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a b s t r a c t

In the behavioral framework for continuous-time linear scalar systems, simple sufficient conditions for
the solution of the minimum-time rest-to-rest feedforward constrained control problem are provided.
The investigation of the time-optimal input–output pair reveals that the input or the output saturates
on the assigned constraints at all times except for a set of zero measure. The resulting optimal input is
composed of sequences of bang–bang functions and linear combinations of the modes associated to the
zero dynamics. This signal behavior constitutes a generalized bang–bang control that can be fruitfully
exploited for feedforward constrained regulation. Using discretization, an arbitrarily good approximation
of the optimal generalized bang–bang control is found by solving a sequence of linear programming
problems. Numerical examples are included.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recently in the control engineering literature, it has been em-
phasized that to achieve high performances in real applications,
due attention has to be paid to the constraints which all the plant
variables must comply with. In particular, the main approaches to
control system design with input and output constraints are the
following:

• Antiwindup and override feedback schemes. This is the stan-
dard approach in the practical industrial context; see, for exam-
ple, the recent book of Glattfelder and Schaufelberger (2003).
• Model predictive control. In the receding horizon strategy,
input constraints as well as output ones can be naturally con-
sidered in designing the feedback controller; see, for instance,
Maciejowski (2002).

In this paperwe address the subject of controlling a continuous-
time scalar linear system with input and output constraints by
setting a purely feedforward regulation problem to be solved in
minimum-time. We assume that the system is stable and want to
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under the direction of Editor Roberto Tempo.
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(A. Piazzi).

find a minimum-time feedforward input that brings the system
from a current rest condition to a new desired rest condition while
satisfying at all times given amplitude constraints on the input and
the output. In such away, we can naturally deal with both actuator
limitations and overshooting and undershooting requirements.
It is well known that the minimum-time feedforward control

with input constraints only is given by the so-called bang–bang
control, i.e. the input signal switches between its extreme allowed
values (Lewis & Syrmos, 1995). In a behavioral setting, this paper
shows that in the presence of both input and output constraints
the minimum-time input–output pair enjoys the property that
the saturation of the input or the output signal occurs almost
everywhere. Therefore, the optimal feedforward input is given by
a sequence of bang–bang functions and linear combinations of the
system zero modes. This type of optimal control can be viewed
as a generalized bang–bang control. For the actual computation of
this time-optimal control, the proposed idea is to discretize the
continuous-time system and to solve the resulting discrete-time
problem by means of linear programming. In fact, in the discrete-
time case, input and output constraints can be represented as
linear inequalities and the minimum number of steps needed for
a rest-to-rest transition can be found with a sequence of linear
feasibility tests.
The idea of using linear programming for solving a minimum-

time problem for linear discrete-time systems subject to ampli-
tude input constraints dates back to Zadeh (1962). Subsequently,
various contributions have appeared by focusing on some im-
provements for this discrete-time problem (Bashein, 1971; Kim &
Engell, 1994; Scott, 1986). In this paper, we prove that the optimal
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discrete-time solution converges to the optimal continuous-time
one when the sampling time approaches zero.
This article is structured as follows. In the second section the

problem of minimum-time feedforward constrained regulation
is presented for linear continuous-time systems. This is done in
the framework of the behavioral approach (see Polderman and
Willems (1998)). Herein the main result is a simple sufficient
condition (Theorem 1) that guarantees the problem solvability.
The third section is devoted to the study of the structure of the
time-optimal solution. By exploiting the convexity of the system
accessible set the main result (Theorem 2) is deduced. It states
that the optimal input–output pair saturate on extreme values al-
most everywhere. From a corollary of this theorem (Corollary 1)
the optimal feedforward input is then characterized as a general-
ized bang–bang control. In the fourth section the minimum-time
constrained problem is introduced for discrete-time systems. A
feasibility test is presented in Proposition 3 which is followed
by an algorithm that computes the optimal discrete-time control
through the solutions of a sequence of linear programming prob-
lems. Section 5 presents a convergence result. Theorem 4 shows
that the optimal solution for the discretized system converges to
the solution of the original continuous-time system as the sam-
pling time goes to zero. Some simulation results are presented in
Section 6. Conclusions are reported in Section 7.
Notation. C i denotes the set of real functions defined over R that
are continuous till the ith derivative. The ith order differential
operator is Di. The L∞ norm of a real function f (t) defined and
bounded over R is ‖f (·)‖∞ := supt∈R |f (t)| and the L1 norm is
‖f (·)‖1 :=

∫
+∞

−∞
|f (t)|dt . Given x ∈ R, dxe = min{z ∈ Z : z ≥ x},

bxc = max{z ∈ Z : z ≤ x}. Given a subset S ⊂ Rn, ∂S denotes
the boundary of S, cl(S) is the closure of S. If S ⊂ Rn is a Lebesgue
measurable set then |S| denotes its measure. The space of locally
integrable real functions is denoted by Lloc1 .

