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Capitolo 1

Vehicle Dynamic

La conoscenza accurata del modello del veicolo è la parte determinante per permettere un controllo più preciso del veicolo
stesso.

Esistono svariati tipi di veicoli e ognuno ha un modello che può essere categorizzato più o meno bene in modelli standard.
I modelli più diffusi sono quello di Ackerman con la presenza di ruote sterzanti, Skid-Steer dove non esiste uno sterzo ma si
usa la differenza di rotazione delle ruote nei due assi, e altri.

1.1 Modello del pneumatico

Il modello del pneumatico è la parte più importante e più difficile da gestire del modello di un veicolo [PoAE06].

1.2 Uniciclo

Un uniciclo è un ‘veicolo’ formato da una sola ruota orientabile. La sua configurazione è totalmente descritta dai parametri

q =
[
x y θ

]>
dove (x, y) sono le coordinate cartesiane della ruota e θ l’orientazione della ruota rispetto agli assi.

1.3 Fondamenti del moto dei veicoli

In generale, in assenza di slittamenti, il veicolo esegue una traiettoria circolare, il quale centro di rotazione istantaneo (ICR)
è il punto di incontro delle perpendicolari ai vettori di velocità delle singole ruote.

Se tuttavia l’angolo di deriva (slip angle β) è basso (solitamente questo vuole dire velocità del veicolo bassa) e il passo
del veicolo L (distanza tra i due assi delle ruote) piccolo rispetto al raggio di curvatura R, il veicolo segue una traiettoria
circolare dove il vettore velocità di ogni singola ruota coincide con la ruota stessa (αr = 0 e αf = 0): il centro di rotazione è
l’incrocio delle perpendicolari alle ruote stesse (fig. 1.1).

Figura 1.1: Simplified model for a two-axle vehicle: geometric Bicycle Model. Modello semplificato del veicolo.

Nel caso di veicolo di 4 ruote, se le ruote sterzanti restano tra loro parallele, cade l’ipotesi di mancanza di slittamento.
Per evitare lo slittamento le due ruote sterzanti devono assumere due angoli leggermente differenti [AB].

Da semplici considerazioni geometriche è possibile collegare il raggio di curvatura κ all’angolo che assumono le ruote
sterzanti del veicolo δ (in diverse pubblicazioni tale angolo è indicato con ψ):

κ(s) =
tan δ(s)

L
(1.1)
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4 CAPITOLO 1. VEHICLE DYNAMIC

Tale angolo è chiamato Ackerman Angle, vehicle’s steering angle o wheel angle. Tale relazione introduce il modello del biciclo
(fig. 1.1), dove le 4 ruote dell’auto vengono compresse in due ruote solamente (single-track model), compattando le ruote
dello stesso asse.

È da notare che normalmente il raggio di curvatura è approssimato perpendicolare nel centro di massa nel caso di modello
dinamico e all’asse posteriore nel caso del modello cinematico.

In entrambi i casi, la connessione tra l’angolo dello sterzo δw e curvatura κ potrebbe essere non lineare (esiste una relazione
biunivoca che lega δ con δw, e per come è costruito lo sterzo di Ackermann tale relazione normalmente è lineare) anche nel
caso semplice del modello del biciclo.

Nel caso di angoli piccoli è facile trovare in letteratura [Won01, Wid02] una versione linearizzata dell’equazione 1.1:

δ(s) ≈ L

R
(1.2)

Un altra versione è quella del modello di veicolo bitraccia (figura 1.2) dove l’angolo delle due ruote sterzanti vale

tan δo(s) =
L

R+ B
2

tan δi(s) =
L

R− B
2

(1.3)

dove B è la distanza delle ruote sullo stesso asse, δo è l’angolo della ruota esterna e δi l’angolo della ruota interna alla curva.

L’equazione 1.3 può essere riscritta come

cot δo(s)− cot δi(s) =
B

L
(1.4)

Questa condizione è nota come Ackerman condition[Jaz09] o Jeantaud condition.

Per semplicità normalmente si usa l’equazione 1.1 che fornisce il valor medio dei due angoli, ma la deviazione dovuta
a questa approssimazione può essere non trascurabile. Se si vuole tenere conto del modello completo (double track model)
l’equazione 1.1 può essere riscritta in termine dell’angolo interno:

κ =
2 tan δi

2L+B tan |δi|
(1.5)

Se si considera il legame tra δw e δi, il fatto che il centro di rotazione è supposto sull’asse posteriore, risulta evidente
come sia difficile legare δw a κ.

Figura 1.2: Modello “bitraccia” del veicolo. Steering geometry for a road vehicle (Wong)

1.3.1 Ascissa curvilinea

ds/dt = v quindi ds = vdt

1.3.2 Sistemi di riferimento

Le coordinate mondo, solitamente ENU (Est Nord Up), sistema di riferimento assoluto. Il sistema di riferimento sensori e
il sistema di riferimento veicolo. Questi due sistemi di riferimento sono differenti in quanto uno è rigidamente attaccato al
veicolo e l’altro attaccato alle ruote.



D
RA
FT

1.3. FONDAMENTI DEL MOTO DEI VEICOLI 5

Figura 1.3: Kinematic Bicycle Model. Modello semplificato del veicolo.

1.3.3 Curvatura

Il concetto di curvatura è il concetto fondamentale del controllo laterale dei veicoli. L’unità di misura sono [rad]/[m] e si
misura lungo l’ascissa curvilinea.

sia f(t) = (x(t), y(t)) traiettoria, curva espressa in forma parametrica. La curvatura κ(t) si calcola come

κ(t) =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3/2

(1.6)

1.3.4 Cinematica dei veicoli

Uno dei modelli piu semplici da capire è quello della simple car [LaV06] (un elenco dei sinonimi di tale modello è elencato
sotto). Verrà utilizzato il modello cinematico del biciclo, lasciando la trattazione del modello dinamico alla sezione successiva.
Immaginiamo il veicolo come un corpo rigido che si muove su un piano e rappresentiamo lo stato del veicolo come q = (x, y, θ).

Definiamo s lo spazio percorso sull’arco di circonferenza dal centro di massa del veicolo (o del dentro dell’asse posteriore),
θ(s) è l’angolo che assume il veicolo (heading) rispetto al sistema di riferimento, κ(s) = 1

R(s) = dθ
ds la variazione della direzione

del veicolo θ ovvero la curvatura in un punto dato che cambia in base alla posizione linearmente κ(s) = κ0 +σs. La sharpness
σ = dκ

ds è la variazione della curvatura rispetto alla distanza s percorsa sulla curva. κ0 è la curvatura iniziale, mentre θ0

è l’angolo iniziale. Siccome si suppone il veicolo a velocità costante, usare s o t risulta indifferente (a meno di un fattore
moltiplicativo ds = vdt).

Per piccoli variazioni di spazio (o tempo) il veicolo (il centro di massa/asse centrale posteriore) si muoverà nella direzione
in cui è orientato.

Quello che viene chiamato modello cinematico del biciclo, o Ackermann kinematic model, o modello CC car (Continous
Curvature Car [FS04] o anche continuous-steering car [LaV06]), usando la 1.1, è un sistema differenziale:

ẋ = cos θ
ẏ = sin θ

θ̇ = κ
κ̇ = σ

(1.7)

dove la notazione (̇) indica la derivata dello spazio percorso ds. Il passaggio tra derivate dello spazio e derivate del tempo è
immediato e legato alla velocità v(t). Esplicitando θ̇:

θ̇ = κ(s) = κ0 + σs (1.8)

e conseguentemente

θ(s) =
1

2
σs2 + κ0s+ θ0 (1.9)

È infine da notare che κ̇ secondo l’equazione 1.1 vale

σ = κ̇ =
δ̇

L cos2 δ
(1.10)

È chiaro pertanto che l’avere δ̇ costante non basta per avere σ costante, se non per δ piccoli.

