineate con la terna di assi.

Limitiamoci ora al solo caso stereoscopico: per semplicità verrà indicato con il pedice 1 la camera sinistra e 2 la camera
destra. I vincoli di allineamento impongono x1 = x2 = 0, y1 = b, y2 = 0 e z1 = z2 = 0 avendo posto, senza perdita di
generalità, la camera destra al centro del sistema di riferimento. La quantità b = y1 − y2 è definita baseline.

La differenza d = u1 − u2 delle coordinate orizzontali delle proiezioni un medesimo punto visto nelle due immagini della
coppia stereo si definisce disparità. Tale valore si ottiene inserendo i vincoli di allineamento nell’equazione (9.15) e risulta

u1 − u2 = d = ku
b

x
(9.16)

Invertendo questa semplice relazione e sostituendola in equazione (9.15) è possibile ricavare il punto in coordinate mondo
(x, y, z) corrispondente a un punto (u2, v2) della camera destra con disparità d:

x = ku
b

d

y = −(u2 − u0)
b

d

z = −(v − v0)
ku
kv

b

d

(9.17)

È chiaro che deve essere d ≥ 0 per punti mondo posti davanti alla coppia stereo.
Come è possibile notare, ogni elemento è determinato attraverso il fattore moltiplicativo b della baseline, vero fattore di

scala della ricostruzione, e dall’inverso della disparità 1/d.

Triangolazione in coordinate mondo

Le coordinate (x, y, z) cos̀ı ottenute sono coordinate sensore, riferite a una configurazione stereoscopica particolare dove
orientazione e posizionamento sono allineati e coincidenti con gli assi del sistema. Per passare da coordinate sensore al
caso generico di coordinate mondo, con camere arbitrariamente orientate, bisogna applicare una trasformazione che porti le
coordinate da sensore a mondo, ovvero la matrice di rotazione wRb e la traslazione (xi, yi, zi)

> coordinata del pin-hole, in
modo da poter scrivere xy

z

 = wRb

x′y′
z′

+

xiyi
zi

 (9.18)

Unendo l’equazione (9.17) con l’equazione (9.18), è possibile definire una matrice M in modo che la conversione tra punto
immagine-disparità (ui, v, d) e coordinata mondo (x, y, z) si possa scrivere in forma molto compatta comexy

z

 =
1

d
M

 1
ui − u0

v − v0

+

xiyi
zi

 (9.19)

dove i può rappresentare indistintamente la camera sinistra o la destra.

9.3.4 Camere allineate e triangolazione in coordinate camera

Le equazioni espresse in precedenza si riferiscono a un sistema di riferimento “sensore” o “mondo”. Per completezza, e per
introdurre relazioni che verranno usate in seguito, vengono ora riportate anche le equazioni nel caso di sistema di riferimento
“camera”.
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Per mantenere il segno della baseline positivo, sia ora b = x̃2 − x̃1, ỹ1 = ỹ2 = 0 e z̃1 = z̃2 = 0. In questo caso è la camera
sinistra (con pedice 1 ) ad essere al centro del sistema di riferimento.

In coordinate camera le relazioni tra le due immagini si scrivono come

d = u1 − u2 = ku
b

z̃
(9.20)

per la disparità e

x̃ = (u1 − u0)
b

d

ỹ = (v − v0)
ku
kv

b

d

z̃ = ku
b

d

(9.21)

per l’equazione del punto tridimensionale proiettato sul punto della camera sinistra (u1, v) di disparità d.

9.3.5 Ricostruzione tridimensionale e omografia

L’equazione (9.21) è facilmente esprimibile in forma omogenea. La matrice che permette dalle coordinate immagine-disparità
di ricostruire direttamente le coordinate del punto tridimensionale espresso nel sistema di riferimento camera è

x̃
ỹ
z̃
1

 =


1
ku

0 0 −u0

ku
0 1

kv
0 − v0

kv
0 0 0 1
0 0 1

kub
0



u
v
d
1

 = Q


u
v
d
1

 (9.22)

mentre la sua inversa 
u
v
d
1

 =


ku 0 u0 0
0 kv v0 0
0 0 0 kub
0 0 1 0



x̃
ỹ
z̃
1

 = Q−1


x̃
ỹ
z̃
1

 (9.23)

è la matrice che permette di proiettare un punto da coordinate camera a coordinate immagine-disparità (sono matrici cono-
sciute a meno di un fattore moltiplicativo, perciò possono essere espresse in diverse forme). La ricostruzione tridimensionale
del punto immagine-disparità nel sistema di riferimento mondo, equazione (9.17), è equivalente. La matrice Q è chiamata
reprojection matrix [FK08].

In condizioni reali, essendo la camera rototraslata rispetto alle condizioni ideali, è sufficiente moltiplicare la matrice Q
per la matrice 4× 4, rappresentante la trasformazione tra coordinate camera a mondo, per ottenere una nuova matrice che
permette di passare da coordinate disparità a coordinate mondo e viceversa.

L’utilizzo di tale formalismo permette di trasformare punti disparità acquisiti da coppie di camere posizionate in punti di
vista differenti (ad esempio una coppia stereo che si sposta nel tempo o due coppie stereo rigidamente connesse tra loro). In
questo caso la relazione che lega punti disparità acquisiti nei due punti di vista è anche rappresentata da una matrice 4× 4:

H2,1 = Q−1
1

[
R t
0 1

]
Q2 = Q−1

1

[
1R2

1t2,1

0 1

]
Q2 (9.24)

che permette di trasformare (u2, v2, d2) in (u1, v1, d1) (è una trasformazione omografica in 4 dimensioni del tutto simile a
quelle in 3 dimensioni viste finora). Da notare che si è usato come posa (R, t) la sintassi di equazione (1.64) volendo esprimere
il punto dal sistema di riferimento 2 nel sistema 1. Siccome tutti i punti coinvolti sono espressi in coordinate camera se si
hanno trasformazioni tra sensori espresse in coordinate mondo, come normalmente accade, occorre aggiungere il cambio di
sistema di riferimento. Tale classe di trasformazioni vengono normalmente indicate come 3D Homographies.

9.3.6 Camere inclinate rispetto a un piano

Esaminiamo il caso particolare in cui le camere sono allineate rispetto agli assi, hanno parametri intrinseci uguali, rotazione
relativa nulla e siano inclinate dell’angolo di beccheggio pitch rispetto al piano z = 0.

In questa particolare condizione la matrice di proiezione si semplifica leggermente assumendo la forma

KR =

 u0 cosϑ −ku −u0 sinϑ
−kv sinϑ+ v0 cosϑ 0 −kv cosϑ− v0 sinϑ

cosϑ 0 − sinϑ

 (9.25)

È da notare che è stato usato il sistema di angoli RPY (appendice A.1) per la matrice R.
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La coordinata orizzontale u di un generico punto (x, y, z) in coordinate mondo vale di conseguenza:

u = u0 −
ku(y − y0)

cosϑ(x− x0)− sinϑ(z − z0)
(9.26)

Con le ipotesi di camere rettificate viste in precedenza, ovvero stessa orientazione e parametri intrinseci uguali, condizione
che si può sempre ottenere con la rettificazione o considerando righe opportune dell’immagine, la matrice proiettiva (9.25)
risulta essere la stessa nei due sistemi di riferimento differenti e, osservando l’equazione (9.26), l’unica differenza tra camere
differenti risulta essere il solo numeratore a causa della differente posizione del pin-hole lungo l’asse delle y. Ne consegue che
la differenza delle coordinate u nelle due immagini d = u1 − u2 (disparità) vale

d = u1 − u2 =
kub

cosϑ(x− x0)− sinϑ(z − z0)
(9.27)

avendo definito nuovamente b = y1 − y2. Usando la relazione (9.26) nell’equazione (9.27) si ottiene il risultato notevole

ui = u0 − d
y − yi
b

(9.28)

da cui infine si ricava la coordinata y del punto

y = −bui − u0

d
+ yi (9.29)

Nel caso in cui le camere siano allineate perfettamente, l’unico parametro di calibrazione che incide sulla coordinata y risulta
essere la sola b.

La coordinata v del punto si può scrivere invece come

v − v0 = − kv
bku

(sinϑ(x− x0) + cosϑ(z − z0))d (9.30)

Da cui il sistema di equazioni:

cosϑ(x− x0)− sinϑ(z − z0) =
bku
d

sinϑ(x− x0) + cosϑ(z − z0) = −v − v0

kv

bku
d

(9.31)

la cui soluzione che permette di ottenere le restanti due coordinate tridimensionali del punto dato è

x− x0 =
bku
d

(
cosϑ− v − v0

kv
sinϑ

)
z − z0 = −bku

d

(
v − v0

kv
cosϑ+ sinϑ

) (9.32)

V-Disparity

Un caso particolare di disparità è quando si osserva un piano, quello del terreno, che, per numero di punti, è preponderante
sull’immagine. Nel caso in cui la baseline sia lungo l’asse y, la disparità del piano z = 0 è solo funzione di v e tale equazione
risulta essere quella di una retta.

La relazione della disparità dalla coordinata v si può ricavare dal valore di x dalla seconda e sostituendolo nella prima
delle equazioni (9.31):

x− x0 = tanϑ(z − z0) +
ku

d cosϑ
b

v − v0 = −kv tanϑ− dkv
ku

z − z0

b cosϑ

(9.33)

Dalla prima delle equazioni (9.33), si vede che l’espressione della disparità dipende solamente dalla distanza x se l’altezza
z è fissata (ad esempio sul suolo), e dalla seconda si vede che la disparità d cresce linearmente con la coordinata v seguendo
un coefficiente angolare noto

d = cosϑ
b

z0
(v − vd=0) (9.34)

nel caso classico in cui ku ≈ kv (pixel quadrato). Il punto di disparità nulla vd=0, sopra menzionato, si trova in

vd=0 = v0 − kv tanϑ (9.35)

e dipende solo dall’apertura verticale e dal pitch (è ovviamente la stessa coordinata del vanishing point).
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9.4 Matrice Essenziale e matrice Fondamentale

Nel 1981, Christopher Longuet-Higgins [Lon81] osserva per primo che un generico punto espresso in coordinate mondo, i
rispettivi punti in coordinate camera e i pin-hole devono essere tra loro coplanari. La derivazione geometrica delle relazioni
che intercorrono tra i punti viene tralasciata ma viene presentata direttamente quella analitica.

È stato più volte ripetuto che un punto su un’immagine sottende una retta nel mondo, e la retta nel mondo proiettata su
un altra immagine, acquisita da una camera posta in un punto di vista differente, rappresenta la retta epipolare dove giace
l’omologo del punto della prima immagine. Tale equazione, che lega punti di un’immagine con rette nell’altra, può essere
espressa attraverso una forma matriciale.