2. The minimum-time feedforward constrained regulation
problem

Consider a linear, stable, continuous-time system Σ described
by the scalar, strictly proper transfer function

H(s) =
b(s)
a(s)
=
bmsm + bm−1sm−1 + · · · + b0
sn + an−1sn−1 + · · · + a0

. (1)

The system static gain is H(0) = b0
a0
6= 0 and the input and output

are denoted by u and y respectively. Also, assume that polynomials
a(s) and b(s) are coprime with bm 6= 0 and m < n. With h(t) we
denote the impulse response of system Σ , i.e. h(t) = L−1 [H(s)]
where L−1 denotes the inverse Laplace transform. The behavior
set of Σ can be introduced as the set B of all input–output pairs
(u(·), y(·)) ∈ Lloc1 × ∈ Lloc1 that are ‘‘weak’’ solutions of the
differential equation (Polderman &Willems, 1998) (an := 1):
n∑
i=0

aiDiy =
m∑
i=0

biDiu. (2)

The control aim is to find a minimum-time feedforward input that
causes a rest-to-rest transition from y = 0 to y = yf subject to
arbitrarily assigned input and output constraints (yf ∈ R is any
desired output value). The rest condition of Σ is characterized by
the set of input–output equilibrium points designated as E :={
(u, y) ∈ R2 : y = H(0)u

}
. We introduce, as a special subset of

B, the set Tp of all rest-to-rest transitions from (0, 0) ∈ E to
(
yf
H(0) , yf ) ∈ E subject to input and output constraints.

Definition 1. Let be given a constraint parameter set p := {Uc,
Yc, yf } where Uc = [u−c , u

+
c ] and Yc = [y

−
c , y

+
c ] are the constraint

intervals for the input and output respectively and yf is the final
output rest value for which
{
0,
yf
H(0)

}
⊂ Uc and {0, yf } ⊂ Yc . (3)

Then define Tp as the set of all pairs (u(·), y(·)) ∈ B for which
there exists tf > 0 such that:

u(t) = 0 ∀t < 0, u(t) =
yf
H(0)

∀t ≥ tf , (4)

u(t) ∈ Uc ∀t ∈ [0, tf ], (5)

y(t) = 0 ∀t < 0, y(t) = yf ∀t ≥ tf , (6)

y(t) ∈ Yc ∀t ∈ [0, tf ]. (7)

The constraints intervals introduced in the above definition
can encapsulate all the typical amplitude limitations that apply
to the input and the output for any set-point regulation problem.
For example, if a regulation problem requires |u(t)| ≤ uMAX , ∀t
∈ R, a maximum 10% overshooting and 5% undershooting on the
output signal we can assign (consider yf > 0): Uc = [−uMAX ,
+uMAX ], Yc = [−0.05yf ,+1.1yf ].

Lemma 1. Given system Σ (1) and any T > 0, there exist two posi-
tive constants Mu, My such that for any vector w = [w0, w1, . . . ,
wn−1]

T
∈ Rn and any a ∈ R, there exists an input–output pair

(û(·), ŷ(·)) ∈ B ∩ Cn such that
(1) û(t) = 0, ∀t ∈ (−∞, a] ∪ [a+ T ,+∞);
(2) ŷ(t) = 0, ∀t ≤ a, ŷ(a + T ) = w0, Dŷ(a + T ) =

w1, . . . ,Dn−1ŷ(a+ T ) = wn−1;
(3) ‖û(·)‖∞ ≤ Mu‖w‖, ‖ŷ(·)‖∞ ≤ My‖w‖.

Proof. Set gi(t) = h(i)(T − t)tn(T − t)n. Functions g0(t),
g1(t), . . . , gn−1(t) are linearly independent, therefore the follow-
ing Gramian matrix is nonsingular

G =
∫ T

0


g0(t)
g1(t)
...

gn−1(t)

 [g0(t), g1(t), . . . , gn−1(t)]dt.
Define the input

u(t) =

0 if t ∈ (−∞, 0] ∪ [T ,+∞)
tn(T − t)n[g0(t), g1(t), . . . , gn−1(t)] · G−1w
if 0 ≤ t ≤ T .

This input signal belongs to Cn and satisfies Diu(0) = Diu(T ) = 0,
i = 0, . . . , n− 1. Define the output as follows

y(t) =


0 if t ≤ 0∫ t

0
h(t − τ)u(τ )dτ if t ≥ 0.

Clearly y ∈ Cn, and

y(T ) =
∫ T

0
h(T − τ)u(τ )dτ

=

∫ T

0
g0(τ )[g0(τ ), g1(τ ), . . . , gn−1(τ )]dτG−1w

= [1, 0, . . . , 0]w = w0.

Moreover Dy(T ) = d
dt

∫ t
0 h(t − τ)u(τ )dτ

∣∣∣
t=T
=
∫ T
0 Dh(T − τ)

u(τ )dτ + h(0)u(T ), and considering u(T ) = 0, then Dy(T ) =∫ T
0 g1(τ )[g0(τ ), g1(τ ), . . . , gn−1(τ )]dτG

−1w = [0, 1, . . . , 0]w =
w1. Repeating the same procedure it follows that Diy(T ) = wi,
i = 2, . . . , n − 1. Now define by time translation û(t) = u(t − a)
and ŷ(t) = y(t− a) so that (û, ŷ) ∈ B ∩Cn and statements (1) and
(2) of Lemma 1 are evidently verified. Finally, statement (3) holds
since
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‖û‖∞ = ‖u‖∞ ≤ T 4n
(
‖h‖∞ + ‖Dh‖∞ + · · ·

+ ‖Dn−1h‖∞
)
‖G−1‖‖w‖,

‖ŷ‖∞ = ‖y‖∞ ≤ ‖h‖1‖u‖∞

where ‖h‖1 =
∫
+∞

0 |h(v)|dv is the peak gain of systemΣ . �

The following theorem gives a straightforward sufficient condi-
tion to ensure that Tp is not empty.

