18/12/2017 Progetto Corda

Progetto Corda

Alberto Ferrari

Alberto Ferrari
Ingegneria dell'Informazione, UniPR

file:///E:/cordaNoWeb/lez/array.html#3 1/33

18/12/2017 Progetto Corda

Array (ordinamento)

http://www.ce.unipr.it/~aferrari/ 2/33

file:///E:/cordaNoWeb/lez/array.html#3 2/33

18/12/2017 Progetto Corda

Sort

L'ordinamento degli elementi di un array avviene considerando il valore della
chiave primaria

- Nei nostri esempi le chiavi saranno numeri interi e la relazione d'ordine
totale sara <=

Oltre alla valutazione dell'efficienza saranno anche considerate le proprieta di

- stabilita: un algoritmo di ordinamento e stabile se non altera I'ordine
relativo di elementi dell'array aventi la stessa chiave primaria

- sul posto: un algoritmo di ordinamento opera sul posto se la dimensione

delle strutture ausiliarie di cui necessita e indipendente dal numero di
elementi dell'array da ordinare

http://www.ce.unipr.it/~aferrari/ 3/33

file://[E:/cordaNoWeb/lez/array.html#3

3/33

18/12/2017 Progetto Corda

Insertion sort

http://www.ce.unipr.it/~aferrari/ 4/33

file:///E:/cordaNoWeb/lez/array.html#3 4/33

18/12/2017 Progetto Corda

Insertion sort

Al generico passo i l'array e considerato diviso in

- una sequenza di destinazione a[0] ... a[i - 1] gia
ordinata 6 53 187 2 4

- una sequenza di origine a[i] ... a[n - 1] ancora da
ordinare

- L'obiettivo e di inserire il valore contenuto in afi] al
posto giusto nella sequenza di destinazione facendolo scivolare a ritroso,
iIn modo da ridurre la sequenza di origine di un elemento

http://www.ce.unipr.it/~aferrari/ 5/33

file:///E:/cordaNoWeb/lez/array.html#3 5/33

18/12/2017 Progetto Corda

Esercizio 1

Scrivere un programma di ordinamento di un array utilizzando l'algoritmo
insertion sort

- void insertsort(int af], int n)
Calcolare la complessita computazionale

- nel caso ottimo, pessimo e medio

- Definire la classe di complessita asintotica nel caso medio
L'algoritmo prodotto e stabile? Opera sul posto?

http://www.ce.unipr.it/~aferrari/ 6/33

file:///E:/cordaNoWeb/lez/array.html#3 6/33

18/12/2017 Progetto Corda

Insertion sort

6 5 3 1 8 7 2 4

http://www.ce.unipr.it/~aferrari/ 7/33

file:///E:/cordaNoWeb/lez/array.html#3 7/33

18/12/2017 Progetto Corda

swap function

void swap(int *x, int *y) {
int temp = *x;

X = ty;
*y = temp;
}
http://www.ce.unipr.it/~aferrari/ 8/33

file:///E:/cordaNoWeb/lez/array.html#3 8/33

18/12/2017 Progetto Corda

Insertion sortin C

void insertsort(int array[], int size) {
int i, j, app;
for (i=1; i<size; i++) {
app = array[i];
j = 1-1;
while (j>=0 & array[j]>app) {
array[j+1] = array[j];

J--5
}
array[j+1] = app;
}
return;
}
http://www.ce.unipr.it/~aferrari/ 9/33

file:///E:/cordaNoWeb/lez/array.html#3 9/33

18/12/2017 Progetto Corda

selection sort

http://www.ce.unipr.it/~aferrari/ 10/33

file:///E:/cordaNoWeb/lez/array.html#3 10/33

18/12/2017 Progetto Corda

selection sort

Selection sort e un algoritmo di ordinamento iterativo

che, come insertion sort, al generico passo i vede l'array 8
diviso in =

una sequenza di destinazione a[0] ... a[i - 1] gia ordinata >

una sequenza di origine a[i] ... a[n - 1] ancora da ordinare S
L'obiettivo & scambiare il valore minimo della seconda

sequenza con il valore contenuto in afi] in modo da O
ridurre la sequenza di origine di un elemento

http://www.ce.unipr.it/~aferrari/ 11/33

file:///E:/cordaNoWeb/lez/array.html#3 11/33

18/12/2017 Progetto Corda

Esercizio 2

Scrivere un programma di ordinamento di un array utilizzando l'algoritmo
selection sort

- void selectsort(int af], int n)
Calcolare la complessita computazionale

- nel caso ottimo, pessimo e medio

- Definire la classe di complessita asintotica nel caso medio
L'algoritmo prodotto e stabile? Opera sul posto?