Per seguire il ragionamento di Higgins, la matrice dei parametri intrinseci verrà sottintesa e le coordinate usate saranno
quelle camera normalizzate.

Senza perdere generalità, si consideri pertanto un sistema costituito da due camere, la prima posizionata e orientata
rispetto alla seconda con matrice di proiezione P1 = [R|t] mentre la seconda è posta nell’origine del sistema di riferimento
allineata con gli assi ovvero con matrice di proiezione P2 = [I|0]: si può giungere al medesimo risultato partendo da
due generiche camere calibrate, arbitrariamente orientate e posizionate rispetto ad un sistema terzo, attraverso le relazioni
R = 2R1 = R−1

2 R1 e t, ovvero posizione della camera 1 rispetto al sistema 2.
Un generico punto x ∈ R3 ha coordinata x1 e x2 nei due diversi sistemi di riferimento e viene proiettato sui sensori 1 e 2

nei punto in coordinate camera m1 e m2 rispettivamente.
Questi punti immagine sappiamo che sottendendo un sottospazio di R3 di equazione per esempio λm2 passante per il

pin-hole del secondo sensore (qui imposto ad essere in 0) ovvero

x2 = λ2m2 + 0 (9.36)

Un generico punto x1 = λ1m1 espresso in coordinate del sensore 1 e osservato da quel sensore può venire proiettato in
coordinate del sensore 2 in accordo con l’equazione

x2 = 2R1x1 + t (9.37)

L’equazione della retta epipolare, retta in coordinate camera nel secondo sensore e luogo dei punti dove deve giacere m2,
associata al punto m1 (osservato e pertanto espresso in coordinate camera del primo sensore), risulta essere

λ2m2 = λ1
2R1m1 + t (9.38)

Il luogo dei punti omogenei m2 si ottiene facendo variare il parametro λ1 e questa retta in R3 risulta essere una retta anche
in R2. Se due punti sono effettivamente omologhi, il sistema è risolvibile ed è possibile ricavare i parametri λ1 e λ2 (questo
è un esempio di ricostruzione tridimensionale tramite triangolazione come si è visto in sezione 9.3.1).

Esiste tuttavia una relazione che mette in relazione i punti delle due camere cancellando i parametri λ ma soprattutto
permette di fare il ragionamento inverso ovvero quello di ricavare la posa relativa tra le due camere (R, t) dato un elenco di
punti omologhi.

Se si moltiplicano entrambi i lati dell’equazione (9.38), prima vettorialmente per t, poi scalarmente per m>2 , si ottiene
infatti

λ2m
>
2 (t×m2) = λ1m

>
2 (t×Rm1) + m>2 (t× t) (9.39)

Su tale relazione è possibile applicare le proprietà del prodotto vettoriale t× t = 0 e scalare m2 · (t×m2) = 0.
Questo passaggio ha un significato fisico: vengono per prima di tutto inseriri i vincoli di coplanarità (tutti espressi per

esempio nel reference 2) tra i punti 0 (pinhole della camera 2), m2, 2R1m1 + t, x2 = 2R1x1 + t e t (pinhole della camera 1
nel sistema 2), e uniti con il fatto che il corpo è rigido.

Attraverso questa formula, è possibile esprimere le relazioni che intercorrono tra i punti omologhi m1 e m2, rappresentati
sotto forma di coordinate camera omogenee, in una forma molto compatta

m>2 (t×Rm1) = 0 (9.40)

Indicando infine con [t]×, matrice antisimmetrica, il prodotto vettoriale in forma matriciale (sezione 1.7), è possibile
raccogliere i diversi contributi sotto forma di matrice

E = [t]×R = R
[
R>t

]
× (9.41)

dove va ricordato bene il significato delle matrici confrontando con l’equazione (9.37). Si può definire in questo modo una
relazione lineare che lega i punti camera delle due viste

m>2 Em1 = 0 (9.42)

La matrice E è definita Matrice Essenziale.
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Bisogna infine stare molto attenti agli indici perché non c’è una convenzione unica per indicare i punti 1 e 2: supponendo
la convenzione (9.41) soddisfatta quello che bisogna ricordarsi è che matrice E codifica la posa relativa della camera dei punti
a destra (nel nostro caso m1) della matrice E rispetto alla camera dei punti a sinistra (nel nostro caso m2) della matrice.

La matrice E, mettendo in relazioni punti omogenei, è anch’essa omogenea e pertanto definita a meno di un fattore
moltiplicativo.

La matrice Essenziale ha le seguenti proprietà:

� la trasposta della matrice Essenziale della coppia ordinata di camere (1,2) è la matrice Essenziale della coppia (2,1);

� E è una matrice di rango 2 con 5 gradi di libertà (rappresenta infatti una posa relativa, perciò 3 angoli e la direzione
tra gli epipoli, ovvero 2 gradi di libertà);

� i due valori singolari della matrice E devono essere uguali e il terzo deve essere zero.

La matrice Essenziale crea delle relazioni in coordinate camera e pertanto, per poterla utilizzare da un punto di vista
pratico, è necessario avere a disposizione punti espressi in questo particolare sistema di riferimento, ovvero è necessario
conoscere i parametri intrinseci delle camere coinvolte.

L’equazione

m>2 (Em1) = 0 (9.43)

può essere interpretata come equazione anche di un piano nello spazio 2 passante per 0, ovvero il piano epipolare formato
dai due epipoli e dal punto mondo, piano dove il punto m2 deve appartenere.

È tuttavia possibile introdurre una ulteriore relazione tra i punti delle immagini, trascurando completamente i parametri
intrinseci delle camere stesse.

Se si applica la definizione di coordinate camera omogenee p = Km nella relazione (9.42) si ottiene

m>2 Em1 = p>2 K>2 FK1p1 = p>2 Fp1 (9.44)

La matrice Fondamentale (Fundamental matrix ) è definita (Faugeras e Hartley, 1992) come:

p>2 Fp1 = 0 (9.45)

dove p1 e p2 sono coordinate, sempre omogenee, dei punti omologhi rispettivamente sulla prima e sulla seconda immagine.
Se due punti sulle due immagini della coppia stereoscopica rappresentano lo stesso punto nel mondo, l’equazione (9.45)

deve essere soddisfatta.
La matrice fondamentale permette di restringere l’intervallo di ricerca di corrispondenze tra le due immagini in quanto,

per il dualismo punto-retta, dalla relazione (9.45) si può esplicitare il luogo dei punti nella seconda immagine dove cercare i
punti della prima. Infatti l’equazione di una linea dove i punti m2 ed m1 devono vivere è descritta da

l2 = Fm1

l1 = F>m2
(9.46)

dove l1 ed l2 sono i parametri della retta epipolare, appartenente alla prima e seconda immagine rispettivamente, scritta in
forma implicita.

La relazione che intercorre tra la matrice Fondamentale e la matrice Essenziale risulta essere, equazione (9.44),

E = K>2 FK1 (9.47)

o viceversa

F = K−>2 EK−1
1 = K−>2 [t]×RK−1

1 (9.48)

La matrice Essenziale raccoglie in sxE9 le pose relativa tra le camere, mentre la matrice Fondamentale nasconde sia i
parametri intrinseci che la posa relativa.

La matrice Essenziale introduce vincoli uguali a quelli della matrice Fondamentale ma, anche se introdotta storicamente
prima della matrice Fondamentale, ne è un caso particolare perchxE9 esprime le relazioni rispetto a coordinate camera.

F è una matrice 3 × 3 di rango 2 e per essere determinata bastano 7 punti, in quanto i gradi di libertà risultano essere
appunto solamente 7 (un fattore moltiplicativo e il determinante nullo riducono la dimensione del problema). La relazione che
lega la matrice Fondamentale ai 7 gradi di libertà è una relazione non lineare (relazione non facilmente esprimibile attraverso
una qualche rappresentazione algebrica). Con (almeno) 8 punti si riesce invece ad ottenere una stima lineare della matrice,
come descritto nella sezione successiva.

La matrice Fondamentale ha le seguenti proprietà:

� la trasposta della matrice Fondamentale della coppia ordinata di camere (1,2) è la matrice Fondamentale della coppia
(2,1);
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� F è una matrice di rango 2 con 7 gradi di libertà (la matrice omogenea F ha 8 gradi di libertà a cui va aggiunto il
vincolo det F = 0);

� l2 = Fp1 e l1 = F>p2 sono le rette epipolari rispettivamente nell’immagine 2 di un punto dell’immagine 1 e
nell’immagine 1 di un punto dell’immagine 2;

� siccome gli epipoli devono soddisfare la relazione Fe1 = 0 e F>e2 = 0, rispettivamente, consegue che essi sono i kernel
“sinistro” e “destro” della matrice F;

� F è una “quasi correlazione” ovvero una trasformazione che trasforma punti in linee ma non è invertibile.

Figura 9.3: La matrice Fondamentale permette di individuare le rette epipolari, immagine destra, su cui vivono i punti
omologhi dei punti dell’immagine sinistra.

Le matrici Fondamentale ed Essenziale possono essere usate per restringere il campo di ricerca dei punti omologhi tra
due immagini e/o filtrare via eventuali outlier (ad esempio in RANSAC). La matrice Essenziale, se decomposta, permette
di ricavare la posa relativa tra le due camere e in quanto tale dare una idea, approssimata, del movimento che ha subito
una camera che si sposta nel mondo (motion stereo) o della posa relativa di due camere in una coppia stereoscopica (Auto-
Calibrazione).

L’uso della matrice Essenziale permette di ricavare la posa relativa tra due viste. Non è però possibile conoscere la
lunghezza della baseline che unisce i due pin-hole, ma solo la sua direzione. Tuttavia, avendo a disposizione la matrice
Essenziale, è sempre possibile eseguire una ricostruzione tridimensionale della scena osservata a meno di un fattore moltipli-
cativo: i rapporti tra le distanze sono conosciuti, ma non il loro valore assoluto. Questo permette però, quando si osserva
la medesima scena da più di due viste differenti, una ricostruzione tridimensionale coerente, dove per tutte le viste il fattore
moltiplicativo sconosciuto rimane sempre lo stesso, permettendo perciò di fondere tutte le singole ricostruzioni in un’unica
ricostruzione conosciuta a meno del medesimo fattore di scala.

9.4.1 Determinazione delle matrici

La matrice Essenziale si può ricavare in forma chiusa conoscendo le pose relative tra i sensori e, con la conoscenza dei
parametri intrinseci delle camere coinvolte, è possibile ottenere la matrice Fondamentale.

L’applicazione però più diffusa della matrice Essenziale (o Fondamentale) è quella di ricavare la posa relativa tra le camere,
data la conoscenza di un elenco di punti omologhi: conoscendo i parametri intrinseci si può ricavare la matrice Essenziale (e
da questa ricavare la matrice Fondamentale) o senza nessuna conoscenza dei parametri delle camere poter ricavare la matrice
Fondamentale.