Theorem 1. Set Tp is not empty if{
0,
yf
H(0)

}
⊂ (u−c , u

+

c ) and {0, yf } ⊂ (y
−

c , y
+

c ). (8)

Proof. Without loss of generalitywe assumeH(0) > 0 and yf > 0.
Let l(t) be any Cn function such that

l(t) = 0 ∀t < 0, l(t) =
yf
H(0)

∀t > 1,

0 ≤ l(t) ≤
yf
H(0)

∀t ∈ [0, 1].

Given a real constant ε > 0, let the input to system Σ be given
by l(εt) and denote by y(t; ε) the corresponding output with
y(t; ε) = 0 ∀t < 0. Hence, the following limit holds:

lim
ε→0
‖y(t; ε)− l(εt)H(0)‖∞ = 0. (9)

Indeed, the Laplace transform of y(t; ε)− l(εt)H(0) is given by:

L(s; ε) (H(s)− H(0)) , (10)

where L(s; ε) := L[l(εt)]. Since H(s)− H(0) = sH̃(s), where H̃(s)
is a suitable stable biproper transfer function, expression (10) can
be written as L(s; ε)sH̃(s) = H̃(s)L

[ d
dt l(tε)

]
. Therefore

‖y(t; ε)− l(εt)H(0)‖∞ ≤
∫
+∞

0
|h̃(v)|dv ·

∥∥∥∥ ddt l(tε)
∥∥∥∥
∞

,

where h̃(t) = L−1[H̃(s)] and
∫
+∞

0 |h̃(v)|dv is the peak gain of

H̃(s). Since
∥∥ d
dt l(tε)

∥∥
∞
= ε

∥∥∥ d
d(tε) l(tε)

∥∥∥
∞

, limit (9) is proved.

Moreover, from di

dt i
l(tε) = ε i · di

d(tε)i
l(tε)we have

lim
ε→0

∥∥∥∥ didt i l(tε)
∥∥∥∥
∞

= 0, i = 1, . . . , n− 1. (11)

Then, using again the peak gain concept it follows that

lim
ε→0

∥∥∥∥ didt i y(t; ε)
∥∥∥∥
∞

= 0, i = 1, . . . , n− 1. (12)

So far we have constructed a family of input–output pairs (l(εt),
y(t; ε)) ∈ B parameterized by ε > 0. Now, consider ε < 1 and
choose the ‘‘correcting pair’’ (û(t; ε), ŷ(t; ε)) ∈ Cn∩B accordingly
to Lemma 1 with a = ε−1 − 1, T = 1 and

û(t; ε) = 0, for t ∈ (−∞, ε−1 − 1] ∪ [ε−1,+∞),
ŷ(ε−1; ε) = yf − y(ε−1; ε),

di

dt i
ŷ(t; ε)|t=ε−1 = −

di

dt i
y(t; ε)|t=ε−1 , i = 1, . . . , n− 1.

Therefore the pair (ū(t; ε), ȳ(t; ε)) ∈ Cn ∩B defined by

(ū(t; ε), ȳ(t; ε)) = (l(tε), y(t; ε))+ (û(t; ε), ŷ(t; ε)),

satisfies the rest conditions at time t = ε−1:

ū(ε−1; ε) = yfH(0)−1,
di

dt i
ū(t; ε)|t=ε−1 = 0, i = 1, . . . ,m,

ȳ(ε−1; ε) = yf ,
di

dt i
ȳ(t; ε)|t=ε−1 = 0, i = 1, . . . , n− 1;(13)
hence ȳ(t; ε) = yf , ∀t ≥ ε−1. Because of (9) and (12) and
statement (3) of Lemma 1, it follows that

lim
ε→0
‖û(t; ε)‖∞ = 0, (14)

lim
ε→0
‖ŷ(t; ε)‖∞ = 0. (15)

By virtue of (8), |u−c | > 0 and u
+
c −

yf
H(0) > 0 so that there exists

εu > 0 such that, by (14), ∀ε < εu

‖û(t; ε)‖∞ ≤ min
{
|u−c |, u

+

c −
yf
H(0)

}
.

By virtue of (8), |y−c | > 0 and y
+
c − yf > 0 and by (9) there exists

εy1 > 0 such that ∀ε < εy1

‖y(t; ε)− l(εt)H(0)‖∞ ≤
min{|y−c |, y

+
c − yf }

2

and by (15) there exists εy2 > 0 such that ∀ε < εy2‖ŷ(t; ε)‖∞ ≤
min{|y−c |,y

+
c −yf }

2 . Finally setting ε0 = min{εu, εy1, εy2}we obtain that
(ū(t; ε0), ȳ(t; ε0)) ∈ Tp. �

Remark 1. Note that sufficient condition (8) differs from assump-
tion (3) of Definition 1 defining Tp just for the exclusion of the
four endpoints of intervals Uc and Yc . Hence, condition (8) implies
that there exists at least a small distance between the constraints
extrema and the corresponding steady-state input–output values.
This permits to construct (as shown in the proof) an input–output
pair that reaches the steady-state in finite time while respecting
the constraints.