Questo modello è valido quando le forze laterali sui pneumatici sono trascurabili, normalmente a basse velocità.
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1.3.5 Calcolo della traiettoria dal punto di vista computazionale

Come risulta evidente, mantenere nelle equazioni θ0 e κ0 complica il problema dal punto di vista computazione, e in ogni
caso l’integrale

∫
sin(s2)ds non è fornito normalmente da un calcolatore ma bisogna appoggiarsi a una funzione esterna, meno

efficiente. Per quanto riguarda l’angolo iniziale θ0 con cui il veicolo è orientato, questo rappresenta una pura rotazione del
mondo e conseguentemente tale angolo può essere sempre sottointeso (il risultato si ricava anche dalle formule di addizione
trigonometriche di seno e coseno).

Supponiamo di percorrere distanze s abbastanza piccole da poter fare l’espansione di Taylor del seno e del coseno delle
equazioni 1.7 tali che:

ẋ = cos θ(s) = 1− θ(s)2/2 + θ(s)4/24 +O(5)
ẏ = sin θ(s) = θ(s)− θ(s)3/6 + θ(s)5/120 +O(5)

(1.11)

da cui è possibile ottenere infine gli integrali come somma di polinomi. Il non inserire θ0 nell’espansione di Taylor permette
di poter considerare qualsiasi angolo iniziale senza perdere ulteriormente precisione.

Combinando la precedente con l’equazione 1.9 si ottiene:

ẋ = cos θ(s) = 1− ( 1
2σs

2 + κ0s)
2/2 + ( 1

2σs
2 + κ0s)

4/24 +O(5)
ẏ = sin θ(s) = 1

2σs
2 + κ0s− ( 1

2σs
2 + κ0s)

3/6 + ( 1
2σs

2 + κ0s)
5/120 +O(5)

(1.12)

la cui soluzione è un integrale di polinomi.
Infine è possibile anche una forma un po’ più chiusa dell’equazione, usata frequentemente in letteratura. Se si suppone di

avere oltre a θ0 = 0 anche la curvatura iniziale nulla κ0 = 0 si ha la classica equazione della clotoide espressa con gli integrali
di Fresnel:

x(s) =
∫

cos( 1
2σs

2)ds =
√

π
σC(

√
σ
π s)

y(s) =
∫

sin( 1
2σs

2)ds =
√

π
σS(

√
σ
π s)

(1.13)

dove C(S) e S(s) sono le funzioni coseno e seno di Fresnel, definite come:

S(x) = fresnels(x) =
x∫
0

sin(π2 t
2)dt

C(x) = fresnelc(x) =
x∫
0

cos(π2 t
2)dt

(1.14)

In questo modo risulta possibile usare le clotoidi solo come funzioni che collegano linee a circonferenze (curvatura iniziale zero),
circonferenze a linee (invertendo gli estremi di integrazione, curvatura finale zero), ma non è possibile collegare circonferenze
a circonferenze, tantomeno clotoidi a clotoidi.

Per completezza, mantenere κ0 porterebbe alle seguenti equazioni:∫
cos( 1

2σs
2 + κ0s)ds =

√
π
σ

(
cos

κ2
0

4σC
(
σs+κ0√
πσ

)
+ sin

κ2
0

4σS
(
σs+κ0√
πσ

))
∫

sin( 1
2σs

2 + κ0s)ds =
√

π
σ

(
cos

κ2
0

4σS
(
σs+κ0√
πσ

)
− sin

κ2
0

4σC
(
σs+κ0√
πσ

)) (1.15)

Come ultima nota, esistono delle approsimazioni con funzioni razionali all’equazione della clotoide[Hea85].

1.3.6 Movimento senza variazioni di curvatura

Per completezza valutiamo quale sarebbero le equazioni del veicolo nel caso in cui le variazioni di curvatura non siano presenti
o siano comunque trascurabili.

In questo caso le equazioni del moto sarebbero

θ(s) = θ0 + κs
ẋ = cos θ(s) = cos(θ0 + κs)
ẏ = sin θ(s) = sin(θ0 + κs)

(1.16)

con κ costante. In questo caso gli integrali sono conosciuti e valgono:

∆x =
∫

cos θ(s)ds =
sin(θ0 + κ∆s)− sin(θ0)

κ

∆y =
∫

sin θ(s)ds =
cos(θ0)− cos(θ0 + κ∆s)

κ

(1.17)

o imponendo θ0 = 0:

∆x =
∫

cos θ(s)ds =
sin(κ∆s)

κ

∆y =
∫

sin θ(s)ds =
1− cos(κ∆s)

κ

(1.18)
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Nel caso in cui κ = 0 il sistema si riconduce al classico caso di moto rettilineo uniforme

∆x =
∫

cos θ0ds = cos θ0∆s
∆y =

∫
sin θ0ds = sin θ0∆s

(1.19)

1.3.7 Trasformazioni di coordinate

Le equazioni del movimento del centro di massa (o dell’asse posteriore) nel tempo valgono:

dx = v cos θdt
dy = v sin θdt
dθ = rdt

(1.20)

Supponendo che all’inizio θ0 = 0 e che nell’istante di tempo della simulazione lo yawrate r rimanga costante, si ottengolo
le equazioni

x(t) = v
r sin rt

y(t) = v
r (1− cos rt)

θ(t) = rt
(1.21)

Il cambio di sistema di riferimento pertanto si può modellare come puro spostamento e pura rotazione. Chiaramente il
sistema a limite r → 0 tende a un moto rettilineo uniforme.

Abbiamo a questo punto a disposizione un centro di rotazione (xr, yr) istantaneo localizzato nel sistema di riferimento
corrente, e un angolo ϑ di variazione dello yaw. Prendiamo la matrice di rotazione, in modo da capire dove il generico punto
(x, y) del mondo finisce rispetto al preesistente sistema di riferimento:

x′ = cosϑ(x− xr)− sinϑ(y − yr) + xr = cosϑx− sinϑy + xr(1− cosϑ) + yr sinϑ
y′ = sinϑ(x− xr) + cosϑ(y − yr) + yr = sinϑx+ cosϑy + yr(1− cosϑ)− xr sinϑ

(1.22)

1.3.8 Mondo tridimensionale

L’equazione (??) può essere generalizzata nel caso di veicolo che si muove in uno spazio tridimensionale. In questo sistema
di riferimento è necessario conoscere l’orientazione del veicolo rispetto agli altri assi.

1.4 Dynamic Vehicle Model

Figura 1.4: Dynamic Bicycle Model

Il modello del biciclo semplificato non tiene conto della dinamica e delle forze laterali effettive che incidono sul veicolo.
L’ipotesi che è stata usata è che la velocità delle ruote (anteriori e posteriori) è diretta esattamente lungo la loro direzione.
Quello presentato finora viene chiamato Modello Cinematico del veicolo. Ora viene presentato il modello dinamico. L’obiet-
tivo e’ quello di ottenere un modello dinamico del veicolo, che poi linearizzato, fornisca una stima leggermente piu accurata
del moto del veicolo.

A velocità elevate, l’ipotesi che il vettore forza di ogni ruota sia nella direzione della ruota stessa, non è più valida [Raj06].
In questo caso, invece di un modello cinematico, deve essere introdotto un modello dinamico, il quale ha delle variabili interne
in più con una loro dinamica dipendente dal tempo.

In figura 1.4, δ è l’angolo delle ruote sterzanti, v il vettore velocità del centro di massa (con le sue due componenti
proiettate sull’asse del veicolo e perpendicolari ad esso), β è l’angolo di deriva (lo slip angle, l’angolo tra il vettore velocità
e la direzione del veicolo) del centro di massa, e αf e αr l’angolo di deriva delle singole ruote (angolo tra il vettore veloctà
nelle ruote e l’angolo delle ruote stesso).
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1.4.1 Ackermann Steering Model con deriva: Steady-State curve

Da sistemare: prima modello dinamico e poi Steady-State come approssimazione.
Tree coordinate bastano per descrivere il moto di un veicolo: X, Y e ψ. (X,Y ) sono le coordinate inerziali del centro di

massa, mentre ψ descrive l’orientazione del veicolo. La velocità del centro di massa del veicolo è indicata con v e forma un
angolo β rispetto all’asse longitudinale del veicolo stesso.