Algoritmo degli 8 punti

Il criterio per ottenere la matrice F si può formalizzare come una minimizzazione di una funzione costo

min
F

n∑
i=1

(
p>2,iFp1,i

)2
(9.49)

sotto ulteriori vincoli che riguardano questa volta la struttura di F.
Si può notare che il vincolo epipolare (9.45) può essere riscritto anche come

(p1 ⊗ p2)>vec(F) = 0 (9.50)

avendo sfruttato la sintassi compatta offerta del prodotto di Kronecker ⊗ o alternativamente

uif = 0 (9.51)
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in forma più esplicita definendo

(p1 ⊗ p2)
>

= ui = (x1x2, y1x2, x2, x1y2, y1y2, y2, x1, y1, 1)

vec(F) = f = (f1,1, f1,2, f1,3, f2,1, f2,2, f2,3, f3,1, f3,2, f3,3)
> (9.52)

con p1,i = (x1, y1) e p2,i = (x2, y2). Con questo formalismo è possibile mettere in evidenza una tecnica che permette di
ricavare gli elementi di F come soluzione di un sistema lineare omogeneo formato da vincoli come in equazione (9.51).

Raccolti tutti i vincoli ui, si ottiene un sistema omogeneo del tipo

Uf = 0 (9.53)

di n equazioni in 9 incognite.
Per ricavare la matrice Essenziale il discorso è analogo ed è soluzione di un sistema nie = 0 nella forma

ni = (x1x2, y1x2, z1x2, x1y2, y1y2, z1y2, x1z2, y1z2, z1z2)
e = (e1,1, e1,2, e1,3, e2,1, e2,2, e2,3, e3,1, e3,2, e3,3)

(9.54)

con m1,i = (x1, y1, z1) e m2,i = (x2, y2, z2). Con tutti i vincoli ni, questo è un sistema omogeneo del tipo

Ne = 0 (9.55)

Di fatto, usando le coordinate omogenee, i sistemi (9.52) e (9.54) sono equivalenti dal punto di vista algoritmico.
Ai vincoli espressi in questi sistemi omogenei, ne va sempre aggiunto uno ulteriore, per esempio ‖f‖ = 1, normalmente già

soddisfatto dai risolutori lineari di sistemi omogenei. Questo algoritmo è pertanto chiamato eight-point algorithm in quanto
la soluzione del problema richiede almeno 8 punti per essere determinata. Ulteriori vincoli, per raggiungere gli effettivi gradi
di libertà delle matrici, non sono invece esprimibili sotto forma lineare.

Rafforzamento dei vincoli

A causa del rumore, normalmente le matrici ottenute dal sistema lineare non soddisfano il requisito che siano di rango 2 (e
nel caso di matrice Essenziale, perciò con un ampio numero di gradi di libertà, che non appartengano proprio al sottospazio
delle matrici Essenziali). Una possibile soluzione a questo problema è quella di cercare la matrice più vicina a quella restituita
dal sistema lineare che soddisfa però il vincolo sul rango. Tale risultato si ottiene per esempio usando una decomposizione
SVD seguita da una composizione, come suggerito da Tsai, Huang e Hartley:

F = U diag(r, s, t)V>

F′ = U diag(r, s, 0)V>
(9.56)

Questo procedimento è chiamato constraint enforcement. La matrice Essenziale rispetto a quella Fondamentale ha in più il
vincolo di avere i 2 valori singolari non nulli uguali:

E = U diag(r, s, t)V>

E′ = U diag(1, 1, 0)V>
(9.57)

Se i valori singolari (in seguito a una SVD) della matrice sono 1, la matrice si dice matrice Essenziale normalizzata (normalized
essential matrix ). La matrice Essenziale ottenuta ponendo D′ = diag(1, 1, 0) è la matrice essenziale normalizzata più vicina
a quella data, in accordo con la norma di Frobenius. La matrice Essenziale generata attraverso l’equazione (9.57) soddisfa
la cubic trace-constraint (Demazure, 1988)

EE>E− 1

2
trace

(
EE>

)
E = 0 (9.58)

Tale vincolo è condizione necessaria perchxE9 la matrice in analisi sia effettivamente Essenziale.
Le matrici ottenute attraverso questo procedimento di rafforzamento soddisfano tutti i requisiti per essere matrici

Fondamentali o Essenziali, ma non rappresentano una minimizzazione algebrica, ne tanto mento geometrica, dei vincoli
originali.

Algoritmo dei 7 punti

Gli algoritmi che sfruttano meno di 8 punti per estrarre una matrice Essenziale o Fondamentale si basano più o meno tutti
sullo stesso principio: viene estratto il kernel multidimensionale di U o N, visto che la matrice Fondamentale o Essenziale
deve appartenere a un elemento di questo spazio, e vengono forzati alcuni vincoli tipici del problema in questione.

In maniera non lineare è relativamente facile poter ottenere una matrice Fondamentale con soli 7 punti, considerando il
fatto che la matrice U, formata dagli elementi di equazione (9.52), deve essere di rango 7, in quanto 7 sono in effetti i gradi
di libertà della matrice Fondamentale. Risolvendo il sistema (9.52) formato da (almeno) 7 punti si ottiene un sottospazio
di dimensione 2, formato da due basi f1 e f2, a cui sono associate due matrici F1 e F2: nello spazio delle possibili soluzioni
è necessario trovare una matrice F = αF1 + (1 − α)F2 tale che abbia rango 2 ovvero imponendo det F = 0, equazione non
lineare di terzo grado in α. In questo caso le soluzioni reali di α possono essere 1 o 3: nel caso di 3 soluzioni reali, vanno
tutte e 3 valutate sui dati per individuare quella più plausibile.
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Algoritmo dei 5 punti

Con meno di 7 punti esistono solo algoritmi per determinare la matrice Essenziale. La matrice Essenziale infatti è formata
da soli 5 gradi di libertà e in linea teorica può essere stimata attraverso l’analisi di corrispondenze fra solo 5 punti [Nis04].
L’algoritmo dei 5 punti è di fatto lo standard per la stima della matrice essenziale, tuttavia la sua implementazione è
estremamente complessa.

Sfruttando solo 5 corrispondenze, la matrice N del sistema (9.55) ha un difetto 4 di rango. La matrice Essenziale deve
essere pertanto formata come combinazione lineare delle ultime 4 colonne della matrice V ottenuta dalla SVD, ovvero:

E = xX + yY + zZ + W (9.59)

con (X,Y,Z,W) ultime 4 colonne di autovettori della matrice V e (x, y, z) incognite. Per ottenere tali incognite è necessario
soddisfare i vicoli

det E = 0
EE>E− 1

2 trace
(
EE>

)
E = 0

(9.60)

equivalente a un problema di 10 polinomi di terzo grado nelle 3 incognite.
La richiesta comunque di risolvere un sistema non-lineare fa diminuire i vantaggi rispetto alle soluzioni proposte in

sezione 9.4.2.

Condizionamento del sistema

La generazione, attraverso tecnica SVD, delle matrici Essenziale e Fondamentale e in seguito l’irrobustimento di queste,
forzando i valori singolari ad essere uguali, è un processo molto sensibile al rumore.

La matrice (9.52) è mal condizionata: questo accade quando si cerca di risolvere un sistema lineare i cui termini noti
sono formati da numeri con ordini di grandezza differenti. Il metodo proposto da Hartley [Har95] propone di migliorare la
soluzione normalizzando le coordinate dei punti.

Le coordinate p1 e p2 vengono traslate separatamente in modo da avere centroide nullo e riscalate in modo da avere come
valor medio 1 (o

√
2 valor medio del modulo) nel nuovo sistema di coordinate p̃1 e p̃2 rispettivamente. Definiamo pertanto

due matrici di trasformazione T1 e T2 tali che
p̃1 = T1p1

p̃2 = T2p2
(9.61)

in questo modo è possibile determinare la matrice fondamentale compatibile F̃

p>2 Fp1 = p̃>2 T−>2 FT−1
1 p̃1 = p̃>2 F̃p̃1 = 0 (9.62)

da cui poi ricavare la matrice originale F = T>2 F̃T1.

9.4.2 Stima alla Massima Verosimiglianza

Quando si usa la decomposizione SVD per irrobustirne i vincoli, la matrice Fondamentale (o Essenziale) che si ottiene soddisfa
pienamente i requisiti per essere Fondamentale (o Essenziale) ma tuttavia è solo una matrice più simile sotto una particolare
norma (in questo caso Frobenius) a quella ottenuta dal sistema lineare. Neanche questa soluzione pertanto è ottima perchxE9
non tiene comunque conto di come avviene la propagazione dell’errore dai punti in ingresso all’interno della trasformazione:
è di fatto ancora una soluzione algebrica e non geometrica.

Una prima tecnica, che minimizza l’errore geometrico, consiste nel sfruttare la distanza tra i punti e le rette epipolari
generate attraverso la matrice Fondamentale (epipolar distance).

Anche solo intuitivamente, la distanza tra un punto p2 e la retta epipolare Fp1 può essere usata come metrica per stimare
l’errore geometrico:

d (p2,Fp1) =

∣∣p>2 (Fp1)
∣∣√

(Fp1)
2
1 + (Fp1)

2
2

(9.63)

dove con (.)i è indicata la componente i-esima del vettore (si veda la sezione 1.5.3 per l’equazione della distanza punto-retta).
Più la distanza è bassa, più la matrice F è a tutti gli effetti la matrice che mette in relazione i punti omologhi.