Once inclusions (8) are satisfied, the emerging natural problem
is to determine among all the constrained transitions of Tp the
fastest one, i.e. the optimal rest-to-rest transition with associated
minimum transition time t∗f :

t∗f := inf
(u(·),y(·))∈Tp

Tf (u(·), y(·)) (16)

where Tf is the following functional

Tf (u(·), y(·)) = inf
{
t1 : u(t) =

yf
H(0)

, y(t) = yf ,∀t ≥ t1

}
(17)

which is well defined by Definition 1. Note that t∗f corresponds to
the minimum Tf (u(·), y(·)) that is achievable with an optimal pair
(u∗(·), y∗(·)) that is essentially unique in Tp (proofs are reported in
Appendix A).
On the other hand, from a control viewpoint the problem is

to directly determine the optimal feedforward input u∗(t) that
corresponds to minimum-time t∗f . An approximate solution to this
problem using linear programming is exposed in Section 5.

3. Characterization of the time-optimal solution for the
continuous-time case

This section gives a characterization of the time-optimal solu-
tion (u∗(·), y∗(·)) ∈ Tp to the constrained set-point regulation
problem for continuous-time systems.

Definition 2. Consider a linear system of the form

ẋ = Ax+ bu, y = cx, (18)

where x ∈ Rn, u ∈ R, y ∈ R and intervals Uc , Yc are given
constraints on the input and the output respectively. Then, the
constrained reachable set at final time T , starting from initial state
x0 is denoted byAUc ,Yc (x0, T ) and is defined as



L. Consolini, A. Piazzi / Automatica 45 (2009) 2234–2243 2237
{
x1 ∈ Rn : x1 = eATx0 +

∫ T

0
eA(T−τ)bu(τ )dτ ,

u ∈ Lloc1 , u(t) ∈ Uc, y(t) ∈ Yc,∀t ∈ [0, T ]
}
,

i.e.AUc ,Yc (x0, T ) is the set of all states that can be reached from x0
at time T while satisfying the given input and output constraints.

Proposition 1. For any x0 ∈ Rn and T > 0 the set AUc ,Yc (x0, T ) is
convex.

Proof. The result is a straightforward consequence of the linearity
of system (18). �

When output constraints are not present (Yc = R) then, by
the classical bang–bang theory, the following proposition holds;
its proof can be found in Jurdjevic (1997, p. 302).

Proposition 2. Assume that system (18) is controllable, then the
control u∗ that drives the system from the initial state x0 to the
final state x1 in minimum-time t∗ with the input constraint u∗(t) ∈
Uc = [u−c , u

+
c ],∀t ∈ [0, t

∗
], is such that u∗(t) ∈ {u−c , u

+
c }, almost

everywhere in [0, t∗].

The following theorem is the main result of this section and
characterizes the time-optimal solution with input and output
constraints, extending Proposition 2.

Theorem 2. Given the time-optimal pair (u∗(·), y∗(·)) ∈ Tp, the set

S =
{
t ∈ [0, t∗f ] : u

∗(t) 6∈ {u−c ; u
+

c }, and y
∗(t) 6∈ {y−c ; y

+

c }
}

(19)

has null (Lebesgue) measure.

Proof. Let system Σ (1), be represented by a controllable and
observable realization of the form (18). The initial state is given
by x(0) = 0 and the final state at time t∗f is given by x(t∗f ) =
−A−1b yf

H(0) .
Assume by contradiction that |S| 6= 0. By Lebesgue integration

theory, there exists a finite set of closed intervals Ii, i = 1, . . . , ns
such that

S ⊃
⋃
i

Ii,
∑
i

|Ii| 6= 0, (20)

in particular there exists an integer l such that Il = [a, b], with
b − a > 0 and ∀t ∈ Il, u∗(t) ∈ (u−c , u

+
c ), y

∗(t) ∈ (y−c , y
+
c ). Thus

there exists δ > 0 such that u∗(t) ∈ (u−c + δ, u
+
c − δ), y

∗(t) ∈
(y−c + δ, y

+
c − δ), ∀t ∈ Il. By the principle of optimality, state

xb := x(b) belongs to the boundary of the constrained reachable
set from xa := x(a) after a time b−a, that is xb ∈ ∂AUc ,Yc (xa, b−a).
By Proposition 1, AUc ,Yc (xa, b − a) is a convex set, therefore the
supporting hyperplane at xb, defined by {x ∈ Rn : p + qTx = 0}
with

p+ qTxb = 0, (21)

satisfies the inequality

p+ qTx ≤ 0 ∀x ∈ AUc ,Yc (xa, b− a). (22)

Hence, for any function u(t) : [a, b] → R such that u(t) ∈ Uc and
y(t) ∈ Yc , ∀t ∈ [a, b] it follows that

p+ qT
{
eA(b−a)xa +

∫ b

a
eA(b−t)bu(t)dt

}
≤ 0 (23)

where the equality holds for the optimal control u∗(t). Choose any
x̃b ∈ Rn satisfying

p+ qT x̃b > 0. (24)
Disregarding input and output constraints, there exists a control ũ
that drives the state from xa to x̃b in time b− a by virtue of system
controllability. Consider the linear combination uλ = (1− λ)u∗ +
λũ. By linearity, the final state reached with control uλ is given by
(1 − λ)xb + λx̃b. By continuity, there exists a sufficiently small
λ0 ∈ (0, 1), such that both the input and the corresponding output
satisfy the constraints, that is uλ0(t) ∈ Uc, yλ0(t) ∈ Yc . By (21)
and (24), the final state (1− λ0)xb + λ0x̃b reached with input uλ0
satisfies the inequality p + qT [(1 − λ0)xb + λ0x̃b] > 0, which
contradicts (22). �

Denote bymP1(t),m
P
2(t), . . . ,m

P
n(t) themodes of pole dynamics

ofΣ and by mZ1(t), m
Z
2(t), . . . ,m

Z
m(t) the modes of zero dynamics

ofΣ . A straightforward consequence of Theorem 2 is the following
corollary that discloses the structure of the optimal pair (u∗, y∗).

