
18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 1/33

Progetto Corda

Alberto Ferrari

Alberto Ferrari
Ingegneria dell'Informazione, UniPR

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 2/33

http://www.ce.unipr.it/~aferrari/

Array (ordinamento)

2/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 3/33

Sort

http://www.ce.unipr.it/~aferrari/

L’ordinamento degli elementi di un array avviene considerando il valore della
chiave primaria

Oltre alla valutazione dell’efficienza saranno anche considerate le proprietà di

·

Nei nostri esempi le chiavi saranno numeri interi e la relazione d'ordine
totale sarà <=

-

·
stabilità: un algoritmo di ordinamento è stabile se non altera l'ordine
relativo di elementi dell'array aventi la stessa chiave primaria
sul posto: un algoritmo di ordinamento opera sul posto se la dimensione
delle strutture ausiliarie di cui necessita è indipendente dal numero di
elementi dell'array da ordinare

-

-

3/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 4/33

http://www.ce.unipr.it/~aferrari/

insertion sort

4/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 5/33

insertion sort

http://www.ce.unipr.it/~aferrari/

Al generico passo i l’array è considerato diviso in·
una sequenza di destinazione a[0] ... a[i - 1] già
ordinata
una sequenza di origine a[i] ... a[n - 1] ancora da
ordinare
L'obiettivo è di inserire il valore contenuto in a[i] al
posto giusto nella sequenza di destinazione facendolo scivolare a ritroso,
in modo da ridurre la sequenza di origine di un elemento

-

-

-

5/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 6/33

Esercizio 1

http://www.ce.unipr.it/~aferrari/

Scrivere un programma di ordinamento di un array utilizzando l’algoritmo
insertion sort

Calcolare la complessità computazionale

L’algoritmo prodotto è stabile? Opera sul posto?

·

void insertsort(int a[], int n)-
·

nel caso ottimo, pessimo e medio
Definire la classe di complessità asintotica nel caso medio

-
-

·

6/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 7/33

insertion sort

http://www.ce.unipr.it/~aferrari/ 7/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 8/33

swap function

http://www.ce.unipr.it/~aferrari/

void swap(int *x, int *y) {
 int temp = *x;
 *x = *y;
 *y = temp;
}

C

8/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 9/33

insertion sort in C

http://www.ce.unipr.it/~aferrari/

void insertsort(int array[], int size) {
 int i, j, app;
 for (i=1; i<size; i++) {
 app = array[i];
 j = i-1;
 while (j>=0 && array[j]>app) {
 array[j+1] = array[j];
 j--;
 }
 array[j+1] = app;
 }
 return;
}

C

9/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 10/33

http://www.ce.unipr.it/~aferrari/

selection sort

10/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 11/33

selection sort

http://www.ce.unipr.it/~aferrari/

Selection sort è un algoritmo di ordinamento iterativo
che, come insertion sort, al generico passo i vede l'array
diviso in
una sequenza di destinazione a[0] ... a[i - 1] già ordinata
una sequenza di origine a[i] ... a[n - 1] ancora da ordinare
L’obiettivo è scambiare il valore minimo della seconda
sequenza con il valore contenuto in a[i] in modo da
ridurre la sequenza di origine di un elemento

·

·
·
·

11/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 12/33

Esercizio 2

http://www.ce.unipr.it/~aferrari/

Scrivere un programma di ordinamento di un array utilizzando l’algoritmo
selection sort

Calcolare la complessità computazionale

L’algoritmo prodotto è stabile? Opera sul posto?