Il modello di veicolo a 3 parametri acquisisce il parametro β. La variabile β è la nuova variabile interna dipendente dal
tempo e dal moto. Gli angoli αr e αf sono gli angoli che formano il vettore velocità delle singole ruote rispetto all’asse del
veicolo. Istantaneamente il veicolo esegue una rotazione centrato nel punto di incontro della perpendicolare di tali velocità.

r

r−


2

L , 0 

X

Y

x , y ICR

 f

 f−


2

Figura 1.5: Centro di rotazione istantaneo.

Dall’analisi geometrica della figura 1.5 si evince che:

xICR =
L

1− cotαr tan(αf + δ)
yICR = − cotαrxICR (1.23)

Eseguendo diverse semplificazioni (forzando per esempio R perpendicolare al veicolo nel centro di massa) si ottiene

δ ' L

R
+ αf − αr (1.24)

L’angolo δ, necessario per affrontare una curva, ora è funzione non solo del raggio di curvatura R (misurato questa volta nel
centro di massa), ma anche degli angoli di deriva delle singole ruote. Gli angoli αf e αr sono funzioni dalle forze laterali che
agiscono sui rispettivi pneumatici.

L’angolo β viene chiamato angolo di deriva (slip angle) e rappresenta l’angolo fra l’asse del veicolo e la velocità di
avanzamento v:

β = arctan

(
lr√

R2 − l2r

)
(1.25)

La dinamica del veicolo è descritta da 3 equazioni di bilanciamento:∑
Fx = max∑
Fy = may∑
τx = Ixxαx

(1.26)

L’angolo ψ è chiamato heading angle del veicolo. L’angolo di spostamento diventa pertanto γ = ψ + β:

(tan δf − tan δr) cosβ =
lf + lr
R

(1.27)

Si può approssimare lo yaw rate del veicolo, a velocità basse, con v/R ovvero

ψ̇ =
v

R
(1.28)

ovvero

ψ̇ =
v cosβ

lf + lr
(tan δf − tan δr) (1.29)

Le equazioni del moto diventano con questo angolo aggiuntivo γ = δ + β:

Ẋ = v cos γ = v cos (ψ + β)

Ẏ = v sin γ = v sin (ψ + β)

ψ̇ = v cos β
lf+lr

(tan δf − tan δr)
(1.30)
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Questo modello ha 3 ingressi: δf , δr e v. L’angolo β può essere ricavato da

β = arctan

(
lf tan δr + lr tan δf

lr + lf

)
(1.31)

Questa equazione vale per il modelo del biciclo.
Ipotizzando la strada piatta (non c’è un angolo di rollio), è possibile applicare la seconda legge di Newton lungo l’asse y

del veicolo, ovvero la forza centrifuga applicata alla vettura Fc = mRθ̇2 = m
v2x
R sul centro di massa deve essere bilanciata

dalla risposta laterale dei pneumatici [Gil92, Wid02]:

Fyf + Fyr = Fc = may (1.32)

dove ay è l’accelerazione inerziale del veicolo nel centro di gravità in direzione dell’asse y e Fyf , Fyr sono le forze laterali
sulle gomme anteriori e posteriori. Nel caso di un veicolo formato da 4 ruote è necessario esprimere tutte le 4 forze, ma si
possono supporre uguali le forze agenti sulle due ruote posteriori e anteriori e sommare in un unico termine ciascuna. Due
termini contribuiscono ad ay: l’accelerazione ÿ dovuta al moto lungo l’asse delle y e l’accelerazione centripetra vxψ̇ ovvero

ay = ÿ + vxψ̇.
Per la conservazione del momento angolare:

Izψ̈ = Fyf lf − Fyrlr (1.33)

Per il Gillespie l’equazione sopra può essere approssimata per piccoli angoli e la cui soluzione fornisce:

Fyr = m
lfv

2
x

LR
Fyf = m

lrv
2
x

LR
(1.34)

e si ottiene l’equazione steady-state:

Fyf + Fyr = m
v2x
L

lfFyf = lrFyr
(1.35)

La risposta dei pneumatici (la Tyre Stifness) è complessa e dipende da moltissimi fattori.
Risultati sperimentali mostrano che la forza laterale è proporzionale allo ‘slip angle’ per angoli piccoli. É infatti possibile

definire anche uno ‘slip angle’ per pneumatico, ovvero l’angolo tra l’orientazione effettiva della ruota e la direzione del vettore
velocità sulla ruota stessa:

αf = δf − θfV (1.36)

dove θfV è l’angolo del vettore velocità, δf l’angolo della ruota e αf ‘slip angle’. Per l’angolo posteriore l’equazione è simile,
con il valore δr = 0 imposto per costruzione.

In generale la risposta dei pneumatici si modella con una espansione in serie di Taylor (questi valori sono empirici,
dipendenti da tantissimi parametri):

Fyf = 2Cαfαf
Fyr = 2Cαrαr

(1.37)

esplicitando il contributo fornito dalle due ruote per asse. É possibile trovare questa relazione senza il 2 a denominatore,
incorporato nella costante C. La quantità Cαf è chiamata ‘cornering stifness’.

Le sequenti relazioni possono essere usate per calcolare θfV e θrV :

tan θV f =
ẏ + lf ψ̇

ẋ
(1.38)

tan θV r =
ẏ − lrψ̇
ẋ

(1.39)

Per piccoli angoli tan θ ≈ θ.
Unendo tutte queste relazioni tra loro si ottiene:
Due termini contribuiscono alle accelerazioni
Il modello a 2 DOF, il modello a 3 DOF o i modelli a gradi di libertà superiori. Il modello a 7 parametri tiene conto della

dinamica verticale del veicolo. In questo caso le forze verticali agenti sulle ruote cambiano nel tempo.
Il modello a 2 DOF con slip angle e yaw rate o velocità lateriale e yaw rate.
Il modello a 3 DOF con slip angle, yaw rate, roll angle.
Siano Fx e Fy le forze longitudinali e laterali che agiscono sul centro di gravità del veicolo. Allo stesso modo Fx· e Fy·

le forze longitudinali e laterali che agiscono sulle ruote, rispetto alla direzione del veicolo in relazione con Fl· e Fc· forze
longitudinali e laterali sulle ruote, in rispetto alla direzione della ruota stessa:

Fy = Fl sin δ + Fc cos δ
Fx = Fl cos δ − Fc sin δ

(1.40)
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Si ipotezza un carico costante su tutte le ruote (per esempio non si tiene conto dei fenomeni che accadono quando il
veicolo accelera o rallenta, spostando a causa del momemnto di inerzia, il peso tra il davanti e il dietro del veicolo). In questo
caso Fzf,l, Fzf,r, Fzr,l, Fzr,r sono supposti costanti nel tempo. Fz, il carico normale per ruota (?).