Corollary 1. There exist open, nonempty, nonoverlapping intervals
Ii, Oj ⊂ R, i, j ∈ N and real coefficients α0i, α1i, . . . , αni, β0j,
β1j, . . . , βmj such that

1.[0, t∗f ] =
⋃
i

cl(Ii) ∪
⋃
j

cl(Oj);

2. u∗ and y∗ are respectively a constant and a nonconstant function
over interval Ii according to:

u∗(t) = u−c ∀t ∈ Ii or u
∗(t) = u+c ∀t ∈ Ii,

y∗(t) = α0i +
n∑
k=1

αkimPk (t) ∀t ∈ Ii; (25)

3. u∗ and y∗ are respectively a nonconstant and a constant function
over interval Oj according to:

u∗(t) = β0j +
m∑
l=1

βljmZl (t) ∀t ∈ Oj, (26)

y∗(t) = y−c ∀t ∈ Oj or y
∗(t) = y+c ∀t ∈ Oj.

Proof. From Theorem 2 there exist open, nonempty, nonoverlap-
ping intervals Ii, Oj ⊂ R, i, j ∈ N such that statement 1 is sat-
isfied and u∗(t) = u−c ∀t ∈ Ii or u

∗(t) = u+c ∀t ∈ Ii and
y∗(t) = y−c ∀t ∈ Oi or y

∗(t) = y+c ∀t ∈ Oi. Hence, there exist real
coefficients α0i, α1i, . . . , αni, β0j, β1j, . . . , βmj such that relations
(25) and (26) are verified. Functions y∗(t) over Ii and u∗(t) over Oi
are actually nonconstant functions, i.e., [α1i, α2i, . . . , αni]T 6= 0 for
all i and [β1j, β2j, . . . , βnj]T 6= 0 for all j. Indeed, by contradiction
assume that y∗(t) is a constant function over Ii. Thismeans that pair
(u∗, y∗) is at the equilibrium over Ii with y∗(t) = H(0)u−c ∀t ∈ Ii or
y∗(t) = H(0)u+c ∀t ∈ Ii. Evidently, in this case pair (u

∗, y∗) cannot
be the time-optimal solution to problem (16) because if the signal
segments over the equilibrium time interval Ii are removed from
signals u∗ and y∗ we obtain a new pair that belongs to Tp and per-
forms the required rest-to-rest transition in a time strictly less than
t∗f . Hence, y

∗(t) is a nonconstant function over Ii. An analogous ar-
gument runs to prove that u∗(t) is a nonconstant function over Oi.

�

Corollary 1 states that the time interval associated to the time-
optimal control is composed of two kinds of intervals. On intervals
Ii the input is saturated on the input constraints (u−c or u

+
c ) and the

output is given by a constant term plus a linear combination of the
pole modes. Symmetrically, on intervals Oj the output is saturated
on the constraints and the input is given by a constant term plus a
linear combination of the zero modes. Hence the structure of the
optimal control u∗(t), denoted as generalized bang–bang control,
is given by sequences of bang–bang functions and zero mode
functions.
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4. The minimum-time problem for discrete-time systems

In this section theminimum-time feedforward control problem
is restated for discrete-time systems and a solution is provided
using linear programming. Consider a linear discrete-time system
Σd described by the scalar strictly proper transfer function

Hd(z) =
b(z)
a(z)
=
bmzm + bm−1zm−1 + · · · + b0
zn + an−1zn−1 + · · · + a0

. (27)

Assume thatΣd is stable, a(z) and b(z) are coprime andHd(1) 6= 0.
The input and output sequences are denoted by u(k) and y(k)
respectively, k ∈ Z. The behavior Bd of system Σd is the set of all
input–output pairs (u(·), y(·)) satisfying the associated difference
equation:

y(k+ n)+ an−1y(k+ n− 1)+ · · · + a0y(k)

= bmu(k+m)+ bm−1u(k+m− 1)+ · · · + b0u(k). (28)

The set of input–output equilibrium points of Σd is Ed :={
(u, y) ∈ R2 : y = Hd(1)u

}
and the set Kp ⊂ Bd of all rest-to-

rest constrained transitions from (0, 0) ∈ Ed to (
yf
Hd(1)

, yf ) ∈ Ed
is defined as follows.

Definition 3. Let be given a constraint parameter set p :=

{Uc, Yc, yf } where Uc = [u−c , u
+
c ] and Yc = [y

−
c , y

+
c ] are the

constraint intervals for the input and output respectively and yf
is the final output rest value for which

{0, yf } ⊂ Yc and
{
0,

yf
Hd(1)

}
⊂ Uc .