·

void selectsort(int a[], int n)-
·

nel caso ottimo, pessimo e medio
Definire la classe di complessità asintotica nel caso medio

-
-

·

12/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 13/33

selection sort in C

http://www.ce.unipr.it/~aferrari/

void selectsort(int array[],int size){
 int i,j,min;
 for (i=0; i<size; i++) {
 min = i;
 for (j=i+1; j<size; j++)
 if (array[min]> array[j])
 min = j;
 if (min != i)
 swap(&array[i],&array[min]);
 }
}

C

13/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 14/33

http://www.ce.unipr.it/~aferrari/

bubble sort

14/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 15/33

Bubblesort

http://www.ce.unipr.it/~aferrari/

bubblesort è un algoritmo di ordinamento iterativo che,
come insertsort, al generico passo i vede l'array diviso in
una sequenza di destinazione a[0] ... a[i - 1] già ordinata
una sequenza di origine a[i] ... a[n - 1] ancora da ordinare
L’obiettivo è di far emergere (come se fosse una
bollicina) il valore minimo della sequenza di origine
confrontando e scambiando sistematicamente i valori di elementi adiacenti a
partire dalla fine dell’array, in modo da ridurre la sequenza di origine di un
elemento

·

·
·
·

15/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 16/33

Esercizio 3

http://www.ce.unipr.it/~aferrari/

Scrivere un programma di ordinamento di un array utilizzando l’algoritmo
bubble sort

Calcolare la complessità computazionale

L’algoritmo prodotto è stabile? Opera sul posto?

·

void bubblesort(int a[], int n)-
·

nel caso ottimo, pessimo e medio
Definire la classe di complessità asintotica nel caso medio

-
-

·

16/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 17/33

Migliorabile?

http://www.ce.unipr.it/~aferrari/

Se in una iterazione non avvengono più scambi ???
Esercizio 4
modificare l’algoritmo
rivalutare la complessità computazionale

·
·
·
·

17/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 18/33

bubble sort in C

http://www.ce.unipr.it/~aferrari/

void bubble_sort(int array[], int size) {
 int i,last;
 for (last = size - 1; last > 0; last--){
 for (i=0; i<last; i++){
 if (array[i]>array[i+1])
 swap(&array[i],&array[i+1]);
 }
 }
}

C

18/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 19/33

http://www.ce.unipr.it/~aferrari/

merge sort

19/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 20/33

Merge sort

http://www.ce.unipr.it/~aferrari/

Algoritmo di ordinamento basato su confronti che utilizza un processo di
risoluzione ricorsivo, sfruttando la tecnica del Divide et Impera, che consiste
nella suddivisione del problema in sottoproblemi della stessa natura di
dimensione via via più piccola.

·

20/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 21/33

Merge sort

http://www.ce.unipr.it/~aferrari/

Se la sequenza da ordinare ha lunghezza 0 oppure 1, è già ordinata.
Altrimenti:
La sequenza viene divisa (divide) in due metà (se la sequenza contiene un
numero dispari di elementi, viene divisa in due sottosequenze di cui la prima
ha un elemento in più della seconda)
Ognuna di queste sottosequenze viene ordinata, applicando ricorsivamente
l'algoritmo(impera)
Le due sottosequenze ordinate vengono fuse (combina).
Per fare questo, si estrae ripetutamente il minimo delle due sottosequenze e
lo si pone nella sequenza in uscita, che risulterà ordinata

·
·
·

·

·
·

21/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 22/33

Divide et impera

http://www.ce.unipr.it/~aferrari/ 22/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 23/33

Esempio

http://www.ce.unipr.it/~aferrari/

Partenza: [10 3 15 2 1 4 9 0]
l'algoritmo procede ricorsivamente dividendola in metà successive, fino ad
arrivare alle coppie [10 3] [15 2] [1 4] [9 0]
A questo punto si fondono (merge) in maniera ordinata gli elementi, riunendo
le metà: [3 10] [2 15] [1 4] [0 9]
Al passo successivo, si fondono le coppie di array di due elementi: [2 3 10 15]
[0 1 4 9]
Infine, fondendo le due sequenze di quattro elementi, si ottiene la sequenza
ordinata: [0 1 2 3 4 9 10 15]

·
·

·

·

·

23/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 24/33

merge sort in C

http://www.ce.unipr.it/~aferrari/

void merge_sort(int array[], int left, int right) {
 int center; // middle index
 if(left<right) {
 center = (left+right)/2;
 merge_sort(array, left, center); //sort first half
 merge_sort(array, center+1, right); //sort first half
 merge(array, left, center, right); //merge sorted arrays
 }
}