Siccome è possibile calcolare sia per la prima immagine che per la seconda questo errore, è corretto minimizzare entrambi
i contributi insieme. Attraverso questa metrica è possibile definire una funzione costo che minimizzi l’errore in maniera
simmetrica (symmetric transfer error) tra le due immagini:

min
F

∑
i

(
d (p1,i,Fp2,i)

2
+ d

(
p2,i,F

>p1,i

)2)
(9.64)

Anche in questo caso si può cercare una soluzione a 8 incognite ma, per cercare una soluzione robusta, risulta necessario
vincolare F ad essere di rango 2.
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Alternativamente al Symmetric Transfer Error in letteratura viene spesso usata l’approssimazione al primo grado della
distanza tra i punti e la funzione (Sampson-error, sezione 3.3.8). È possibile definire cos̀ı una distanza approssimata tra i
punti immagine omologhi (p1,p2) e la varietà p̂2

>Fp̂1 = 0 attraverso la metrica

r (p1,p2,F) ≈
∣∣p>2 Fp1

∣∣√
(Fp1)2

1 + (Fp1)2
2 + (F>p2)2

1 + (F>p2)2
2

(9.65)

dove con (.)i è indicata nuovamente la componente i-esima del vettore. Attraverso questa metrica approssimata, mantenendo
sempre il vincolo aggiuntivo det F = 0, è possibile minimizzare

min
F

n∑
i=1

r (p1,i,p2,i,F)
2

(9.66)

Sia il Symmetric Transfer Error che la distanza di Sampson, metriche comunque migliori della stima algebrica, non sono
lo stimatore ottimo. La stima di massima verosimiglianza Maximum Likelihood Estimation per la matrice Fondamentale si
otterrebbe infatti usando una funzione costo del tipo

min
F

∑
i

‖p1,i − p̂1,i‖2 + ‖p2,i − p̂2,i‖2 (9.67)

avendo indicato con p̂1,i e p̂2,i i punti esatti e con p1,i, p2,i i corrispondenti punti misurati affetti da rumore gaussiano bianco
a media nulla. La funzione costo (9.67) va minimizzata sotto il vincolo

p̂>2,iFp̂1,i = 0 (9.68)

e con i vincoli aggiuntivi dovuti alla natura di F. In questo caso i punti esatti p̂1,i e p̂2,i diventano parte del problema
(variabili ausiliarie, subsidiary variables). Tuttavia, introdurre i punti p̂1,i e p̂2,i come incognite, rende il problema non
risolvibile, in quanto sarebbero presenti sempre più incognite che vincoli.

Per risolvere questo problema bisogna unire il problema del calcolo della matrice Essenziale o Fondamentale con quello
della ricostruzione tridimensionale e porre come variabile ausiliaria direttamente la coordinata tridimensionale del punto
osservato x̂i.

La matrice Essenziale può essere ottenuta data la conoscenza dei parametri intrinseci dei due sensori. In questo caso
infatti è possibile sfruttare il sistema non lineare che proietta la variabile ausiliaria x̂i sulle rispettive due osservazioni sui
due rispettivi sensori:

p̂1,i ≡ K1x̂i
p̂2,i ≡ K2 (Rx̂i + t)

(9.69)

dove la matrice R può essere espressa tramite una parametrizzazione a 3 variabili (si veda la sezione A) mentre il vettore
t deve venire rappresentato tramite una parametrizzazione a 2 (la scala rimane infatti sempre un fattore sconosciuto).
Inserendo i vincoli (9.69) nell’equazione (9.67), l’obiettivo di ricavare la matrice Essenziale viene trasformato in quello di
ricavare direttamente i parametri relativi tra i due sensori. Se infine richiesta, ottenuta la posa relativa tra i sensori, è
possibile ottenere la matrice Essenziale applicando direttamente la definizione (9.41).

Quando i parametri intrinseci non sono disponibili, nel caso della stima della matrice Fondamentale, non è possibile
effettuare una vera ricostruzione tridimensionale della scena proprio per la mancanza di questi parametri. È possibile
sfruttare tuttavia delle proiezioni prospettiche fittizie ponendo K1 = I e ottenendo dei vincoli del tipo:

p̂1,i ≡ x̂i
p̂2,i ≡ Px̂i

(9.70)

usando direttamente la variabile ausiliaria x̂i, coordinata che verrà pertanto conosciuta a meno di una trasformazione affine
K−1

1 ovvero i parametri intrinseci della camera 1.

Inserendo i vincoli (9.70) nell’equazione (9.67) anche questa volta l’obiettivo di ricavare la matrice Fondamentale viene
trasformato in quello di ricavare i parametri della matrice proiettiva P. Attraverso la matrice camera P = [R′|t′], matrice
camera fittizia, è infine possibile ricavare F applicando direttamente la definizione (9.41) dove tuttavia la matrice R′ non è
una matrice di rotazione.

La stima a massima Verosimiglianza della matrice Fondamentale, corretta dal punto di vista probabilistico, richiede
comunque una gran quantità di risorse: oltre alle 12 incognite globali necessarie per stimare P (rispetto alle 5 della matrice
Essenziale) per ogni coppia di punti da minimizzare vengono inserite nel problema 3 ulteriori incognite.

Infine, come avvertenza finale, per la stima ottima delle matrici in presenza di eventuali outlier nella scena sono
ampiamente sfruttate tecniche come RANSAC (sezione 3.12).
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9.4.3 Fattorizzazione della Matrice Essenziale

Nelle sezioni precedenti si è visto come, sfruttando almeno 5 corrispondenze tra punti omologhi tra due immagini, è possibile
ottenere la matrice Essenziale che codifica la posa relativa tra le due camere. La matrice Essenziale può essere nuovamente
fattorizzata in rotazione e traslazione. In questo modo è possibile ottenere i parametri relativi delle camere coinvolte e,
attraverso questa informazione, riuscire ad eseguire una ricostruzione tridimensionale della scena osservata.

Come suggerito da Trivedi, dalla definizione di matrice essenziale (9.41) è facile mostrare che la matrice simmetrica EE>

è indipendente dal vettore rotazione:

EE> = [t]×[t]>× =

t2y + t2z −txty −txtz
−tytx t2z + t2x −tytz
−tztx −tzty t2x + t2y

 (9.71)

Dalla matrice EE> si può ricavare il vettore traslazione t, ricordando sempre che tale vettore è conosciuto a meno di un
fattore moltiplicativo (e pertanto di segno), con cui poi ricavare R.

La matrice Essenziale può essere anche fattorizzata direttamente attraverso la Decomposizione a Valori Singolari. Sia
UDV>, dove D = diag(1, 1, 0), la SVD di E (se cos̀ı non fosse, è comunque possibile proiettare la matrice E nello spazio
delle matrici Essenziali, come descritto in sezione 9.4.1). Attraverso questa decomposizione si possono estrarre i componenti
generatori di E:

[t]× = U
(
R>z D

)
U> R = URzV

>|UR>z V> (9.72)

dove

R>z D =

 0 1 0
−1 0 0
0 0 0

 Rz =

0 −1 0
1 0 0
0 0 1

 (9.73)

con Rz rotazione intorno all’asse z di un angolo di π2 . È da notare che [t]×t = 0 per ogni possibile t. Si può dimostrare che
questo è possibile solo quando t = U(0, 0, 1)> = u3, ultima colonna della matrice U.

La matrice di rotazione R presenta cos̀ı due possibili soluzioni ruotate di 180° tra loro rispetto all’asse che congiunge i due
pin-hole. Siccome il vettore t è conosciuto a meno di un fattore moltiplicativo e il vincolo |t| = 1 non permette di ricavare
il segno della traslazione, esistono anche due ulteriori alternative per la fattorizzazione dovute a una ambiguità sul segno
che può assumere t. Esistono pertanto 4 differenti fattorizzazioni, tutte plausibili, di una matrice Essenziale e fra queste va
scelta quella che proietta tutti i punti (o la maggior parte) frontalmente rispetto ad entrambe le camere.

9.4.4 Chiralità e ricostruzione con pose relative

Dalla decomposizione della matrice Essenziale, a meno di un fattore moltiplicativo, esistono pertanto 4 possibili configurazioni
(le due matrici di rotazione e gli associati vettori di traslazione) che ricombinate permettono di ottenere nuovamente la matrice
Essenziale di origine. Per determinare quale decomposizione è quella corretta l’unico modo è trovare la configurazione che
ricostruisce la maggioranza dei punti tridimensionali in maniera opportuna ovvero, più semplicemente, la configurazione che
porta la maggioranza dei punti ad avere la coordinata camera z ad essere positiva.

Sia (R, t) una decomposizione della matrice Essenziale, siano m1, m2 le coordinate camera di due punti omologhi, e si
definiscano m̃1 = (ũ1, ṽ1, 1) e m̃2 = (ũ2, ṽ2, 1) tali che

m̃1 = 1/z1m1 m̃2 = 1/z2m2 (9.74)

coordinate camera normalizzate di una coppia di punti omologhi, ovvero

ũ1 = x1/z1 ṽ1 = y1/z1 ũ2 = x2/z2 ṽ2 = y2/z2 (9.75)

L’obiettivo è quello di ricavare le coordinate z1 e z2 attraverso le quali, valutandone la positività, si può supporre che i
punti omologhi siano frontali rispetto all’osservatore e da questo dedurre la correttezza della decomposizione della matrice
Essenziale. Sfruttando il formalismo (9.74), l’equazione (9.38) diventa

z2m̃2 = z1Rm̃1 + t (9.76)

Svolendo l’equazione con z1 come incognita si ottiene infine

z1 =
tx − ũ2tz

(ũ2r3 − r1) · m̃1
=

ty − ṽ2tz
(ṽ2r3 − r2) · m̃1

(9.77)

avendo indicato con r1, r2, r3 le 3 righe della matrice R. La prima equazione sfrutta la coordinata ũ2 per ricavare z1 mentre
la seconda sfrutta la coordinata ṽ2. In questo modo si ottiene la coordinata m1 da cui ottenere attraverso l’equazione (9.38)
immediatamente m2 e in particolare

z2 = r3 ·m1 + tz (9.78)
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per poter valutare la frontalità dell’altro elemento della coppia.

È da notare che la soluzione del problema si poteva ottenere risolvendo direttamente il sistema (9.76) come se fosse un
sistema lineare sovradimensionato di 2 incognite in 3 equazioni (approccio simile a quello che si è visto in sezione 9.3.1).

In entrambi i casi viene ottimizzata una quantità algebrica e pertanto non sarà la stima alla massima verosimiglianza del
punto tridimensionale: diversamente dagli algoritmi discussi in sezione 9.3.1, questo è un approccio in effetti poco adatto
per ricavare le coordinate mondo precise ma sufficiente per verificare che la scelta della decomposizione sia quella corretta.

Va sempre ricordato che essendo il vettore t estratto dalla matrice Essenziale conosciuto a meno di un fattore moltiplicativo
i punti cos̀ı stimati sono conosciuti a meno di un fattore moltiplicativo.

É da notare che questo discorso è chiaramente generico e può essere applicato al caso di ricostruzione tridimensionale
conoscendo la posa relativa tra sensori.

9.5 Rimozione rumore sotto vincoli epipolari

Come si è visto in sezione 9.3.1, triangolare punti affetti da rumore porta a rette non incidenti la cui intersezione non
minimizza il residuo in coordinate immagine (per esempio sotto la metrica della distanza euclidea). Abbiamo anche visto che
la miglior stima dei punti non affetti da rumore minimizza la quantità di equazione 9.67 sotto il vincolo epipolare 9.68. Finora
però, data la conoscenza della matrice Essenziale/Fondamentale, questa minimizzazione ha richiesto il punto tridimensionale
come variabile ausiliaria e una tecnica (iterativa) di ottimizzazione inizializzata per esempio sfruttando la triangolazione con
rette sghembe dei punti affetti da rumore.