Then define Kp as the set of all pairs (u(·), y(·)) ∈ Bd for which
there exists kf ∈ N such that:

u(k) = 0 ∀k < 0, u(k) =
yf
Hd(1)

∀k ≥ kf , (29)

u(k) ∈ Uc k = 0, . . . , kf − 1, (30)

y(k) = 0 ∀k < 0, y(k) = yf ∀k ≥ kf , (31)

y(k) ∈ Yc k = 0, . . . , kf − 1. (32)

The following result is the discrete counterpart of Theorem1. Its
proof is analogous to that of Theorem 1 and is omitted for brevity.

Theorem 3. Set Kp is not empty if{
0,

yf
Hd(1)

}
⊂ (u−c , u

+

c ) and {0, yf } ⊂ (y
−

c , y
+

c ). (33)

The minimum-time feedforward constrained control problem
for discrete-time systems consists in finding the optimal input
sequence u∗(k), k = 0, 1, . . . , k∗f − 1 for which the pair
(u∗(·), y∗(·)) ∈ Kp is a minimizer for the optimization problem:

k∗f = min
(u(·),y(·))∈Kp

Kf (u(·), y(·)). (34)

Kf (u(·), y(·)), the rest-to-rest transition time associated to pair
(u(·), y(·)), is defined as follows

Kf (u(·), y(·))

:= min
{
k1 ∈ N : u(k) =

yf
Hd(1)

, y(k) = yf ,∀k ≥ k1

}
.

The key result upon which to build the solution to (34) is given
by next proposition. The unit impulse response of Σd is denoted
by hd(k) := Z−1[Hd(z)] and 1k denotes the k-dimensional vector
whose components are all equal to 1.
Proposition 3. The set Kp of all rest-to-rest constrained transitions
is not empty if and only if there exist kf ∈ N and a vector u ∈ Rkf for
which the following linear programming (LP) problem is feasible:

u−c · 1kf ≤ u ≤ u+c · 1kf (35)

y−c · 1kf ≤ Hu ≤ y+c · 1kf (36)

H̄

[
u

yf
Hd(1)

· 1n

]
= yf · 1n (37)

where H ∈ Rkf×kf is defined by Hij := hd(i − j) and H̄ ∈ Rn×(kf+n)

by H̄ij := hd(i+ kf − j).

Proof (Sufficiency). Assume that there exist kf ∈ N and a vector
u = [u0, u1, . . . , ukf−1]

T for which Eqs. (35)–(37) are satisfied.
Define the input sequence

u(k) =


0 if k < 0
uk if 0 ≤ k < kf
yf
Hd(1)

if k ≥ kf ,
(38)

which satisfies Properties (29) and (30) of Definition 3. The
output is given by y(k) =

∑
∞

i=0 u(k − i)hd(i). Setting y =
[y0, y1, . . . , ykf−1]

T
∈ Rkf and ȳ = [ȳ0, ȳ1, . . . , ȳn−1]T ∈ Rn,

according to y = Hu, ȳ = H̄
[

u
yf
Hd(1)

· 1n

]
, it follows that

y(i) = yi, i = 0, 1, . . . , kf − 1
y(kf + i) = ȳi, i = 0, 1, . . . , n− 1

and, by (36), sequence y(k) satisfies the constraint (32) of
Definition 3. It remains to show that y(i) = yf ,∀i ≥ kf + n.
To prove this, set k = kf in difference equation (28), noting that
Hd(1) =

bm+bm−1+···+b0
1+an−1+···+a0

it follows that y(kf + n) = yf . By iteration
we have y(k) = yf , ∀k > kf + n. Indeed condition (37) guarantees
that at k = kf the system has reached the equilibrium.
(Necessity). Assume that the set Kp is nonempty, therefore

there exists kf ∈ N and a pair (u(k), y(k)) which satisfies
conditions (29)–(32). Define u = [u(0), u(1), . . . , u(kf − 1)]T ,
then (35) follows from (30) and inequality (36) follows from (32)
and the fact that [y(0), y(1), . . . , y(kf − 1)]T = Hu. Finally (37)
follows from (31) and the fact that

y(kf )
y(kf + 1)

...
y(kf + n− 1)

 = H̄

[
u

yf
Hd(1)

· 1n

]
. �

By virtue of Proposition 3, theminimumnumber of steps k∗f and
an associated optimal feedforward input u∗(k), k = 0, 1, . . . k∗f −1
can be determined by means of a sequence of LP feasibility tests
(the problem defined at (35)–(37)) through the simple bisection
algorithm reported below. In this algorithm LPP(p, kf ,u) denotes
a linear programming procedure that solves problem (35)–(37): if
the problem is feasible it returns a Boolean true value along with
a solution u ∈ Rkf . This solution vector u defines a corresponding
input sequence according to

[u(0), u(1), . . . , u(kf − 1)]T = u. (39)

Minimum-time feedforward constrained regulation algorithm
Input: Hd(z) and p = {Uc, Yc, yf }
Output: k∗f andu

∗ that corresponds to an optimal control sequence
u∗(k) according to (39).
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kf ←− 1
l←− 0
while∼ LPP(p, kf ,u) do
l←− kf
kf ←− 2kf

end while
h←− kf
while h− l > 1 do
kf ←− b h+l2 c
if∼ LPP(p, kf ,u) then l←− kf
else h←− kf
end if

end while
k∗f ←− h
u∗ ←− u

Remark 2. Differently from the continuous-time case, the discrete-
time optimal solution u∗(k) is not unique (see Desoer and Wing
(1961)).

