
Java reflection

alberto ferrari – university of parma

05/10/17 alberto ferrari - university of parma 2

reflection

● metaprogramming is a programming technique in which computer
programs have the ability to treat programs as their data

– a program can be designed to read, generate, analyse or transform
other programs, and even modify itself while running

– the language in which the metaprogram is written is called the
metalanguage

– the ability of a programming language to be its own metalanguage is
called reflection(1)

● reflection is the ability of a computer program to examine, introspect,
and modify its own structure and behavior at runtime

(1) http://www.giulioangiani.com/programming/metaprogramming

05/10/17 alberto ferrari - university of parma 3

uses of reflection

● reflection is used by programs to examine or modify the runtime
behavior of applications

● is a powerful technique and can enable applications to perform
operations which would otherwise be impossible

● an application may make use of external, user-defined classes by
creating instances of objects using their names

● Class Browsers and Visual Development Environments

– a class browser needs to be able to enumerate the members of
classes

● Debuggers and Test Tools

– debuggers need to be able to examine private members on classes

05/10/17 alberto ferrari - university of parma 4

drawbacks

● reflection is powerful, but should not be used indiscriminately

● if it is possible to perform an operation without using reflection, then it is
preferable to avoid using it

● performance overhead

– reflective operations have slower performance than their non-
reflective counterparts

● security restrictions

– reflection requires a runtime permission which may not be present
when running under a security manager

● exposure of internals

– reflection allows code to perform operations that would be illegal in
non-reflective code, such as accessing private fields and methods

05/10/17 alberto ferrari - university of parma 5

Java reflection

● for every type of object, the Java virtual machine instantiates an
immutable instance of java.lang.Class which provides methods to
examine the runtime properties of the object including its members and
type information

● Class also provides the ability to create new classes and objects

● it is the entry point for all of the Reflection APIs

05/10/17 alberto ferrari - university of parma 6

Class methods

05/10/17 alberto ferrari - university of parma 7

example: user defined Dummy class
public class Dummy {

private String foo;
protected int bar;
public char baz;
public Dummy() {

foo = "You can't modify me, I'm private :)";
bar = 1;
baz = 'x';

}
public String getFoo() {

return "foo value: "+foo;
}
protected void incBar() {

bar++;
}
private char setAndGetBaz(char c) {

baz=c;
return baz;

}
}

05/10/17 alberto ferrari - university of parma 8

typical Java programmer

public static void main(String[] args) {

String result;
Dummy d; // Object declaration
d = new Dummy(); // Object instantiation
result = d.getFoo(); // Call object method
System.out.println(result);

}

> foo value: You can't modify me, I'm private :)

05/10/17 alberto ferrari - university of parma 9

hacking (white hat)
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
...
try {

Class<?> D = Class.forName("Dummy"); // Get the class
Dummy dwh; // Object declaration
dwh = (Dummy) D.newInstance(); // Object instantiation
Method method = D.getMethod("getFoo", null);// Get method
result = (String) method.invoke(dwh, null); // Call method
System.out.println(result);

} catch (Exception e) {
e.printStackTrace();

}

> foo value: You can't modify me, I'm private :)

05/10/17 alberto ferrari - university of parma 10

hacking
Dummy d = new Dummy;
System.out.println("class name = " +
 d.getClass().getSimpleName()); // Get class name
System.out.println("--- Fields ---");
// Get all declared fields
for (Field s : d.getClass().getDeclaredFields()) {

System.out.println(s);
}
System.out.println("--- Methods ---");
Method[] methods = d.getClass().getDeclaredMethods();
// Get all declared methods
for (Method m : methods) {

System.out.println(m);
}

> class name = Dummy
> --- Fields ---
> private java.lang.String Dummy.foo
> protected int Dummy.bar
> public char Dummy.baz
> --- Methods ---
> protected void Dummy.incBar()
> private char Dummy.setAndGetBaz(char)
> public java.lang.String Dummy.getFoo()

05/10/17 alberto ferrari - university of parma 11

hacking (black hat)
Dummy obj = new Dummy();
Field objField;
try {

objField = obj.getClass().getDeclaredField("foo");
objField.setAccessible(true); // set field foo accessible
// without previous line:java.lang.IllegalAccessException:
// Class Main can not access a member of class Dummy
// with modifiers "private"
System.out.println("The value of foo is: " +

 objField.get(obj)); // get filed value
objField.set(obj, " ... modified :(");// set field value

} catch (Exception e) {
System.out.println("Exception: " + e);

}
System.out.println(obj.getFoo());

> The value of foo is: You can't modify me, I'm private :)
> foo value: ... modified :(

05/10/17 alberto ferrari - university of parma 12

references
● Oracle – The reflection API - https://docs.oracle.com/javase/tutorial/reflect/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