Esiste una tecnica globale non lineare che permette di ottenere la triangolazione ottima (la stima dei punti immagine)
attraverso un metodo polinomiale [HS97] che richiede di trovare le radici di un polinomio di 6° grado. Come più chiaramente
discusso in [Lin10], la triangolazione ottima può essere vista come il seguente problema di minimizzazione:

min
(
δm>2 δm2 + δm>1 δm1

)
(9.79)

soggetto al vincolo epipolare

m̂>2 Em̂1 = (m2 − S>δm2)>E(m1 − S>δm1) = 0 (9.80)

avendo definito δm1 = S(m1 − m̂1) e δm2 = S(m2 − m̂2) dove

S =

[
1 0 0
0 1 0

]
(9.81)

serve ad estrarre le sole componenti non omogenee dal vettore. Come visto in precedenza i punti (m̂1, m̂2) sono la stima dei
punti non affetti da rumore mentre (m1,m2) sono i punti osservati.

Questo problema di minimizzazione vincolata si può risolvere attraverso l’ausilio dei moltiplicatori di Lagrange:

L(δm1, δm2, λ) = δm>1 δm1 + δm>2 δm2 − 2λ(m2 − S>δm2)>E(m1 − S>δm1) (9.82)

Il gradiente della Lagrangiana si annulla in

m̂>2 Em̂1 = (m2 − S>δm2)>E(m1 − S>δm1) = 0
δm1 = λSE>

(
m2 − S>δm2

)
= λSE>m̂2 = λn1

δm2 = λSE
(
m1 − S>δm1

)
= λSEm̂1 = λn2

(9.83)

da cui si ottengono 5 vincoli in 5 incognite (le coordinate differenziali e λ). Tali vincoli si possono parametrizzare in funzione
di una variabile ausiliaria dalla quale ottenere la famosa equazione di grado 6. Tale approccio è esattamente il medesimo sia
se si usano punti immagine e la matrice Fondamentale che punti camera con la matrice Essenziale.

Sempre in [Lin10] vengono proposte anche tecniche sub-ottime, iterative, dal basso costo computazionale, dove ad ogni
iterazione il vincolo epipolare viene comunque soddisfatto.

Ottenuti i punti immagine non affetti da rumore, con qualsiasi tecnica di triangolazione (rette sghembe di sezione 1.5.6
o la DLT di sezione 9.3.1) è possibile ricavare il punto tridimensionale. Una formulazione alternativa [KK95], dati due punti
omologhi espressi in coordinate camera m̂′ e m̂ il punto tridimensionale formato dall’intersezione dei raggi ottici è

x =
(t×Rm̂′) · z
‖z‖2

(9.84)

dove z = m̂×Rm̂′.
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9.6 Punti omologhi in spazi immagine alternativi

Attraverso una opportuna Warp-Table è possibile trasformare l’immagine in ingresso in una forma alternativa che preservi
comunque la possibilità di ricostruire tridimensionalmente la scena. Volendo preservare anche il concetto di disparità, ovvero
avere punti omologhi lungo la stessa coordinata verticale tra le due immagini della coppia stereoscopica, sono necessari
alcuni vincoli ulteriori: è necessario che la coordinata immagine orizzontale sia funzione della coordinata x camera mentre la
coordinata verticale dell’immagine non sia funzione della coordinata x. La funzione della coordinata orizzontale deve essere
monotona (normalmente crescente) in x mentre la funzione della coordinata verticale monotona crescente in y.

Una parametrizzazione diffusa è quella polare dove, per evitare commistioni tra gli assi, si è scelta come equazione

x′ = atan x√
y2+z2

y′ = atan y
z

(9.85)

che proietta un punto camera (x, y, z) su un punto immagine (x′, y′) (per confronto ricordo che l’equazione prospettica ha
come equazioni x′ = x/z, y′ = y/z). Data questa proiezione è possibile scrivere l’equazione inversa come

x = sin(x′)
y = cos(x′) sin(y′)
z = cos(x′) cos(y′)

(9.86)

Questa parametrizzazione permette di proiettare in uno spazio immagine tutte le coordinate di una semisfera (fino a 180
gradi) cosa che in effetti il modello pin-hole non permette. Questa parametrizzazione pertanto è comoda per rimappare camere
Fish-Eye. Attraverso questa parametrizzazione è possibile scrivere una equazione simile a quella di (9.21) per triangolare
due punti immagine.

9.7 Odometria Visuale e Bundle Adjustment

La Visual Odometry si pone come obiettivo quello di ricavare la posa relativa che ha assunto una camera (o una coppia
stereoscopica) che si muove nello spazio analizzando due immagini in sequenza. Il problema dell’odometria visuale per una
sola telecamera si risolve normalmente con il calcolo della matrice essenziale e la sua successiva decomposizione. In questo
caso, come già indicato in precedenza, non è possibile conoscere la scala del movimento, ma solo mettere in relazione tra loro
i vari movimenti. Discorso differente nel caso in cui si ha a disposizione una coppia stereoscopica.

Data una serie di osservazioni temporali di punti mondo ricavati dalla ricostruzione tridimensionale (xi,x
′
i) è possibile

ricavare in maniera lineare una trasformazione di rototraslazione (R, t) che trasforma i punti del mondo all’istante di tempo
t all’istante di tempo t′ in modo da poter essere espressi con una equazione del tipo:

x′i = Rxi + t (9.87)

Tale approccio è generale e non dipende dal particolare sensore utilizzato per ricavare i punti.
La rototraslazione eseguita dalla coppia di sensori può essere ricavata minimizzando la quantità:∑

i

‖x′i −Rxi − t‖2 (9.88)

La soluzione a 12 parametri, lineare da dati sovradimensionati, troverà un minimo assoluto ma non è lo stimatore ottimo, in
quanto minimizza una quantità algebrica e in ogni caso non garantisce che la matrice di rotazione sia ortonormale. Partendo
dalla soluzione lineare, l’utilizzo di un minimizzatore non-lineare (per esempio Levenberg-Marquardt, sezione 3.3.6) sulla
funzione costo di equazione (9.88) permette di determinare i 6 parametri (3 rotazioni e 3 traslazioni) in modo più preciso.
Questa è algoritmo è indicato come 3D-to-3D perchxE9 ricava il movimento partendo da coppie di punti tridimensionali.
Come alternativa alla soluzione lineare è possibile anche una soluzione in forma chiusa [Hor87].

L’approccio mostrato ora è generale ma mal si adatta al caso di punti mondo ottenuti da una ricostruzione tridimensionale
da immagini. La funzione costo mostrata, infatti, ottimizza quantità in coordinate mondo e non in coordinate immagine: il
rumore sui punti dell’immagine si propaga in maniera non lineare durante la fase di triangolazione e perciò solo in coordinate
immagine è possibile supporre che il rumore di individuazione dei punti sia gaussiano a media nulla. Non è pertanto possibile
realizzare uno stimatore a massima verosimiglianza sfruttando solamente i punti in coordinate mondo. Un approccio più
raffinato è quello indicato come 3D-to-2D dove si cerca di minimizzare la riproiezione di un punto del passato in coordinate
immagine: ∑

i

‖pi − p̂i‖2 (9.89)

dove p̂1 è la proiezione, rototraslata, del punto tridimensionale xi ottenuto dal fotogramma precedente. Questo problema
è anche conosciuto come perspective from n points (PnP) in quanto molto simile al problema già visto in precedenza della
calibrazione di una camera in ambiente statico.
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Chiaramente anche questo approccio è inficiato dal fatto che il punto tridimensionale xi non è un dato del problema ma
è conosciuto con una certa quantità di errore. Per questa ragione è necessario fare un ulteriore passo minimizzando entrambi
gli errori in coordinate immagine (è la Maximum Likelihood Estimation):∑

i

‖p1 − p̂1‖2 + ‖p2 − p̂2‖2 + ‖p′1 − p̂′1‖2 + ‖p′2 − p̂′2‖2 (9.90)

avendo imposto p̂1 = K1R1(x̂i − t1), p̂2 = K2R2(x̂i − t2), p̂′1 = K1R1(x̂′i − t1) e p̂′2 = K2R2(x̂′i − t2) a cui va aggiunto
il vincolo di equazione (9.87), mantenendo l’incognita sull’effettiva posizione del punto x̂i nei due sistemi di riferimento. In
questo modo viene sia minimizzato lo spostamento che eseguono le camere, sia la coordinata tridimensionale di ogni singola
feature nel mondo. Anche in questo caso la soluzione alla massima verosimiglianza richiede di risolvere un problema non
lineare di dimensioni notevoli. Nel caso di una coppia stereo rettificata, la funzione costo può essere di molto semplificata.

L’odometria visuale è un algoritmo di dead-reckoning e pertanto è affetto da deriva. È possibile estendere questi ragio-
namenti al caso in cui non siano solo due gli istanti di tempo coinvolti nella minimizzazione ma molteplici. In questo caso si
entra in un discorso complicato per cercare di ridurre il più possibile gli errori di deriva nel comporre le diverse trasformazioni.
Un tutorial che affronta queste tematiche è [SF11].

Quando si vuole affrontare il problema dal punto di vista bayesiano, sfruttando l’equazione (9.90), e si intendono processare
contemporaneamente tutti i fotogrammi, invece che odometria visuale si preferisce parlare di Bundle Adjustment.

Il concetto di Bundle Adjustment, introdotto dalla fotogrammetria e poi acquisito dalla Computer Vision (si veda l’ottimo
survey [TMHF00]), indica una minimizzazione multivariabile in modo da ottenere contemporaneamente una ricostruzione
tridimensionale, le pose relative della camere in una sequenza di immagini ed eventualmente i parametri intrinseci delle
camere stesse.

Si tratta di una estensione alle tecniche non-lineari che stimano i parametri attraverso la minimizzazione di una funzione
di costo adeguata basata sugli errori di riproiezione dei punti individuati, nella stessa forma di equazione (9.90).

Siccome la stessa feature può essere vista da diverse immagini, il processo di stima condiziona tutte le pose e di conseguenza
il problema non si può scomporre in n problemi separati di odometria visuale: tutte le immagini della sequenza devono essere
minimizzate contemporaneamente. Per questo motivo il problema della Bundle Adjustment è un problema dimensionalmente
elevato, sicuramente non-convesso, che richiede una ottimizzazione non semplice e fa ricorso a minimizzazione sparsa per
preservare memoria e migliorare la precisione.