5. An approximated solution to the continuous-time problem
using discretization

The procedure developed in Section 4 allows to find the optimal
minimum-time constrained transition for discrete-time systems.
This section shows that it can be used to find an approximated
solution to the continuous-time problem. Given the continuous-
time system Σ (1), an approximation to the optimal generalized
bang–bang control u∗(t) can be found as follows:
• Choose a sampling period T and determine the discretized
system using a zero-order equivalence, by relation HT (z) =
(1−z−1)Z

[
H(s)
s

]
, whereZ [P(s)] =

∑
+∞

i=0 p(kT )z
−i and p(t) =

L−1[P(s)] is the impulse response of a system with transfer
function P(s).
• Find a minimum-time input sequence u∗T (k), using the algo-
rithm described in Section 4.
• An approximated continuous-time solution is given by

u∗T

(⌊
t
T

⌋)
. (40)

The following result shows that solution (40) can be made
arbitrarily close to the optimal one, by choosing a sufficiently small
sampling time T .

Theorem 4. Assume that inclusions (8) of Theorem 1 are satisfied.
Let t∗f be the optimal time as defined in (16) and let (u

∗, y∗) be
the associated optimal pair. Let k∗f (T ) be the minimum number of
steps defined by (34) relative to system HT (z) and let (u∗T , y

∗

T ) be the
associated optimal sequence pair. Then the following limits hold

lim
T→0
k∗f (T )T = t

∗

f , (41)

lim
T→0
u∗T

(⌊
t
T

⌋)
= u∗(t), a.e.

lim
T→0
y∗T

(⌊
t
T

⌋)
= y∗(t), a.e.

(42)

Proof. Limit (41) is equivalent to the following two inequalities

lim inf
T→0

k∗f (T )T ≥ t
∗

f (43)

lim sup
T→0

k∗f (T )T ≤ t
∗

f . (44)

First, to prove (43), we assume by contradiction that there exists
σ > 0 for which
t∗f − lim infT→0
k∗f (T )T = σ (45)

and show that, as a consequence, there exists a continuous-
time input–output pair that performs the constrained rest-to-rest
transition in a time less than t∗f . By assumption (45) there exists an
infinite sequence of decreasing sampling times Ti > 0, i ∈ N, such
that limi→∞ Ti = 0 and the following two properties are verified

lim
i→∞

t∗f − k
∗

f (Ti)Ti = σ , (46)

t∗f − k
∗

f (Ti)Ti ∈
[
3
4
σ ,
5
4
σ

]
, ∀i ∈ N. (47)

Set c =
(
|h(0+)| + ‖Dh‖1

)
max{|u−c |, |u

+
c |}, yM = min{|y

−
c |, |y

+
c |}

and define the continuous-time input ui(t) = u∗Ti(bt/Tic)
yM−cTi
yM
. If

the corresponding output is given by yi(t) =
∫ t
0 h(t − v)ui(v)dv

then it satisfies the property yi(kTi) = y∗Ti(k)
yM−cTi
yM

∈ [y−c , y
+
c ],

∀k ∈ Z. By Lemma 4 (see Appendix B), ∀t ≥ 0, ∀i ∈ N:

yi(t) ≤ y+c
yM − cTi
yM

+ cTi ≤
y+c (yM − cTi)+ cTiyM

yM

≤ y+c + cTi
yM − y+c
yM

≤ y+c ,

and analogously yi(t) ≥ y−c . Therefore the pair (ui, yi) satisfies the
input–output constraints and reaches final rest conditions because
∀t ≥ Tik∗f (Ti), ui(t) = yf

yM−cTi
H(0)yM

and, by Lemma 3 (see Appendix B)

yi(t) = yf
yM−cTi
yM
. However, (ui, yi) 6∈ Tp so that to enforce the

required final rest conditions, in time interval [Tik∗f (Ti), Tik
∗

f (Ti) +
σ/2] we add a correcting term to the input ui as follows. Apply
Lemma 5 (Appendix B) to find a correcting pair (ũi, ỹi) such that
ũi(t) = 0 if t < Tik∗f (Ti), ũi(t) =

yf cTi
H(0)yM

, if t > Tik∗f (Ti)+ σ/2 and

ỹi(Tik∗f (Ti)+ σ/2) = yf
cTi
yM

Dỹi(Tik∗f (Ti)+ σ/2) = 0
...

Dn−1ỹi(Tik∗f (Ti)+ σ/2) = 0.

Then define the pair (ûi, ŷi) = (ui + ũi, yi + ỹi) for which ŷi(t) =
yf ,∀t ≥ Tik∗f (Ti) + σ/2. Moreover in the interval Tik

∗

f (Ti) < t <
Tik∗f (Ti)+ σ/2

ûi(t) ≤ yfH(0)−1
(
yM − cTi
yM

+Mu
cTi
yM

)
,

ŷi(t) ≤ yf
yM − cTi
yM

+My
cTi
yM
,

where Mu and My are constants (note that the length of the cor-
rection is given by σ

2 and is fixed for all i). By choosing a suffi-
ciently large i (and, hence, a sufficiently small Ti), the input and
output constraints can always be satisfied. Therefore, there exists a
continuous-time input–output pair that performs the constrained
rest-to-rest transition in time Tik∗f (Ti)+

σ
2 . Hence, by (47), Tik

∗

f (Ti)+
σ
2 ≤ t

∗

f −
σ
4 < t

∗

f . This last inequality contradicts the optimality
of t∗f so that proof of (43) is completed. In order to prove limit (44),
assume by contradiction that there exists σ > 0 for which

lim sup
T→0

k∗f (T )T − t
∗

f = σ . (48)