Il modello dinamico, per il modello a 4 ruote, assume pertanto questi 3 vincoli (modello a 3 gradi di libertà)
L’idea e’ quella di calcolare la derivata prima di vy e r in funzione di vy ed r solamente. Equazione con già la proiezione

delle forze sugli assi corretti

m(ẍ− ẏψ̇) = −Fxf cos δf + Fyf sin δf + Fxr
m(ÿ + ẋψ̇) = Fyf cos δf − Fxf sin δf + Fyr
Izψ̈ = lf (Fyf cos δf − Fxf sin δf )− LrFyr

(1.41)

con gli F relativi alla ruota anteriore contributi diretti nella sua direzione (vedi figura). Ovvero, supponendo Fxr = Fxf = 0
:

ẏ =
Fyf

m cos δf +
Fyf

r sin δf − ẋψ̇
ψ̈ =

lf
Iz
Fyf cos δf − Lr

Iz
Fyr

(1.42)

solito modello lineare (Ok, 2 ruote compattate in una):

Fyf = −Cαfαf
Fyr = −Cαrαr

(1.43)

bla bla bla si ottiene [
v̇y
ṙ

]
= A

[
vy
r

]
+ Bδf (1.44)

Moto del centro di gravità:

Ẋ = ẋ cosψ − ẏ sinψ

Ẏ = ẋ sinψ + ẏ cosψ

ψ̇ = r

(1.45)

2 DOF
Un modello semplificato

may = Fyf cos δf + Fyr
Iz ṙ = lfFyf cos δf − lrFyr

(1.46)

e lo slip angle β approssimato come

β = arctan

(
uy
ux

)
≈ uy
ux

(1.47)

Altrimenti:

mẍ = mẏψ̇ + Fxf,l + Fxf,r + Fxr,l + Fxr,r
mÿ = −mẋψ̇ + Fyf,l + Fyf,r + Fyr,l + Fyr,r
Iψ̈ = lf (Fyf,l + Fyf,r)− rf (Fyr,l + Fyr,r) + B

2 (−Fxf,l + Fxf,r − Fxr,l + Fxr,r)

(1.48)

Il moto del centro di massa del veicolo, in coordinate assolute, è

Ẏ = ẋ sinψ + ẏ cosψ

Ẋ = ẋ cosψ − ẏ sinψ
(1.49)

Esperimenti mostrano che in prima approssimazione queste forze sono proporzionali allo ‘slip-angle’.
L’angolo di scorrimento per pneumatico α è l’angolo tra la direzione della ruota e la direzione della ruota stessa, come

α = arctan
vc
vl

(1.50)

Fyf = Cαf (δ − θV f ) (1.51)

Il peso è distribuito in ugual misura davanti e dietro secondo l’equazione

Fzf =
lfmg

2(lf + lr)
Fzr =

lrmg

2(lf + lr)
(1.52)

divisa per ruota. In questo caso si può usare la formula magica del pneumatico (Magic Formula tire model).
Altri fenomenti è la latenza che impiega il pneumatico ad esercitare la forza.
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Saltando la trattazione (si può trovare in tantissimi articoli, per esempio in [YRG03]) che solitamente viene fatta in questa
fase, si arriva ad ottenere un sistema del tipo: [

β̇(t)

θ̈(t)

]
= A

[
β(t)

θ̇(t)

]
+ Bδ(t) (1.53)

dove vengono linearizzate tutte le componenti. Tale modello è valido per velocità elevate ma per angoli di deriva piccoli e
per regioni lineari di risposta del pneumatico.

È da notare che alcuni articoli mostrano come sia possibile usare la velocità laterale vy come parametro interno, piuttosto
che β.

Lo stesso rajamani dopo aver mostrato l’equazione dinamica in funzione di velocità laterale e yawrate la esprime in
funzione dello slip-angle e yawrate.

Equazione dinamica slip angle e yaw rate che cita W.F. Milliken and D.L. Milliken Race Car Vehicle Dy- namics, SAE
International, ISBN: 1560915269, August 1995.

1.4.2 Steady-State: SottoSterzo e Sovrasterzo

È possibile sviluppare un modello cinematico leggermente migliore, tenendo conto della dinamica del veicolo, ma trascurando
l’angolo di deriva (modello Steady-State). In letteratura [Wid02, Raj06, Won01] viene mostrato come arrivare all’equazione
della curvatura 1.1 in presenza di sottosterzo o sovrasterzo dovuto all’interazione tra le ruote e la strada. Dall’equazione 1.24
si ottiene

δ(s) =
L

R
+ αf − αr =

L

R
+KV

v2
x

R
(1.54)

o

κ(s) =
δ(s)

L+KV v2
x

(1.55)

dove si linearizzano i contributi introdotti dalla velocità vx alla traiettoria eseguita dal veicolo. Il coefficiente KV è il
gradiente di sottosterzo, con KV > 0 sottosterzante, KV = 0 neutro e KV < 0 sovrasterzante.

Per i veicoli sovrasterzanti è anche possibile stimare una velocità critica, sopra la quale il veicolo diventa ingovernabile:

vcrit =

√
− L

KV
(1.56)

1.4.3 Determinazione dei parametri del veicolo

Dall’equazione 1.55 e dal fatto che δ(s) = f(δw(s)) dove solitamente f non è conosciuta in forma chiusa, si può dire che esiste
una equazione generica k tale che

κ(s) = k(δw(s), vx(s)) (1.57)

tale equazione può essere generata con spline o con espansione in serie, partendo per esempio dalle informazioni prodotte
da un sensore di yaw-rate r = ∂θ/∂t.

Sia r il valore di yaw-rate1 tale che t = 2π
r tempo necessario per eseguire una rivoluzione completa su una circonferenza

di perimetro s = 2πR = vxt = 2π
r vx per cui

κ =
r

vx
r = κvx (1.58)

ovvero, in forma differenziale:

k(δw, vx) =
∂θ

∂s
=

1

vx

∂θ

∂t
(1.59)

Siccome tale relazione vale sempre, è sempre possibile stimare r dalla conoscenza di κ, spostando il problema della
conoscenza di κ dalla conoscenza di r.

Dall’equazione 1.58 e da 1.55 è possibile calcolare il sistema lineare omogeneo

Lr +Kusv
2
xr −m0vx − δwm1vx − δ3

wm3vx = 0 (1.60)

avendo usando una espansione in serie di Taylor δ = − tan δ0 + δwm1 + δ3
wm3. che minimizzato ritorna i parametri richiesti

Il secondo metodo per stimare κ si basa sulla considerazione che anche l’accelerazione laterale ay =
v2x
R = v2

xk è funzione
della curvatura:

k(δw, vx) =
ay
v2
x

(1.61)

1È da notare che r sono rad/s, mentre k sono rad/m
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Un ultima tecnica per calcolare la curvatura eseguita dal veicolo consiste nell’utilizzare la differenza di velocità delle ruote
sullo stesso asso del veicolo stesso, in quanto esse percorrono nello stesso tempo circonferenze di raggio differente. La velocità
di ogni punto del veicolo dipende dalla distanza dal centro di rotazione istantaneo:

~vi = ~r × ~Ri (1.62)

c.g.

x , y ICR

rv

v

Figura 1.6: Centro di massa istantaneo e vettori velocità.

In condizione di deriva trascurabile, la differenza di velocità tra le due ruote posteriori (non sterzanti) vale

∆v = Br (1.63)

e di conseguenza:

k =
2

B

vo − vi
vo + vi

(1.64)

Da notare l’indipedenza di k dall’unità con cui v è misurata. Questa relazione vale per le ruote posteriori: le ruote anteriori
sterzanti ruotano a una velocità dipendente anche dall’angolo di sterzata (la proiezione del vettore velocità tangente) e perciò
meno fruibile.

L’ultimo metodo che si può valutare è usare un GPS sufficientemente preciso per calcolare R direttamente.

1.5 Momento di Inerzia

Uno laterale durante le curve che coinvolge principalmente l’angolo di rollio, e uno longitudinale durante l’accelerazione e le
frenate che coinvolge l’angolo di beccheggio.

L’angolo di imbardata del veicolo é espressione diretta invece delle forze delle gomme sul terreno che attuano l’effettiva
rotazione del mezzo.

1.6 Forze che agiscono sul veicolo

Aerodynamic drag, Aerodynamic lift (forza che spinge verso l’alto il veicolo, differente dal davanti e dal dietro)
Vertical vibration (?)
BRaking force, Vertical Force, Lateral Force, Motive Force (solo sulle ruote motrici)

1.7 Argomenti Avanzati

Moto in salita o discesa

Effetti del vento, in rettilineo e in curvatura (aerodynamic drag force)

Effetti da road bank angle: mÿ = Fyr + Fyf + Fbank.

1.8 Longitudinal Vehicle Dynamics

Quando il veicolo è in condizioni ideali di moto rettilineo uniforme e il motore riesce ad erogare abbastanza coppia la velocità
del veicolo è direttamente proporzionale alla velocità angolare delle ruote

Vx = reffωw (1.65)
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Il transiente tuttavia, quando ax 6= 0, presenta diverse considerazioni. Tali valori sono importanti perchè quando la
coppia fornita dal motore viene controbilanciata dalle forze esterne il veicolo non cambierà la velocità e non arriverà mai alla
velocità desiderata. Quando le forze che agiscono sul veicolo bilanciano la forza di trazione prodotta dal motore il veicolo
smetterà di accelerare. Tale posizione è ovviamente dinamica e dipende dallo stato precedente del sistema.