Un approccio alternativo al Bundle Adjustment, sicuramente non il miglior stimatore alla massima verosimiglianza ma
che introduce un numero minore di incognite, è quello del Pose Graph Optimization [GKSB10] che, sfruttando informazione
della medesima posa ottenuta da più percorsi ovvero avendo individuato dei Loop, permette di ottimizzare solamente le pose
rispetto a quelle ottenute dall’odometria visuale. Sia x = (x1, . . . ,xn) un vettore di parametri dove l’elemento xi rappresenta
la posa del nodo i -esimo. Siano zij e Ωij la misura e la matrice di precisione dell’osservazione virtuale della posa relativa
tra i nodi i e j. L’obiettivo è ottenere una stima dei parametri x date le osservazioni virtuali zij . Siccome le pose relative
vengono ottenute come confronto di due pose assolute, parametri da ottenere, si può definire la funzione costo

eij = eij (xi,xj) = zij − ẑij (xi,xj) (9.91)

misura dell’errore tra la posa relativa virtuale misurata zij e quella predetta ẑij (xi,xj) date le configurazioni xi e xj da
valutare rispettivamente per i nodi i e j. Sfruttando l’informazione sulla precisione della stima della singola posa relativa è
possibile definire una funzione costo globale

F (x) =
∑
<i,j>

e>ijΩijeij (9.92)

di fatto somma delle singole distanze di Mahalanobis tra tutte le coppie (i, j) su cui è stata fatta una misura di posa relativa.
La funzione F (x), minimizzata rispetto a x, fornisce la miglior stima delle pose assolute del problema, tutto senza coinvolgere
i singoli elementi di cui è composta la singola osservazione reale.

9.8 Ricostruzione, rappresentazione e disegno di ambienti tridimensionali

Le nuvole di punti (pointclouds) o mesh sono le primitive tridimensionali più diffuse per la rappresentazione in memoria di
ambienti e oggetti. Questi approcci avevano il pregio o il difetto di separare nettamente la parte di ricostruzione da quella
di rendering.

Recentemente sia i metodi Neural Radiance Field (NeRF) [MST+20] ma soprattutto i 3D Gaussian Splatting hanno dato
una notevole spinta in questo settore uniformando la parte di ricostruzione con quella di rendering.

9.8.1 Armoniche Sferiche

Un punto nodale della rappresentazione del colore viene dall’uso delle Armoniche Sferiche (Spherical Harmonics SH ). Le
armoniche sferiche sono soluzioni dell’equazione di Laplace in coordinate sferiche, ortogonali e formanti una base completa



9.8. RICOSTRUZIONE, RAPPRESENTAZIONE E DISEGNO DI AMBIENTI TRIDIMENSIONALI 137

per le funzioni definite su una sfera, ovvero qualsiasi funzione L(θ, φ) può essere espansa in una serie di armoniche sferiche:

L(d) = L(θ, φ) =
∑
l=0

m=l∑
m=−l

kml Y
m
l (θ, φ) (9.93)

Tutta questa classe di funzioni può essere generata da una unica formula, scegliendo con l ≥ 0 per il grado dell’armonica
e per l’ordine −l ≤ m ≤ l:

Y ml (θ, φ) =
(−1)l

2ll!

√
(2l + 1)(l +m)!

4π(l −m)!
eimφPml (cos θ) (9.94)

dove Pml (cos θ) sono i polinomi di Legendre associati [YLT+21]. Nel caso di l = 0, la prima armonica è una costante sulla

sfera e vale Y 0
0 = 1

2

√
1
π ≈ 0.282.

In grafica computazionale sono usate per rappresentare l’informazione sull’illuminazione in modo compatto ed efficiente.
Le Armoniche Sferiche decompongono la luce incidente in un insieme di coefficienti, ognuno associato ad una armonica
differente. Questi coefficienti catturano le caratteristiche della luce, come intensità e colore, lungo differenti direzioni della
superficie sferica.

L’idea è quella di selezionare un grado massimo di l e ogni componente del colore (rossa, verde, blue) scriverla come
combinazione lineare delle armoniche sferiche usando come parametro (θ, φ) il raggio ottico che collega il punto all’osservatore.

9.8.2 Rendering

Per molti aspetti i point-based α-blending, i rendering volumetrici NeRF-style e i Gaussian Splatting condividono la parte
di basso livello per disegnare la scena: il colore in un pixel dell’immagine viene approssimato integrando i campioni lungo il
raggio che attraversa questo pixel. Il colore finale è una somma ponderata dei colori dei punti 3D campionati lungo questo
raggio, ponderata in base alla trasmittanza.

Il colore C di un pixel è l’integrale delle varie densità che si incontrano lungo il raggio ottico r = o + td nell’intervallo
[tn, tf ]:

C =

∫ tf

tn

T (t)σ (r(t)) c (r(t),d) dt (9.95)

dove

T (t) = exp

(
−
∫ t

tn

σ (r(s)) ds

)
(9.96)

La funzione T (t) denota la trasmittanza accumulata lungo il raggio da da tn a t, cioè la probabilità che il raggio viaggi da
tn a t senza colpire qualsiasi altra particella.

Gli integrali possono essere trasformati in sommatorie dei vari contributi. Il colore C di un pixel può essere visto pertanto
come sommatoria di vari contributi:

C =

N∑
i=1

Ti (1− exp(−σiδi)) ci (9.97)

dove Ti = exp
(
−
∑i−1
j=1 σjδj

)
dove δi = ti+1 − ti.

Questa rappresentazione si riduce al classico α-blending usando αi = 1−exp (−σiδi). In questo modo anche la trasmittanza

si può scrivere come Ti =
∏i−1
j=1(1− αi).

Nei tipici approcci basato sui punti neurali, il colore C di un pixel si ricava fondendo gli N punti ordinati che sottendono
il pixel stesso:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) (9.98)

9.8.3 Rappresentazione neurale e campi di radianza

9.8.4 Splattering 3D di Gaussiane

L’idea dello splattering 3D di Gaussiane è quello di rappresentare l’immagine come miscela di gaussiane tridimensionali. Le
gaussiane 3D si basano sulla estensione tridimensionale delle gaussiane monodimensionali. Le gaussiane tridimensionali sono
definite da una matrice di covarianza Σ (in coordinate mondo) e centrate nel punto (media) µ:

G(x) = e−
1
2 (x−µ)>Σ−1(x−µ) (9.99)
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Per essere disegnata questa gaussiana deve prima essere trasportata in coordinate camera attraverso una rototraslazione
W e infine proiettata in coordinate immagine. Tuttavia si può pensare ad una approssimazione, disegnando una gaussiana
bidimensionale nello spazio immagine. In spazio 2D la covarianza Σ′ diventa

Σ′ = JWΣW>J> (9.100)

dove W è la sola parte rotazionale della trasformazione e usando, come approssimazione, il Jacobiano J della proiezione
prospettica calcolato nel punto rototraslato in camera (x, y, z)>. Per esempio nel caso di proiezione camera pinhole:

J =

[
ku/z 0 −kuxz2

0 kv/z −kvyz2

]
(9.101)

La matrice Σ′ pertanto ha dimensionalità 2× 2 [ZPvBG01] ed è equiparabile alla matrice di ad una gaussiana 2D.
In [KKLD23] si fa un passo ulteriore: siccome risulta difficile parametrizzare una matrice di covarianza (semi definita

positiva) si parte dal fatto che la matrice Σ rappresenta un ellissoide e pertanto si può avere una minima parametrizzazione
invece di usare tutti i termini della matrice come incognita. L’idea infatti è quella di usare una matrice di scala S (3 DOF)
e una matrice di rotazione R (altri 3 DOF ma normalmente rappresentata da un quaternione, vedi sezione A.3):

Σ = RSS>R> (9.102)

parametrizzando pertanto ogni gaussiana con 6 DOF. Da notare che SS> = diag
(
s2
x, s

2
y, s

2
z

)
.

Associato infine ad ogni punto ci può essere un colore RGB o delle armoniche sferiche (Spherical Harmonics SH ) oltre
ovviamente al parametro di opacità α simile a quello di NeRF. Dal punto di vista pratico le gaussiane sono renderizzate dalle
più vicine alle più lontane fino a saturazione dell’opacità.

9.8.5 Splattering 2D di Gaussiane

Lo Splattering di Gaussiane 2D può essere visto come alternativa più semplice alle Gaussiane 3D e da un punto di vista
storico erano già state introdotte precedententemente.

Le gaussiane 2D sono rappresentate da un punto centrale pk, da due vettori unitari tangenti (tu, tv) e un fattore di scala
S = (su, sv) che controlla la varianza in 2 dimensioni della gaussiana.

Si può organizzare l’orientazione della gaussiana 2D in una matrice 3 × 3 di rotazione R = [tu, tv, tw] (parametrizzabile
come classica rotazione in 3D) avendo definito tw = tu × tv e i fattori di scala in una matrice diagonale S = diag(su, sv, 0).

La gaussiana 2D Ã¨ pertanto definita su un piano tangente di equazione

P (u, v) = pk + sutuu+ svtvv = H(u, v, 1, 1)> (9.103)

avendo definito la matrice omografica H =

[
sutu svtv 0 pk

0 0 0 1

]
=

[
RS pk
0 1

]
. Ad ogni punto (u, v) in coordinate del piano

è chiaramente associata una gaussiana di equazione e
u2+v2

2 .
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Matrici di Rotazione

v

v ′

y

x

ϑ

v ′ ≡ v

y

x

y′

x′

ϑ

Figura A.1: Rappresentazione dell’applicazione di una rotazione ad un vettore e a un sistema di assi: a sinistra una
Inner/Active/Alibi Transformation, a destra una Outer/Passive/Alias Transformation.

Le rotazioni sono trasformazione isometriche dello spazio euclideo ovvero che trasformano vettori preservandone la lun-
ghezza e lasciano un luogo di punti inalterato nello spazio pari ad un iperpiano (il centro di rotazione nel caso bidimensionale
o un asse di rotazione nel caso tridimensionale).

L’insieme di tutte le Matrici di Rotazione SO(n) in Rn è definito come Speciale Ortogonale

SO(n) =
{
R ∈ Rn : RR> = R>R = I,det R = +1

}
(A.1)

ovvero R−1 = R>.
Esistono due possibili convenzioni per definire una matrice di rotazione: alcuni autori preferiscono scrivere la matrice

che trasforma da coordinate sensore a coordinate mondo, altri invece l’opposto. La matrice stessa di rotazione ha la duplice
veste di indicare una rotazione all’interno di un sistema di riferimento (Active o Alibi), o la trasformazione di coordinate da
un sistema di riferimento a un secondo sistema di riferimento (Passive o Alias).

In questo libro le matrici sono prevalentemente usate per rappresentare cambi di base e, quando possibile, il sistema di
riferimento sorgente e quello di destinazione sono ben evidenziati.

Per discutere delle matrici di rotazione e fare qualche considerazione interessante risulta comodo partire ad analizzare il
caso bidimensionale, schematizzato in figura A.1.