C

24/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 25/33

funzione merge in C

http://www.ce.unipr.it/~aferrari/

void merge(int array[], int left, int center, int right)
{
 int i = left; //index first array
 int j = center+1; //index second array
 int k = 0; //index new temporary array
 int temp[DIM_ARRAY]; //temporary array
 while ((i<=center) && (j<=right)) {
 if (array[i] <= array[j]) { temp[k] = array[i]; i++; }
 else { temp[k] = array[j]; j++; }
 k++;
 }
 while (i<=center) { temp[k] = array[i]; i++; k++; }
 while (j<=right) { temp[k] = array[j]; j++; k++; }
 for (k=left; k<=right; k++){ array[k] = temp[k-left]; }
}

C

25/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 26/33

Esercizio 5

http://www.ce.unipr.it/~aferrari/

Scrivere un programma di ordinamento di un array utilizzando l’algoritmo
merge sort

Calcolare la complessità computazionale
L’algoritmo prodotto è stabile? Opera sul posto?

·

void mergesort(int a[], int left, int right)-
·
·

26/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 27/33

Merge sort

http://www.ce.unipr.it/~aferrari/

E' stabile: il confronto tra array[i] e array[j] effettuato nella fusione ordinata
usa <=
Non opera sul posto: nella fusione usa un array di appoggio il cui numero di
elementi è proporzionale al numero di elementi dell’array da ordinare
La complessità asintotica è T (n) = O(n · log n)

·

·

·

27/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 28/33

http://www.ce.unipr.it/~aferrari/

quick sort

28/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 29/33

Quicksort

http://www.ce.unipr.it/~aferrari/

Quicksort è un algoritmo di ordinamento ricorsivo proposto da Hoare nel 1962
Data una porzione di un array e scelto un valore v detto pivot contenuto in
quella porzione, quicksort divide la porzione in tre parti

poi applica l’algoritmo stesso alla prima e alla terza parte
Quicksort determina la tripartizione effettuando degli scambi di valori ≥ v
incontrati a partire dall’inizio della porzione di array con valori ≤ v incontrati a
partire dalla fine della porzione di array, in modo tale da spostare i primi
verso la fine della porzione di array e gli ultimi verso l’inizio della porzione
dell'array

·
·

la prima composta da elementi contenenti valori ≤ v
la seconda (eventualmente vuota) composta da elementi contenenti valori
= v
la terza composta da elementi contenenti valori ≥ v

-
-

-
·
·

29/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 30/33

quick sort in C

http://www.ce.unipr.it/~aferrari/

void quick_sort(int array[], int left, int right) {
 int p_index; // pivot index
 if(left < right) {
 p_index = partition(array, left, right);
 quick_sort(array, left, p_index-1);
 quick_sort(array, p_index+1, right);
 }
}

C

30/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 31/33

funzione di partizionamento in C

http://www.ce.unipr.it/~aferrari/

int partition(int array[], int left, int right) {
 int pivot; //pivot
 int i; //index first part
 int j; //index second part
 int temp;
 pivot = array[left];
 i = left;
 j = right+1;
 while(1){
 do ++i; while(array[i] <= pivot && i <= right);
 do --j; while(array[j] > pivot);
 if(i >= j) break;
 temp = array[i]; array[i] = array[j]; array[j] = temp;
 }
 temp = array[left]; array[left] = array[j]; array[j] = temp;
 return j;
}

C

31/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 32/33

Quicksort

http://www.ce.unipr.it/~aferrari/

non è stabile in quanto nel confronto tra array[i] e pivot viene usato < anziché
<= e nel confronto tra array[j] e pivot viene usato > anziché >= Questo è
inevitabile al fine di ottenere una corretta tripartizione
Opera sul posto in quanto usa soltanto due variabili aggiuntive (pivot e tmp)

·

·

32/33

18/12/2017 Progetto Corda

file:///E:/cordaNoWeb/lez/array.html#3 33/33

Alberto Ferrari
Ingegneria dell'Informazione, UniPR
www.ce.unipr.it/~aferrari/

http://www.ce.unipr.it/~aferrari/