Resta il fatto che la velocità del motore, anche trascurando la presenza di eventuali riduttori (es. cambio), deve variare
in maniera continua e tale variazione è limitata dalla centralina del motore.

Se si analizza il moto di un veicolo su un generico piano inclinato la compensazione delle forze fornisce

ma = Fxf + Fxr − Faero −Rxf −Rxr −mg sin θ (1.66)

ovvero

ma = Fx −Rx − Faero (1.67)

dove Fx sono le forze complessive longitudinali applicate dalle ruote, Rx è la resistenza al rotolamento e Faero la Aerodynamic
Drag Force.

L’Aerodynamic Drag Froce Faero viene solitamente modellata come

Faero =
1

2
ρCdAF (Vx + Vwind)

2 = Da(Vx + Vwind)
2 (1.68)

Questo fattore si può stimare attraverso un coast-down test.
Le forze longitudinali sulle ruote (longitudinal tire forces) Fxf e Fxr dipendono da diversi fattori. Sono differenti in

accelerazione o decelerazione e sono funzioni lineari della velocità in accelerazione, e inversamente proporzionali in frenata.
Queste forze sono le forze primarie che contribuiscono alla trasmissione della potenza dal motore al moto del veicolo.

La resistenza al rotolamento Rxf e Rxr sono anche essa funzione di diversi fattori, compresa la velocità del veicolo, la
restitenza areodinamica, l’inclinazione della strada. In prima approsimazione si può dire che tali valori siano proporzionali
alle forze normali che vengono appplicate su ogni ruota:

Rxf +Rxr ∝ Fzf + Fzr = Crollmg (1.69)

dove f è definito come rolling resistance coefficient. Essendo la forza normale questa è influenzata da diversi fattori oltre al
peso della vettura, tra i quali inclinazione della strada, beccheggio del veicolo, spinta areodinamica verso il basso e altre.

Modello a N parametri (Rollio)
In condizioni perfette di non slittamento della ruota, la differenza tra la velocità del veicolo e la velocità di rotazione delle

ruote è imprigionata elasticamente nel pneumatico.
La differenza tra la velocità longitudinale del veicolo Vx e la velocità equivalente reffωw è chiamata Longitudinal Slip.

La longitudinal slip ratio è definita come

σx =
reffωw − Vx

Vx
(1.70)

durante la frenata, mentre

σx =
reffωw − Vx
reffωw

(1.71)

durante l’accelerazione.
Il raggio efficace della ruota reff dipende dalla forza normale applicata sulla ruota e dal raggio a riposo.
Quando il rapporto è basso si ottiene che la forza applicata sulle ruote è proporzionale al rapporto:

Fxf = Cσfσxf
Fxr = Cσrσxr

(1.72)

dove Cσf e Cσr sono chiamati parametri della longitudinal tyre stiffness delle ruote anteriori e posteriori rispettivamente.

1.8.1 Modello semplificato

La decelerazione di un veicolo alla velocità v dipende dalla resistenza areodinamica e dagli atriti del sistema. È possibile
pertanto con una espansione in serie di Taylor, nel caso di veicolo in folle e di moto pianeggiante eseguire il coast-down test :

a =
dv

dt
= k2v

2 + k1v + k0 (1.73)

da cui consegue che ∫
adv =

arctan
(
k2v+ 1

2k1
∆

)
∆

(1.74)
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da cui

v =
tan

(
arctan

(
k2v0+ 1

2k1
∆

)
+ t∆

)
∆− 1

2k1

k2
(1.75)

avendo indicato con ∆ = 1
2

√
4k0k2 − k2

1.
Il caso più comune k0 = 0 semplifica il problema:

v =
v0k1

e−tk1k2v0 + e−tk1k1 − k2v0
(1.76)

con v0 la velocità iniziale.
Infine il caso limite k1 = 0

v =
v0

1− k2v0t
(1.77)

Nel caso di accelerazione si può approssimare
dv

dt
= ke−τt (1.78)

da cui

v = k
1− e−τt

τ
+ v0 (1.79)

da cui a limite
k

τ
= v1 − v0 (1.80)
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Capitolo 2

Vehicle Positioning

La fusione dei dati inerziali con dati provenienti da altri sensori (GPS per esempio) permette di localizzare il veicolo in
maniera precisa all’interno dell’ambiente.

Il moto di un oggetto nello spazio è descritto da tre posizioni e tre orientazioni. Assumendo che l’oggetto sia un corpo
rigido

In quasi tutti gli aspetti dei sistemi di navigazione....

2.1 Sistemi di Riferimento

2.1.1 Sistema di riferimento Inerziale

Il sistema di riferimento interziale, o i-frame, é il principale sistema di riferimento in geodesicadasa, centrato con il centro
della Terra e allineato con le stelle fisse (Earth Centered Inertial Frame, ECI).

2.1.2 Sistema di Riferimento Earth-Centered-Earth-Fixed

ECEF, o e-frame, è fissato con la Terra e ha la sua origine nel centro della Terra stessa. L’asse x è orientato lungo il meridiano
di Greenwich e l’asse z è rivolto verso il polo nord. L’asse y completa la terna attraverso la legge della mano destra. Un punto
nel sistema di riferimento ECEF può essere visto sia in coordinate cartesiane (x,y,z) che coordinate elissoidali (latitudime
geodetica, longitudine geodetica e altezza dall’elissoide).

2.1.3 Sistema di Riferimento WGS-84

Longitude, Latitude e altezza sul livello medio del mare.

2.1.4 Sistema di Riferimento Navigazione

n-frame o local frame l-frame: 1 asse che punta nord, un asse che punta est e un asse che punta in alto (left handed) NED o
in basso (right handed) ENU/NEU.

2.1.5 Sistema di Riferimento Veicolo

Il Body Frame, b-frame, x punta in fronte al veicolo, y punta a destra e z in basso e di conseguenza le definizioni di yaw,pitch
e roll.

Altrimenti x punta in fronte, y punta a sinistra e z in alto.

2.1.6 Sistema di Riferimento Sensore

2.2 Sensori Inerziali

Il sensore inerziale è caratterizzato da diversi parametri, una parte coinvolti dell’interpretazione del segnale oltre a quelli
di posizionamento. I sensori inerziali devono convertire, sopratuttto i MEMS, il segnale inerziale in un segnale digitale per
essere processato dal calcolatore. Questa conversione raramente è lineare.

2.2.1 Accelerometro

Un accelerometro misura tutti i tipi di accelerazioni che vengono dalla gravitazione o dal veicolo.

15
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2.2.2 Giroscopio

2.2.3 Errori

Noise Bias Scale Factor Scale factor asymmetry Acceleratin sensitive terms Input axis misalignment System misalignment

Gli errrori del giroscopio e dell’accelerometro dipendono dal bias, dal fattore di scala e dall’misallineamento delle
componenti. Oltre a questo è presente rumore.

Fattore di scala e bias possono essere tempo varianti, portando l’equazione a

x̃(t) = sx(t)x(t) + bx(t) (2.1)

In generale, più che tempo varianti, sono principalmente varianti in base alla temperatura, specialmente i MEMS. Una parte
dipende dalla temperatura, una dal tempo.

2.2.4 Odometria

Attraverso l’analisi delle ruote del veicolo è possibile stimare la velocità e la rotazione eseguita dal veicolo. Questi valori non
sono di fatto rappresentativi di un sensore inerziale, ma possono essere affetti da slittamente.

L’equazione che lega la variazione della velocità delle ruote in un veicolo e lo yaw-rate è

r =
1

B
(vr − vl) (2.2)

e la velocità del centro di massa

v =
1

2
(vr + vl) (2.3)

Dall’analisi differenziale della velocità delle ruote è possibile stimare in maniera compatta velocità longitudinale e angolare:[
vx
r

]
=

[
1
2

1
2

− 1
B

1
B

] [
vl
vr

]
(2.4)

dove r viene stimata positiva in senso antiorario.