Si può verificare che SO(2) ha un solo grado di libertà. La matrice Rϑ, che rappresenta una rotazione bidimensionale,
può essere scritta nella forma

Rθ =

[
cosϑ − sinϑ
sinϑ cosϑ

]
(A.2)

Come si può vedere dalla figura A.1 quando si parla di una rotazione di un angolo ϑ la stessa trasformazione può essere
vista in modi differenti, a seconda di quale sistema di riferimento l’osservatore si posizioni solidale. La matrice Rθ permette
di ruotare un vettore in senso antiorario (rispetto all’origine del sistema di riferimento) di un angolo ϑ (figura a sinistra
in A.1) 1. La matrice di forma (A.2) oltre che a ruotare un vettore in senso antiorario permette anche di ottenere le cosidette
coordinate “mondo” di un punto conoscendo la coordinate “sensore” e sapendo che tale sensore è ruotato di un angolo ϑ

1Come già accennato all’inizio, bisogna fare attenzione perché la trasformazione inversa/trasposta, ovvero la matrice generata dall’angolo −ϑ,
in letteratura può essere indicata come “matrice di rotazione” e indicata anch’essa con la lettera R.
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(legge della mano destra) nel sistema di riferimento “mondo”. La matrice (A.2) permette perciò di passare da coordinate
“sensore” a coordinate “mondo”, mentre l’inversa di questa matrice permette di passare da coordinate “mondo” a coordinate
“sensore”.

La distinzione tra Inner/Active/Alibi Transformation e Outer/Passive/Alias Transformation è un altro modo per de-
scrivere la differenza tra rotazioni. Questi termini sono spesso utilizzati in contesti matematici e fisici per chiarire se una
trasformazione agisce sul sistema di riferimento stesso (il sistema di riferimento viene ruotato o traslato, mentre gli oggetti
rimangono fissi nello spazio, perciò alias o passive) o sugli oggetti all’interno di un sistema di riferimento fisso (gli oggetti
vengono ruotati o traslati, mentre il sistema di riferimento rimane invariato, perciò alibi o active).

La matrice di rotazione viene anche chiamata Matrice dei Coseni Direzionali (Direction Cosine Matrix, DCM ) in quanto
le colonne della matrice di trasformazione corrispondono alle matrici dei coefficienti dei vecchi vettori base espressi rispetto
alla nuova base.

In questo libro, lavorando di fatto con sensori (e non con bracci robotici), tutte le matrici sono di fatto matrici di
cambiamento di base in quanto si vuole principalmente conoscere la coordinata di un punto di visto da un sensore nel
sistema di riferimento superiore o viceversa.

Passando al caso tridimensionale il discorso si complica ulteriormente: esistono infinite parametrizzazioni per esprimere
una rotazione partendo da 3 parametri so(3).

È per esempio possibile definire una rotazione come composizione di 3 rotazioni elementari intorno a uno dei 3 assi ma
essendo la moltiplicazione tra matrici non commutativa esistono comunque 24 modi per comporre tra loro queste 3 matrici. Le
combinazioni di matrici vengono indicate come sequenze di Eulero seguite da 3 numeri per indicare l’ordine di combinazione
delle rotazioni: 1 per l’asse x, 2 per l’asse y e 3 per l’asse z. In ambito robotico sono ampiamente diffuse la rappresentazione
di Angoli di Eulero (sequenza ZYZ) o quella degli angoli di Tait-Bryan (sequenza di Eulero 321 o ZYX) e si veda la sezione
seguente A.1 per i dettagli2. Nella letteratura italiana i sei gruppi (XYZ, YZX, ZXY, XZY, ZYX, YXZ) vengono definiti
angoli di Cardano.

Questo sistema di angoli tuttavia presenta alcune singolarità che ne limitano l’utilizzo. Alternativamente la sintassi
proposta da Rodrigues (sezione A.2) o i quaternioni (sezione A.3) possono essere usati per superare questo problema.

Sempre per il fatto che il prodotto delle matrici non è commutativo, nello spazio tridimensionale c’è addirittura un ulteriore
livello di ambiguità dato dall’ordine con cui le rotazioni con angoli di eulero vengono descritte, in quanto le rotazioni possono
essere definite estrinseche o intrinseche:

Rotazioni Estrinseche Si riferiscono a rotazioni attorno ad assi fissi che coincidono con il sistema di riferimento iniziale
dell’oggetto in rotazione. Gli assi di riferimento rimangono invariati durante le rotazioni. Le sequenze di rotazione
estrinseche sono specificate da notazioni come x-y-z.

Rotazioni Intrinseche Si riferiscono a rotazioni attorno ad assi mobili che sono attaccati all’oggetto in rotazione. Questi
assi cambiano posizione dopo ogni rotazione. Le sequenze di rotazione intrinseche sono specificate da notazioni come
x-y’-z”, dove gli apici indicano i nuovi sistemi di riferimento successivi.

Una rotazione estrinseca equivale ad una rotazione intrinseca (e viceversa) ma con l’ordine di composizione delle trasforma-
zioni invertito (e.g. una trasformazione estrinseca z-y-x equivale ad una intrinseca x-y’-z”).

Indipendentemente dal significato geometrico a cui si vuole dare la matrice di rotazione è possibile comunque fare diverse
considerazioni.

Come già detto in precedenza, la definizione della matrice R nell’equazione della pin-hole camera è stata definita, sia per
comodità che per tradizione, in modo tale da non ruotare un vettore (sarebbe stata ovvero una conversione da coordinate
“sensore” a coordinate “mondo”) ma all’opposto rimuove la rotazione di punti del mondo conoscendo l’orientazione della
camera stessa ovvero permette di convertire da coordinate “mondo” a coordinate “camera”.

Ricavare una espressione della matrice R nella forma espressa nel modello della pin-hole camera vuol dire trovare una
matrice che trasforma un punto da coordinate “mondo” a coordinate “camera” ovvero bisogna sempre usare la matrice
inversa delle matrici di rotazioni che si possono trovare nelle sezioni seguenti.

Sia pertanto una generica rotazione wRb che trasforma da coordinate locali, mobili, “sensore” (body coordinates nel caso

generico) a coordinate globali, fisse, “mondo”: la matrice (wRb)
−1

= bRw sarà pertanto la matrice che converte da coordinate
mondo a coordinate sensore.

Siccome però il sistema di riferimento camera/immagine è un sistema Left-Bottom-Front (X crescente verso destra, Y
crescente verso il basso, Z la profondità come in figura 8.3) che è diverso dal sistema di riferimento Front-Left-Up sen-
sore/mondo (Z crescente verso l’alto, X profondità e Y crescente verso sinistra come in figura 8.4) tipico dell’ambiente
automotive, è necessario definire una matrice

cΠb =

0 −1 0
0 0 −1
1 0 0

 (A.3)

2Gli angoli Roll-Pitch-Yaw XYZ o semplicemente Roll-Pitch-Yaw sono spesso utilizzati in robotica e aeronautica; tuttavia per creare confusione
questa è una rappresentazione intrinseca e sono equivalenti a quelli che a volte vengono chiamati angoli di Eulero ZYX dove invece viene usata
una rappresentazione estrinseca.
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matrice di permutazione degli assi. La matrice di permutazione ha determinante +1 pertanto è ancora una rotazione che
preserva la chiralità dello spazio (trasforma sistemi destrorsi in sistemi destrorsi).

Lavorando in ambito areonautico o navale potrebbe invece essere necessario passare dal sistema camera/immagine a un
sistema Front-Right-Down (ad esempio il NED). In questa situazione la matrice di permutazione è

cΠb′ =

0 1 0
0 0 1
1 0 0

 (A.4)

Sotto queste considerazioni, la matrice R che converte da “mondo” a “camera”, formalismo usato normalmente nell’e-
quazione della camera pin-hole, ha come espressione

R = cRw = cΠb (wRb)
−1

(A.5)

A.1 Tait-Bryan Angles

Un modo per definire la matrice di rotazione in 3 dimensioni consiste nel comporre tra loro rotazioni rispetto ai 3 assi
principali del sistema di riferimento.

Definiamo ϑ l’angolo di beccheggio pitch, γ l’angolo di imbardata yaw e ρ l’angolo di rollio roll, angoli di orientazione
del sensore rispetto al sistema di riferimento mondo3 Tali angoli e tale nomenclatura sono definiti come Tait-Bryan Angles,
Cardan Angles (da Girolamo Cardano) o nautical angles.

Di seguito saranno mostrate le matrici (come riferimento per esempio [LaV06]) che convertono un vettore da coordinate
sensore a coordinate mondo attraverso angoli che rappresentano l’orientazione del sensore rispetto al mondo stesso e sono
le medesime matrici che ruotano un vettore in senso antiorario (counterclockwise rotation of axes) rispetto ai vari assi del
sistema di riferimento.

Gli assi di tale sistema di riferimento sono quelli mostrati in figura 8.4. Si faccia comunque attenzione perché per i veicoli
terrestri e per le navi viene prediletto un sistema di riferimento diverso da quelli aeronautico.

La matrice di rotazione dell’angolo roll ρ (asse X ):

Rx = Rρ =

1 0 0
0 cos ρ − sin ρ
0 sin ρ cos ρ

 (A.6)

La matrice di rotazione dell’angolo pitch ϑ (asse Y ):

Ry = Rϑ =

 cosϑ 0 sinϑ
0 1 0

− sinϑ 0 cosϑ

 (A.7)

La matrice di rotazione dell’angolo yaw γ (asse Z ):

Rz = Rγ =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (A.8)

(La Valle [LaV06], pag. 80-81).

Come si è detto nella sezione precedente, la composizione di rotazioni non è commutativa ed è necessario fare una scelta.

In campo aeronautico viene suggerita come convenzione Roll -Pitch-Yaw (RPY). Sotto questa particolare convenzione la
matrice di cambiamento di base (alias) si costruisce come wRb = RzRyRx

4 ovvero, eseguendo le moltiplicazioni,cos γ cos θ cos γ sin θ sin ρ− sin γ cos ρ cos γ sin θ cos ρ+ sin γ sin ρ
sin γ cos θ sin γ sin θ sin ρ+ cos γ cos ρ sin γ sin θ cos ρ− cos γ sin ρ
− sin θ cos θ sin ρ cos θ cos ρ

 (A.9)

Va ricordato che tale matrice trasforma punti dalle coordinate mobili “sensore” (body coordinates nel caso generico) alle
coordinate fisse “mondo”.

3attenzione che non esiste neanche una notazione accettata univocamente sulle lettere greche da associare ai 3 angoli. Si può trovare per esempio
φ per l’angolo di yaw e ψ per l’angolo di roll.