http://www.ce.unipr.it/~aferrari/ 12/33

file:///E:/cordaNoWeb/lez/array.html#3 12/33

18/12/2017 Progetto Corda

selection sortin C

void selectsort(int array[],int size){
int i,j,min;
for (i=0; i<size; i++) {
min = i;
for (j=i+l; j<size; j++)
if (array[min]> array[j])
min = j;
if (min != 1)
swap(&array[i],&array[min]);

http://www.ce.unipr.it/~aferrari/

file:///E:/cordaNoWeb/lez/array.html#3

13/33

13/33

18/12/2017 Progetto Corda

bubble sort

http://www.ce.unipr.it/~aferrari/ 14/33

file:///E:/cordaNoWeb/lez/array.html#3 14/33

18/12/2017 Progetto Corda

Bubblesort

bubblesort € un algoritmo di ordinamento iterativo che,
come insertsort, al generico passo i vede l'array diviso in

una sequenza di destinazione a[0] ... a[i - 1] gia ordinata 6 5318724
una sequenza di origine ali] ... a[n - 1] ancora da ordinare

L'obiettivo e di far emergere (come se fosse una
bollicina) il valore minimo della sequenza di origine
confrontando e scambiando sistematicamente i valori di elementi adiacenti a

partire dalla fine dell'array, in modo da ridurre la sequenza di origine di un
elemento

http://www.ce.unipr.it/~aferrari/ 15/33

file:///E:/cordaNoWeb/lez/array.html#3 15/33

18/12/2017 Progetto Corda

Esercizio 3

Scrivere un programma di ordinamento di un array utilizzando l'algoritmo
bubble sort

- void bubblesort(int af], int n)
Calcolare la complessita computazionale

- nel caso ottimo, pessimo e medio

- Definire la classe di complessita asintotica nel caso medio
L'algoritmo prodotto e stabile? Opera sul posto?

http://www.ce.unipr.it/~aferrari/ 16/33

file:///E:/cordaNoWeb/lez/array.html#3 16/33

18/12/2017 Progetto Corda

Migliorabile?

Se in una iterazione non avvengono piu scambi ???
Esercizio 4

modificare 'algoritmo

rivalutare la complessita computazionale

http://www.ce.unipr.it/~aferrari/ 17/33

file:///E:/cordaNoWeb/lez/array.html#3 17/33

18/12/2017 Progetto Corda

bubble sortin C

void bubble sort(int array[], int size) {
int i,last;
for (last = size - 1; last > 9; last--){
for (i=0; i<last; i++){
if (array[i]>array[i+l])
swap(&array[i],&array[i+l]);

http://www.ce.unipr.it/~aferrari/ 18/33

file:///E:/cordaNoWeb/lez/array.html#3 18/33

18/12/2017 Progetto Corda

merge sort

http://www.ce.unipr.it/~aferrari/ 19/33

file:///E:/cordaNoWeb/lez/array.html#3 19/33

18/12/2017 Progetto Corda

Merge sort

Algoritmo di ordinamento basato su confronti che utilizza un processo di
risoluzione ricorsivo, sfruttando la tecnica del Divide et Impera, che consiste

nella suddivisione deI problema in sottoproblemi della stessa natura di
dimensione via via piu piccola.

http://www.ce.unipr.it/~aferrari/

20/33
file:///E:/cordaNoWeb/lez/array.html#3

20/33

18/12/2017 Progetto Corda

Merge sort

Se la sequenza da ordinare ha lunghezza 0 oppure 1, e gia ordinata.
Altrimenti:

La sequenza viene divisa (divide) in due meta (se la sequenza contiene un
numero dispari di elementi, viene divisa in due sottosequenze di cui la prima
ha un elemento in piu della seconda)

Ognuna di queste sottosequenze viene ordinata, applicando ricorsivamente
I'algoritmo(impera)

Le due sottosequenze ordinate vengono fuse (combina).

Per fare questo, si estrae ripetutamente il minimo delle due sottosequenze e
lo si pone nella sequenza in uscita, che risultera ordinata

http://www.ce.unipr.it/~aferrari/ 21/33

file:///E:/cordaNoWeb/lez/array.html#3 21/33

18/12/2017 Progetto Corda

Divide et impera

gt ne

~""Ad ogni passo ““,

g5 NAGN PR
Costo « i lalista viene divisa :

G|D|A|H|E|F|Cc|B m"“ e
“,*‘u.l -mu.umll' ""“ltllum.mn.....uu-l"'“

Ty,
",

"'.:."“'lu,l £ ."1.
COStO & 4'"/4 "!.'“‘""'I iy, .“n:nllln‘:‘
"”ﬁ‘ LT e

» Merge: O(n)
Confronti sempre tra
primi valori

Divide... et impera

http://www.ce.unipr.it/~aferrari/

file:///E:/cordaNoWeb/lez/array.html#3

2 i

22/33

22/33

18/12/2017 Progetto Corda

Esempio

- Partenza:[103 152149 0]

- l'algoritmo procede ricorsivamente dividendola in meta successive, fino ad
arrivare alle coppie [10 3] [15 2] [1 4] [9 O]

+ A questo punto si fondono (merge) in maniera ordinata gli elementi, riunendo
le meta: [310][2 15][1 4] [0 9]

- Al passo successivo, si fondono le coppie di array di due elementi: [2 3 10 15]
[01409]