Da queste equazione è possibile creare una osservazione del tipo

vr = v +Br/2
vl = v −Br/2 (2.5)

Gli errori nell’odometria sono nell’errata stima del raggio della ruota e nella misura della distanza tra il punto di contatto
delle ruote appartenenti allo stesso asse:

vr = v+B(1+ζB)r
2(1+ζr)

vl = v−B(1+ζB)r
2(1+ζl)

(2.6)

La velocità delle ruote anteriori è alterata dall’angolo di sterzo tale che

vr − vl = rB cos δ (2.7)

La presenza dello slip-angle fa cambiare leggermente l’equazione della velocità delle singole ruote (la velocità longitudinale
del centro di massa infatti si riduce a v cosβ), ma mantiene inalterato il contributo differenziale.

2.2.5 Calibrazione Statica

Viene misurato l’output dei sensori in condizioni statiche. In questo caso il bias del giroscopio viene facilmente rimosso,
mediando le letture su un intervallo di tempo sufficiente.

L’accelerometro invece deve mostrare che ‖a‖ = g. In questo caso, per risolvere il problema è necessario porre l’accelero-
metro in 6 pose differenti per calibrare adeguatamente il sensore.

2.2.6 Calibrazione Dinamica

Per natura, i sensori MEMS possono variare gli errori in maniera dinamica nel tempo, principalmente a causa della
temperatura.

Nello stato di Kalman è possibile introdurre come variabili nascoste tutte quelle che riguardano gli errori sul sistema
stesso.
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2.3 GPS

2.4 Varianza di Allan

Un problema che si incontra nell’analisi di sensori inerziali è riuscire a stimare se il valor medio di un dato segnale subisca un
cambiamento nel tempo e con quale frequenza. David Allan ha affrontato questo problema per la stabilità degli orologi dei
GPS definendo cos̀ı un metodo chiamato Allan Variance (AVAR). Questa tecnica permette di stimare quanto il valor medio
di un segnale cambia nel tempo a diversi valori di integrazione.

Data una sequenza sufficientemente lunga in cui un determinato segnale viene campionato, questa può sempre essere
divisa in parti lunghe τ secondi. Da ogni parte è possibile estrarre la media µi,τ e dal confronto della variazione delle medie
successive è possibile ottenere una misura:

AVAR2(τ) =
1

2(nτ − 1)

n−1∑
i=1

(µi+1,τ − µi,τ )2 (2.8)

Al cambiare di τ cambia il valore della varianza ed è pertanto possibile graficare AVAR in funzione di τ .
Con tempi di integrazione piccoli la varianza di Allan è dominata dal rumore del sensore. Integrando su tempi più lunghi

la varianza diminuisce, fino a un certo punto in cui la varianza ricomincia a salire. Questo comportamento è dovuto alla
presenza del rumore di Random Walk (RRW ) del sensore. Il valore di bias instability, per definizione, è il punto più basso
della curva della varianza di Allan.

2.5 Fusione GPS e Inerziale

2.5.1 Uncoupled Systems

GPS e INS lavorano separatamente. L’inerziale viene usato per restituire una posizione a un frame rate più elevato che con
il GPS, partendo dall’ultimo dato GPS arrivato.

2.5.2 Loosely Coupled Integration

L’uscita del GPS (con presenza di rumore colorato) viene fusa con i dati inerziali e vengono stimati gli errori del sistema
inerziale. Rumore Colorato dal GPS.

2.5.3 Tightly Coupled Integration

Richiede l’output degli pseudointervalli e fasi del GPS.

2.5.4 Direct Integration

2.5.5 Indirect Integration
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Elementi di analisi per controllo veicoli

Valgono gli stessi elementi di analisi mostrati nel libro di visione artificiale. Oltre a questi bisogna mostrare alcune equazioni
di curve utili per la cinematica diretta o inversa di veicoli.

3.1 La trasformata Z

La trasformata Z costituisce il metodo matematico di base per trasformare il segnale campionato in una equazione numerica
iterativa, nota come equazione alle differenze finite, facilmente implementabile su computer. Si vedrà, inoltre, che esiste una
relazione tra trasformata di Laplace e trasformata Z per cui si potrà operare una trasformazione tra segnali tempo-continui in
segnali tempo-discreti. In questo modo, ad esempio, una funzione tempo-continuo di un filtro passa-basso si potrà trasformare
in una equazione alle differenze finite e quindi si potrà realizzare un filtro passa-basso digitale con le stesse caratteristiche
di quello analogico. La differenza sta ovviamente nel fatto che quello analogico è realizzato da un circuito hardware mentre
quello digitale è realizzato mediante un software.

Si consideri una funzione tempo-continua f(t) per t > 0. Indichiamo con f∗(t) la funzione nel tempo ottenuta dal
campionamento della funzione f(t) da impulsi di Dirac di ampiezza unitaria e durata infinitesima e periodo Tc.

Definizione 1 La f∗(t) si può scrivere:

f∗(t) =

∞∑
n=0

f(nTc)δ(t− nTc) (3.1)

La frequenza fc = 1/Tc è detta frequenza di campionamento e deve rispettare il teorema di Shannon. Pertanto deve
essere: fc > 2fmax. Dove con fmax si è indicata la massima frequenza contenuta nel segnale da campionare f(t).

La trasformata di Laplace del segnale campionato f∗(t), avendo posto z = esTc si scrive come

F (z) = F ∗(s) =

∞∑
n=0

f(nTc) · z−n (3.2)

ed è la trasformata Z del segnale campionato f∗(t)
La trasformata Z gode delle seguenti proprietà, totalmente equivalenti alle proprietà della trasformata di Laplace:

linearità La trasformata di una combinazione lineare di due o più funzioni è uguale alla combinazione lineare delle
trasformate delle singole funzioni.

Z[Af1(n) +Bf2(n)] = AF1(z) +BF2(z)

.

ritardo se F (z) è la trasformata della funzione f(n), la trasformata della funzione ritardata di K unità vale:

Z[f(n− k)] = z−K · F (z)

valore iniziale
f(0) = lim

n→0
f(n) = lim

z→∞
F (z)

valore finale

f(∞) = lim
n→∞

f(n) = lim
z→1

(
z − 1

z
· F (z)

)

18
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3.1.1 I filtri digitali

I filtri digitali, noti anche come filtri numerici, operano su sequenze numeriche per generare una nuova sequenza numerica.
I filtri digitali si possono classificare in due categorie:

• Filtri a risposta infinita IIR (Infinite Impulse Response)

• Filtri a risposta finita FIR (Finite Impulse Response)

Nei filtri ricorsivi IIR il segnale di uscita è ottenuto come combinazione lineare di un numero limitato di segnali di
ingresso e di uscita. Ovvero:

y(n) =

N∑
i=0

an · x(n− i)−
M∑
i=1

bn · y(n− i) (3.3)

dove si vede che il contributo all’uscita corrente dipende sia dalla storia passata degli ingressi, ma anche dalla storia passata
delle uscite. La risposta all’impulso di Dirac è una sequenza che tende asintoticamente a zero.

Nei filtri non ricorsivi FIR l’uscita dipende solo dalla storia passata degli ingressi:

y(n) =

N∑
i=0

an · x(n− i) (3.4)

La risposta all’impulso di Dirac è una risposta che diventa comunque zero dopo un tempo finito.
La conversione dal dominio di Laplace s (continuo) a quello della trasformata z (discreto) e viceversa si ottiene attraverso

la relazione z = esTc e la sua inversa s = 1
Tc

ln z, dove Tc è il tempo di campionamento in secondi.
Essendo tuttavia tale sostituzione complessa da eseguire, per ottenere un filtro digitale si parte comunque dalla trasformata

di Laplace di un filtro analogico e, attraverso una trasformazione approssimata, si arriva alla Trasformata Zeta. Allo stesso
modo se si applica la trasformazione z = ejωTc è possibile limitare la trasformata al cerchio unitario e poter lavorare cos̀ı in
frequenza come trasformata tempo-discreto di Fourier (DTFT).