4La sequenza z-y’-x” intrinsica (l’uso degli apici sottolinea questo tipo di trasformazione) generebbe invece R = RxRyRz . Per creare ulteriore
confusione la sequenza x-y’-z” è conosciuta come Roll-Pitch-Yaw (o Roll-Pitch-Yaw XYZ), mentre la sequenza z-y’-x” (intrinseca) è comunemente
conosciuta come Yaw-Pitch-Roll (o Roll-Pitch-Yaw ZYX).
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Nel caso specifico in cui il sensore fosse una camera pin-hole, usando questa convenzione e considerando l’equazione (A.5),
la matrice di rotazione R della camera pin-hole che converte da coordinate “mondo” Front-Left-Up a coordinate “camera”,
si può esprimere come prodotto di

cRw = cΠbR
−1
ρ R−1

ϑ R−1
γ (A.10)

ovvero − cos γ sin θ sin ρ+ sin γ cos ρ − sin γ sin θ sin ρ− cos γ cos ρ − cos θ sin ρ
− cos γ sin θ cos ρ− sin γ sin ρ − sin γ sin θ cos ρ+ cos γ sin ρ − cos θ cos ρ

cos γ cos θ sin γ cos θ − sin θ

 (A.11)

Va ribadito che la matrice cRw, espressa come nella formula (A.10), è la matrice che “rimuove” la rotazione di un sensore
avete quei particolari angoli di posizionamento e pertanto trasforma da coordinate “mondo” a coordinate “camera” mentre
normalmente in letteratura si tende a indicare come matrice di rotazione quella matrice che converte da coordinate “sensore”
a coordinate “mondo”.

È interessante notare che da un punto di vista puramente grafico, le colonne della matrice inversa/trasposta della ma-
trice (A.11), la quale, quest’ultima, permette di trasformare punti da coordinate camera a coordinate mondo, permettono
facilmente di disegnare gli assi e cos̀ı rappresentare graficamente l’orientazione della camera.

A.1.1 Angoli di Eulero

La sequenza di Eulero (ZYZ) si basa sulla successione di tre rotazioni elementari:

RZY Z(ρ, ϑ, γ) = Rz(ρ)Ry(ϑ)Rz(γ) (A.12)

A.2 Parametrizzazione Asse-Angolo

Ogni rotazione è equivalente a una rotazione intorno a un asse (di rotazione) di una certa quantità angolare. Da questo
presupposto parte la formulazione di una rotazione di Rodrigues o Parametrizzazione Asse-Angolo. La formulazione di
Rodrigues cerca di risolvere i problemi di singolarità intrinseci delle formulazioni di Tait-Bryan e Eulero (diverse combinazioni
di valori rappresentano la stessa matrice di rotazione), oltre a fornire una formulazione geometrica e concisa della rotazione.

La formula della rotazione proposta da Rodrigues è formata da un versore k e da un angolo ϑ i quali permettono di
rappresentare una rotazione dei punti dello spazio di un angolo ϑ, intorno all’asse formato dal vettore k, con verso positivo
nel senso della regola della mano destra.

È possibile convertire asse e angolo in una matrice di rotazione attraverso una equazione compatta proposta da Rodrigues:

R = I + sinϑ[k]× + (1− cosϑ)(kk> − I) (A.13)

(questa è una delle molteplici rappresentazioni disponibili in letteratura) che equivale, esplicitando i termini, alla matrice di
rotazione

R =

 c+ k2
x(1− c) kxky(1− c)− kzs kys+ kxkz(1− c)

kzs+ kxky(1− c) c+ k2
y(1− c) −kxs+ kykz(1− c)

−kys+ kxkz(1− c) kxs+ kykz(1− c) c+ k2
z(1− c)

 (A.14)

avendo dichiarato s = sinϑ e c = cosϑ. Quando ϑ = 0, ovvero in assenza di rotazione, la matrice si riduce all’identità.

La formulazione inversa è anch’essa estremamente compatta e vale:

ϑ = cos−1

(
trace R− 1

2

)
k =

1

2 sinϑ

r32 − r23

r13 − r31

r21 − r12

 (A.15)

Siccome k e ϑ sono di fatto 4 parametri, solitamente si usa un vettore w = ϑk generico per rappresentare una rotazione
nella formulazione di Rodrigues e si attuano le sostituzioni:

k =
w

‖w‖
ϑ = ‖w‖

(A.16)

in modo da rappresentare correttamente la trasformazione da so(3) a SO(3).



A.3. QUATERNIONI 143

A.2.1 Rotazioni infinitesimali

La definizione compatta w = ϑk unita alla formula di Rodrigues permette di esprimere rotazioni infinitesimali in maniera
molto semplice da calcolare.

Se si manda infatti ϑ a infinitesimi, la formula (A.13) si può approssimare a

R ≈ I + sinϑ[k]× ≈ I + [w]× =

 1 −wz wy
wz 1 −wz
−wy wz 1

 (A.17)

A.3 Quaternioni

Son: Well, Papa, can you multiply triplets?
Father: No [sadly shaking his head], I can only add and subtract them. (William Rowan Hamilton, Conversation with his
sons (1843))

I quaternioni sono un tentativo di estensione dei numeri complessi a una dimensione maggiore. Tale formulazione è stata
proposta per la prima volta da Sir William Rowan Hamilton. Sono rappresentati da un vettore di R4 nella forma

q =


qw
qx
qy
qz

 = qw + qxi+ qyj + qzk (A.18)

a volte indicato anche q =
(
q0 q1 q2 q3

)
=
(
q1 q2 q3 q4

)
. I quaternioni hanno differenti proprietà rispetto agli

ordinari vettori quadridimensionali (come per esempio lo sono anche le coordinate omogenee). Il quaternione (A.18) può
essere visto come composto da una parte vettoriale v ∈ R3 e da una parte scalare qw:

q =

[
qw
v

]
(A.19)

qw è definita parte scalare (o componente reale) mentre qx, qy, qz sono le componenti vettoriali (o immaginarie). Un
quaternione con solo la parte scalare è chiamato reale mentre un quaternione con solo la parte vettoriale puro.

Il prodotto tra quaternioni per esempio non è commutativo (ma è comunque associativo).
È possibile creare un vettore aumentato (augmented vector) di un vettore r ∈ R3 nello spazio dei quaternioni come:

r̄ =

[
0
r

]
(A.20)

Il complesso coniugato di un quaternione q∗ è

q∗ =

[
qw
−v

]
(A.21)

La norma |q| è

|q| =
√

q∗q =
√
q2
w + v2 (A.22)

Un quaternione |q| = 1 è chiamato quaternione unità. L’inverso di un quaternione unità è il suo complesso coniugato
q−1 = q∗.

La proprietà più importante di un quaternione è che esso rappresenta una rotazione in R3.
Una rotazione R = eϑû, espressa in rappresentazione asse/angolo, può essere scritta sotto forma di quaternione

q = exp(ϑû) =

[
cos (ϑ/2)

û sin (ϑ/2)

]
(A.23)

con ϑ un angolo di rotazione e û un versore tridimensionale. In questo caso è un quaternione unità e rappresenta la rotazione
di un angolo ϑ intorno all’asse û. Si noti che una rotazione di −ϑ rispetto a −û fornisce lo stesso quaternione che la
rotazione di ϑ intorno a û risolvendo la singolarità della rappresentazione asse/angolo. Allo stesso modo è possibile definire
il “logaritmo” di un quaternione:

ϑû = log q =

{
2

v

‖v‖
arccos qw v 6= 0

0 v = 0
(A.24)

che ritorna la consueta rappresentazione asse-angolo di una rotazione dato un quaternione.
Le rotazioni sono rappresentate da quaternioni di lunghezza unitaria q>q = 1.
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È possibile ruotare un punto usando direttamente i quaternioni p′ = qpq−1, o un quaternione unitario può essere
convertito in una matrice di rotazione (directional cosine matrix ):

R =

q2
w + q2

x − q2
y − q2

z 2qxqy − 2qwqz 2qxqz + 2qwqy
2qxqy + 2qwqz q2

w − q2
x + q2

y − q2
z 2qyqz − 2qwqx

2qxqz − 2qwqy 2qyqz + 2qwqx q2
w − q2

x − q2
y + q2

z

 (A.25)

o in maniera equivalente:

R =

1− 2(q2
y + q2

z) 2(qxqy − qwqz) 2(qxqz + qwqy)
2(qxqy + qwqz) 1− 2(q2

x + q2
z) 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) 1− 2(q2
x + q2

y)

 (A.26)

in modo da calcolare poi p′ = Rp.
È da notare che q e −q rappresentano la medesima matrice di rotazione R.
Viceversa dalla matrice di rotazione è possibile ricavare il quaternione attraverso per esempio

q2
w = (r11 + r22 + r33 + 1)/4
qx = (r32 − r23)/(4qw)
qy = (r13 − r31)/(4qw)
qz = (r21 − r12)/(4qw)

(A.27)

(operativamente si cerca la componente maggiore e si calcolano gli altri componenti rispetto a quella).
Il prodotto tra due quaternioni rappresenta infine la composizione di rotazioni:

q× t =


twqw − txqx − tyqy − tzqz
twqx + txqw − tyqz − tzqy
twqy + txqz + tyqw − tzqx
twqz − txqy + tyqx + tzqw

 (A.28)



Appendice B

Nomenclatura

In questa sezione è riportata la nomenclatura usata in questo libro e in generale nei problemi di Visione Artificiale.

K Matrice dei parametri Intrinseci (vedi 8.5), anche indicata con A da diversi autori;

R Matrice di Rotazione (vedi eq. (8.15));

E Matrice Essenziale (vedi eq. (9.41));

F Matrice Fondamentale (vedi eq. (9.45));

P Matrice Proiettiva (vedi eq. (8.18));

Π Matrice di Permutazione (vedi eq. (A.3));

ku, kv Lunghezza focale in pixel (vedi eq. (8.3));

kγ Fattore di Skew, raramente usato;

W,H Dimensione dell’immagine;

u0, v0 Principal Point ;

ϑ Angolo di Beccheggio;

γ Angolo di Imbardata;

ρ Angolo di Rollio.

In this section nomenclature commonly used in artificial vision are reported.

K Matrix of Intrinsic Parameters (see eq. (8.5)), and sometimes it is referred as A;

R Rotation Matrix (see eq. (8.15));

E Essential Matrix (see eq. (9.41));

F Fundamental Matrix (see eq. (9.45));

P Camera Matrix (see eq. (8.18));

Π Permutation Matrix (see eq. (A.3));

ku, kv Horizontal and Vertical focal lenghts in pixel dimension (see eq. (8.3));

kγ Skew Factor, rarely used;

W,H Image size in pixel unit;

u0, v0 Principal Point (the orthogonal projection of the optical center onto the image plane) coordinates in pixel unit;

ϑ Pitch angle;

γ Yaw angle;

ρ Roll angle.
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