- Infine, fondendo le due sequenze di quattro elementi, si ottiene la sequenza
ordinata:[0123491015]

http://www.ce.unipr.it/~aferrari/ 23/33

file:///E:/cordaNoWeb/lez/array.html#3 23/33

18/12/2017 Progetto Corda

merge sortin C

void merge sort(int array[], int left, int right) {
int center; // middle index
if(left<right) {
center = (left+right)/2;

merge _sort(array, left, center); //sort first half
merge _sort(array, center+l, right); //sort first half
merge(array, left, center, right); //merge sorted arrays
}
}
http://www.ce.unipr.it/~aferrari/ 24/33

file:///E:/cordaNoWeb/lez/array.html#3 24/33

18/12/2017 Progetto Corda

funzione merge in C

void merge(int array[], int left, int center, int right)

{
int i = left; //index first array
int j = center+l; //index second array
int k = 0; //index new temporary array
int temp[DIM ARRAY]; //temporary array

while ((i<=center) && (j<=right)) {
if (array[i] <= array[j]) { temp[k]
else { temp[k]
k++;

}

while (i<=center) { temp[k]

while (j<=right) { temp[k] = array[j]; j++; k++; }

for (k=left; k<=right; k++){ array[k] = temp[k-left]; }

array[i]; i++; }
array[j]; j++; }

array[i]; i++; k++; }

http://www.ce.unipr.it/~aferrari/ 25/33

file:///E:/cordaNoWeb/lez/array.html#3 25/33

18/12/2017 Progetto Corda

Esercizio 5

Scrivere un programma di ordinamento di un array utilizzando l'algoritmo
merge sort

- void mergesort(int af], int left, int right)
Calcolare la complessita computazionale
L'algoritmo prodotto e stabile? Opera sul posto?

http://www.ce.unipr.it/~aferrari/ 26/33

file:///E:/cordaNoWeb/lez/array.html#3 26/33

18/12/2017 Progetto Corda

Merge sort

E' stabile: il confronto tra array[i] e array[j] effettuato nella fusione ordinata
usa <=

Non opera sul posto: nella fusione usa un array di appoggio il cui numero di
elementi e proporzionale al numero di elementi dell’array da ordinare

La complessita asintotica e T (n) = O(n - log n)

http://www.ce.unipr.it/~aferrari/ 27/33

file:///E:/cordaNoWeb/lez/array.html#3 27/33

18/12/2017 Progetto Corda

quick sort

http://www.ce.unipr.it/~aferrari/ 28/33

file:///E:/cordaNoWeb/lez/array.html#3 28/33

18/12/2017 Progetto Corda

Quicksort

Quicksort e un algoritmo di ordinamento ricorsivo proposto da Hoare nel 1962

Data una porzione di un array e scelto un valore v detto pivot contenuto in
quella porzione, quicksort divide |la porzione in tre parti

- la prima composta da elementi contenenti valori <v

- la seconda (eventualmente vuota) composta da elementi contenenti valori
=y

- la terza composta da elementi contenenti valori > v
poi applica 'algoritmo stesso alla prima e alla terza parte

Quicksort determina la tripartizione effettuando degli scambi di valori > v

incontrati a partire dall'inizio della porzione di array con valori < vincontrati a

partire dalla fine della porzione di array, in modo tale da spostare i primi

\éeqlso la fine della porzione di array e gli ultimi verso l'inizio della porzione
ell'array

http://www.ce.unipr.it/~aferrari/ 29/33

file:///E:/cordaNoWeb/lez/array.html#3 29/33

18/12/2017 Progetto Corda

quick sortin C

void quick sort(int array[], int left, int right) {
int p_index; // pivot index
if(left < right) {
p_index = partition(array, left, right);
quick sort(array, left, p index-1);
quick sort(array, p_index+1l, right);

}

http://www.ce.unipr.it/~aferrari/ 30/33

file:///E:/cordaNoWeb/lez/array.html#3 30/33

18/12/2017 Progetto Corda

funzione di partizionamento in C

int partition(int array[], int left, int right) {
int pivot; //pivot
int i; //index first part
int j; //index second part
int temp;
pivot = array[left];
i = left;
j = right+1;
while(1){
do ++i; while(array[i] <= pivot && i <= right);
do --j; while(array[j] > pivot);
if(i >= j) break;
temp = array[i]; array[i] = array[]j]; array[]j] = temp;
}
temp = array[left]; array[left] = array[j]; array[j] = temp;
return j;

http://www.ce.unipr.it/~aferrari/ 31/33

file:///E:/cordaNoWeb/lez/array.html#3 31/33

18/12/2017 Progetto Corda

Quicksort

non e stabile in quanto nel confronto tra array[i] e pivot viene usato < anziché
<= e nel confronto tra array[j] e pivot viene usato > anziché >= Questo &
inevitabile al fine di ottenere una corretta tripartizione

Opera sul posto in quanto usa soltanto due variabili aggiuntive (pivot e tmp)

http://www.ce.unipr.it/~aferrari/ 32/33

file:///E:/cordaNoWeb/lez/array.html#3 32/33

18/12/2017 Progetto Corda

Alberto Ferrari
Ingegneria dell'Informazione, UniPR

file:///E:/cordaNoWeb/lez/array.html#3 33/33

http://www.ce.unipr.it/~aferrari/