Una di queste tecniche di trasformazione approssimata è la trasformazione bilineare che si ricava integrando le equazioni
differenziali mediante il metodo dei trapezi (di Eulero). Un filtro digitale H(Z) deriva da un filtro analogico H(s) con la
seguente sostituzione (e l’inversa):

s→ 2

Tc

z − 1

z + 1
z → 2 + sTc

2− sTc
(3.5)

questa sostituzione ha diversi pregi (conserva la stabilità del filtro analogico per esempio) e la mappatura del piano s in z è
quantomeno univoca.

3.1.2 Funzione di Trasferimento per funzioni tempo discreto

Sia il Linear Constant Coefficient Difference rappresentante l’evoluzione del sistema

N∑
p=0

y[n− p]αp =

M∑
q=0

x[n− q]βq (3.6)

normalmente normalizzato con α0 = 1, in modo da poter scrivere la funzione di trasferimento come

y[n] =
M∑
q=0

x[n− q]βq −
N∑
p=1

y[n− p]αp (3.7)

in modo da esplicitare l’uscita corrente y[n] in funzione degli ingressi e delle uscite passate.
La trasformata Z dell’equazione (3.6) é

Y (z)

N∑
p=0

z−pαp = X(z)

M∑
q=0

z−qβq (3.8)

da cui la funzione di trasferimento

H(z) =
Y (z)

X(z)
=

∑M
q=0 z

−qβq∑N
p=0 z

−pαp
(3.9)

La funzione di trasferimento può essere scritta anche nella forma di poli-zeri:

H(z) =

∏M
i=0(1− qiz−1)∏N
j=0(1− pjz−1)

(3.10)
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3.2 Modellazione di Black Box

Vettore di ingressi u(t) variabile in uscita y(t)
Impulse model FIR model IIR model

3.3 Curve di Bézier
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Figura 3.1: Esempi di basi di Bernstein, dal primo al terzo ordine.

Le curve di Bézier sono una particolare classe di curve interpolanti, dove il rapporto tra i punti di controllo e la forma
rende abbastanza intuitiva la generazione della curva stessa. La curva è totalmente contenuta nell’inviluppo convesso dei
punti di controllo.

Siano bi,n(t) basi di Bernstein

bi,n(t) =
(n
i

)
(1− t)n−iti (3.11)

Una curva di Bézier di ordine k è definita da k punti di controllo, una curva di Bézier è costruita come somma pesata dei
polinomi di Bernstein con i punti di controllo Pi:

B(t) =

n∑
i=0

Pibi,n(t) (3.12)

La curva interpolante passa per i soli punti P0 e Pn mentre non c’è nessuna garanzia che passi per i restanti punti.
La valutazione delle curve di Bézier si può fare in maniera ricorsiva:

β
(0)
i (t) = Pi

β
(j)
i (t) = β

(j−1)
i (1− t) + β

(j−1)
i+1 t

(3.13)

Il concetto di interpolare funzioni interpolanti è chiamato algoritmo di de Casteljau e permette un metodo stabile dal punto
di vista numerico per valutare i punti della curva e della sua tangente.

3.4 Spline

Dal punto di vista matematico le Spline sono menzionate per la prima volta da Isaac Jacob Schoenberg nel 1946.
Le funzioni spline sono funzioni polinomiali definite a tratti: per un intervallo delimitato la funzione spline assume

esattamente l’equazione di un polinomio e per tratti diversi può essere che tale polinomio abbia parametri differenti. Nei
punti di raccordo tra i diversi tratti la funzione spline assume un grado di smoothness elevato.

Le funzioni spline possono essere usate sia per interpolare dati che per eseguire regressioni a curve di grado limitato.
Una spline può essere definita come una funzione

S : [t0, tk]→ R (3.14)

dove l’intervallo [t0, tk] può essere scomposto in k sottointervalli [t0, t1] . . . [tk−1, tk]. Gli elementi {ti} sono chiamati break-
points. All’interno di ogni intervallo [ti−1, ti] la funzione s(t) coincide con quella di un polinomio pi(t). Il grado più elevato
di tutti questi polinomi definisce il grado della spline. Per questa ragione S(t) ∈ Cn−1[t0, tk]. È altres̀ı diffuso indicare una
spline di grado n, ovvero formata da polinomi di grado n, come spline di ordine n+ 1.

Una spline è definita pertanto da n + 1 parametri per ognuno dei k polinomi, uno per ognuno dei k intervalli, per un
totale di k(n+ 1) incognite.

Per permettere il grado di smoothness elevato, una spline di grado n è una funzione continua differenziabile fino al grado
n− 1 su tutti i punti interni e sul limite dell’intervallo le derivate fino al grado n− 1 devono essere uguali. Questo requisito
impone i seguenti vincoli n(k − 1)

p
(j)
i−1(ti) = p

(j)
i (ti) (3.15)
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con j = 0, . . . , n− 1 e i = 1, . . . , k − 1.
Le funzioni spline interpolanti si costruiscono usando come dato in ingresso il valore ci con i = 0, . . . , n che tali funzioni

devono avere nei limiti degli intervalli (knots), fornendo di fatto k + 1 vincoli:

ci = S(ti) = pi(ti) (3.16)

Nel complesso ci sono più incognite che vincoli: i restanti n − 1 vincoli sulle derivate devono essere imposti in maniera
arbitraria. A seconda del problema può tornare utile poter fissare le derivate del primo polinomio, dell’ultimo e cos̀ı via.

Per ricavare l’equazione della spline in questo modo è necessario pertanto risolvere un sistema lineare in n(k+1) incognite.
È da notare che ogni funzione spline S(t) di ordine n e formata da k intervalli può essere espressa sotto forma di somma

di basi opportune come

S(t) =

n+k+1∑
i=1

βiBi(t) (3.17)

dove Bi(t) = (t − ti)n per i = 1, . . . , k e Bi+k(t) = ti−1 per i = 1, . . . , n − 1. In altre parole lo spazio di tutte le funzioni
spline è uno spazio lineare con Bi(t) basi della funzione spline. Il primo a usare basi per definire Spline è stato lo stesso
Schoenberg nel 1946.

Nel caso di intervalli uniformi, esiste un modo molto compatto e numericamente stabile per rappresentare le spline sotto
forma di opportune basi.

Tali funzioni, chiamate B-Spline, vengono generate da opportune funzioni basi, dette di de Boor, costruite in maniera
ricorsiva.

Per definire una funzione spline sono necessari k+1 punti di controllo P0, . . . Pk per i k intervalli. Le B-Spline permettono
di definire, come per quelle di Bézier, l’equazione della curva attraverso opportuni punti di controllo

S(t) =

k∑
i=0

Ni,n(t)Pi (3.18)

con Ni,n base di ordine n ovvero polinomio di grado n − 1 e Pi i punti di controllo (punti di de Boor). Eccetto per i gradi
più bassi, anche in questo caso non c’è garanzia che la curva passi per i punti di controllo.

E sia
T = (a, . . . , a︸ ︷︷ ︸

n+1

, tn+1, . . . , tl−n−1︸ ︷︷ ︸
k−n

, b, . . . , b︸ ︷︷ ︸
n+1

) (3.19)

il vettore nodale (knot vector) di l + 1 elementi, con l = n+ k + 1, in generale non periodico a nodi aggiuntivi coincidenti.
Dei n+k− 1 punti di controllo, k− 1 sono esterni a sinistra, n−k+ 1 sono interni e i restanti k− 1 sono esterni a destra.
Normalmente la curva è limitata, ovvero t0 = t1 = . . . = tn = 0 e tl−n = tl−n+1 = . . . = tl = 1.
Un vettore di nodi T è chiamato uniforme se tutti i nodi interni sono equispaziati, altrimenti è chiamato non uniforme.
Le B-Spline uniformi su [0, 1] pertanto hanno i nodi in

ti = 0 i ∈ [0, n]

tj+n = j
k−n−1 j ∈ [1, k − n]

ti = 1 i ∈ [l − n, l]
(3.20)

La base di ordine n è costruita come convoluzione tra la base di ordine n− 1 e la base di primo ordine, ovvero

Ni,n(t) = (Ni,n−1 ∗Ni,1) (t) =

∫ t

t−1

Ni,n−1(x)dx (3.21)

dove Ni,1(t) è la funzione box, funzione costate a tratti
Le basi Ni,n possono essere anche costruite in maniera ricorsiva:

Ni,1(t) =

{
1 ti ≤ t < ti+1

0 otherwise

Ni,n(t) = t−ti
ti+n−1−tiNi,n−1(t) + ti+n−t

ti+n−ti+1
Ni+1,n−1(t)

(3.22)

Questa è la versione dell’algoritmo di de Casteljau applicata alle B-Spline. In questo caso gli elementi {ti} sono chiamati
knots.

Dopo k − 1 stadi di ricorsione, si possono ottenere della basi Bik nella forma

Bik =

i+k−1∑
j=1

bjkXj (3.23)
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Figura 3.2: Alcune basi di De Boor, dal primo al terzo ordine.

Il vantaggio di queste basi è che possiedono un ‘supporto locale’: una modifica di una parte della curva coinvolge un
intervallo limitato. Una B-Spline di grado n (ordine n+ 1) ha supporto pari a n+ 1 punti. Questo permette di costruire la
spline usando una matrice diagonale dominante.

È importante notare che
Per ogni sottointervallo la somma di tutte le funzioni non nulle equivale all’unità. Partizionano l’unità∑

i

Bi,1(t) = 1 (3.24)

per ogni t ∈ [t0, tk].
Positività Bi,1(t) ≥ 0.
Proprietà supporto locale Bi,k(t) = 0 ∀t /∈ [ti, ti+k].
Derivata (Cox-de Boor)

∂

∂t
Ni,n(t) =

n

ti+n − ti
Ni,n−1(t)− n

ti+n+1 − ti+ 1
Ni+1,n−1(t) (3.25)

Nel caso delle B-Spline, i parametri addizionali sono forniti da knots aggiuntivi. Per definire completamente una B-Spline
infatti, sono necessari n+ k + 1 punti di controllo.

L’algoritmo di de Boor viene usato perché è numericamente stabile.
Nel caso delle B-Spline il sistema lineare da risolvere è più semplice e la matrice da invertire è diagonale dominante,

matrice che si presta a risolutori ad hoc molto efficienti.

3.5 Cubic Spiral

3.6 Linear Segment with Parabolic Blending

Traiettorie molto comuni in ambito instrustriali sono le LSPB dove l’attuatore è limitato in velocità.
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Controllo laterale

Il controllo di un veicolo si può normalmente disaccoppiare in controllo laterale (sterzo) e longitudinale (acceleratore/freno).
Buoni articoli da leggere su questo argomento sono [Sni09].

4.0.1 Controllo dello sterzo

Normalmente lo sterzo viene comandato con un set point di angolo il quale, attraverso un controllore PID adeguato e una
PWM, viene trasformato in coppia da inviare a un motore DC accoppiato con lo sterzo.

4.0.2 Modello dello Sterzo

Un controllo basato su sterzo implica l’analisi di diversi trasduttori che collegano il controllo all’angolo che viene eseguito dalle
ruote stesse. Normalmente il controllo automatico dello sterzo richiede l’utilizzo di un motore DC, controllato in voltaggio.

4.1 Controllo veicolo basato su sterzo

Esaminiamo il caso di un generico veicolo (FWS Front Wheel Steering) nello stato iniziale di moto curvilineo uniforme (il
moto rettilineo è un caso particolare di moto curvilineo con raggio di curvatura infinito) con velocità v e direzione iniziale
θ0:

Y

X

θ

v

Figura 4.1: Centro di massa del veicolo in spostamento e rotazione

All’istante t−1 viene dato comando allo sterzo in modo da cambiare la direzione del veicolo da θ0 a θ1, a fronte di una
variazione dell’angolo del volante da δw0

a δw1
:

w

tt 0 t 1

w , 0

w ,1

Figura 4.2: Transizione dell’angolo del volante

23
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In questo caso, dopo un certo intervallo dovuto ai ritardi di controllo, viene eseguita una rotazione a velocità costante (in
prima approssimazione, dipende molto dal tipo di controllo dello sterzo implementato) per variare la direzione del veicolo.

Nella dinamica del veicolo pertanto esistono due situazioni: una dove il volante è mantenuto a un angolo costante e una
dove l’angolo dello sterzo varia (in prima approssimazione) linearmente.

Quando l’angolo di sterzo (e di conseguenza l’angolo tra il vettore velocità del veicolo con il sistema di riferimento) è
costante, il veicolo si muove lungo una circonferenza di raggio R. Per questa ragione se il passaggio da δw0 a δw1 fosse
instantaneo la traiettoria eseguita dal veicolo sarebbe composta esattamente da due archi di circonferenza. Quando però la
transizione non è trascurabile il veicolo esegue archi di clotoide.

4.1.1 Modello dello Sterzo

Motore Brushless
Inerzia dello sterzo
Junior’s controller is adapted from Stanley, but has been enhanced significantly to directly control steering torque, instead

of just steering angle (as was the case for Stanley). The controller has been tuned using reinforcement learning methods.
http://archive.darpa.mil/grandchallenge/TechPapers/Stanford.pdf

4.1.2 Clotoide

Per un veicolo in movimento la curvatura κ = 1/R è sempre definita e limitata (non esistono automobili capaci di ruotare
su loro stesse) mentre il raggio di curvatura R tende a infinito nei tratti rettilinei: per questa ragione è preferibile esprimere
le relazioni in funzione di κ piuttosto che R.

La clotoide è una linea curva la cui curvatura κ cambia linearmente a velocità σ:

κ̇ = σ (4.1)

σ è chiamata sharpness della clotoide.
In questo documento la notazione κ̇ indicherà una derivata di una funzione (in questo caso κ) rispetto allo spazio s

(normalmente in fisica tale notazione indica invece la derivata rispetto al tempo, ma si può passare sempre in derivate del
tempo facendo la semplice sostituzione ds = vdt).

Un veicolo è limitato meccanicamente sia nel raggio di curvatura |κ| < κmax sia fisicamente nella sharpness |σ| < σmax.

4.2 Pure Pursuit

Il metodo Pure Pursuit rappresenta uno dei metodi più semplici...

4.3 Metodo di DeLuca-Sampson

Funzione di errore di posizione ed errore di angolo.

4.3.1 Metodo di Stanley

4.4 Controllo basato sull’inversione della cinematica

Una curva nel piano Cartesiano può essere descritta dalla funzione

p : [u0, u1] → R2

u → [x(u), y(u)]
> (4.2)

dove [u0, u1] è un intervallo chiuso. p(u) è una curva regolare se ṗ(u) è continua a tratti e ṗ 6= 0 ∀u ∈ [u0, u1].
La lunghezza dell’arco, ascissa curvilinea, definita s può essere calcolata come

f : [u0, u1] → R
u → s =

∫ u
u0
‖ṗ(ξ)‖dξ (4.3)

4.5 Controllo Cinematico

[DLOS98]



D
RA
FT

Capitolo 5

Controllo longitudinale
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Capitolo 6

Nomenclature

L The distance between the front and rear axles in meters
B The distance between wheels on the same axle in meters
δ Wheel angle (some authors use ψ)
β Slip Angle
κ Curvature, rad/m
σ Curve Sharpness, rad/m2

δw Steering Wheel Angle
R Curve Radius in meters (ρ could be also used)
θ Vehicle orientation in the reference frame, Absolute Yaw angle
r Yaw-Rate, rad/s

θ̇ Yaw-Rate, rad/m
v Speed, m/s
a Acceleration, m/s2

KV Understeer Gradient (Kus)

26
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