Hence, there exists an infinite sequence of decreasing sampling
times Ti > 0, i ∈ N, such that limi→∞ Ti = 0 and

k∗f (Ti)Ti − t
∗

f ∈

[
3
4
σ ,
5
4
σ

]
, ∀i ∈ N. (49)
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The sequence hT (k) represents the impulse response of the dis-
cretized system obtained through a zero-order hold with sampling
time T and is given by hT (k) =

∫ T
0 h(kT − t)dt . Define the in-

put sequence uT (k) = u∗(Tk), where u∗(t) is the time-optimal
continuous-time control. The corresponding output sequence is
given by yT (k) =

∑
∞

i=0 hT (k− i)uT (k). Consider the difference be-
tween the sampled continuous-time optimal output y∗(Tk) and the
discrete-time system output yT (k):

y∗(Tk)− yT (k) =
∫ Tk

0
h(Tk− t)u∗(t)dt

−

k−1∑
i=0

[∫ T

0
h(Tk− Ti− t)dt

]
uT (i)

=

∫ Tk

0
h(Tk− t)u∗(t)dt −

∫ Tk

0
h(Tk− t)u∗

(⌊
t
T

⌋
T
)
dt

=

∫ Tk

0
h(Tk− t)

(
u∗(t)− u∗

(⌊
t
T

⌋
T
))
dt.

Since u∗(t) is continuous almost everywhere, it follows that
limT→0

(
u∗(t)− u∗(b tT cT )

)
= 0, a.e. Hence, by Lebesgue domi-

nated convergence theorem

lim
T→0
y∗(Tk)− yT (k) = 0. (50)

Therefore, for any ε > 0, there exists Tε > 0 sufficiently small
such that |y∗(Tεk) − yTε (k)| < ε, ∀k ∈ Z. Set kT = dt∗f /Te,
yM = min{|y−c |, |y

+
c |} and consider the following input–output se-

quences

ūTε (k) = uTε (k)
yM − ε
yM

, ȳTε (k) = yTε (k)
yM − ε
yM

,

for which ūTε (k) ∈ [u
−
c , u

+
c ], ȳTε (k) ∈ [y

−
c , y

+
c ], ∀k > 0, i.e. the pair

(ūTε , ȳTε ) satisfies the input–output constraints. The required final
rest condition is not satisfied and it is necessary to perform a cor-
rection on (ūTε , ȳTε ), following the same reasoning done in the first
part of this proof. A correcting discrete-time input is added in the
interval kTε ≤ k < kTε + nl to enforce the final equilibrium condi-
tion, where l = bσ/(4Tεn)c. The correcting input sequence will be
constant every l consecutive steps. Consider hTε l(k) =

∫ Tε l
0 h(kTε l−

t)dt , and define matrix W(Tε l) ∈ Rn×n according to W(Tε l)ij =
hTε l(n+ j− i). Given a vector a = [a0, a1, . . . , an−1] ∈ Rn, if

ũ(k) =
{
0 if k < kTε or k ≥ kTε + nl
ai if

{
kTε + il ≤ k < kTε + (i+ 1)l, i = 0, . . . , n− 1,

define b = [b0, b1, . . . , bn−1] = W(Tε l)a, then ỹ(t) =
∫ t
−∞

ũ(τ )hTε (t− τ)dτ satisfies ỹ
(
kTε + (n+ i)l

)
= bi, i = 0, . . . , n−1.

Define the correction input ũTε (k) as follows

ũTε (k) = 0 if k < kTε ,

ũTε (k) = W(Tε l)−1 ·


 yf − ȳTε (kTε )

yf − ȳTε (kTε + l)
. . .

yf − ȳTε (kTε + (n− 1)l)



−
ε

yM

yf
H(0)


hTε l(0)

hTε l(0)+ hTε l(1)
. . .

n−1∑
i=0

hTε l(i)


 if kTε ≤ k < kTε + ln,

ũTε (k) =
ε

yM

yf
H(0)

if k ≥ kTε + ln.
Finally, define the corrected input–output pair by (ûTε , ŷTε ) =
(ūTε + ũTε , ȳTε + ỹTε ). Then, ŷTε (k) = ȳTε (k) if k < kTε , more-
over ŷTε (kTε + nl + kl) = yf , k = 0, . . . , n − 1 and, by Lemma 3,
ŷTε (k) = yf , ∀k ≥ kTε + nl. It remains to show that the input and
output constraints are satisfied for kTε ≤ k < kTε+nl. Consider that
∀k ≥ kTε , |yf − ȳTε (k)| ≤ |yf − yTε (k)| + |

ε
yM
yTε (k)| ≤ ε(2+

ε
yM
),

and define Bε = ε
√
n‖W(Tε l)−1‖

(
2+ ε

yM
+
n‖h‖1
H(0)

)
. Therefore, for

kTε ≤ k < kTε + nl

yf
yM − ε
H(0)yM

− Bε ≤ ûTε (k) ≤ yf
yM − ε
H(0)yM

+ Bε,

yf
yM − ε
yM

− ‖h‖1Bε − ε ≤ ŷTε (k) ≤ yf
yM − ε
yM

+ ‖h‖1Bε + ε.

Term ‖W(Tε l)−1‖ is bounded for any Tε > 0 because quantity Tε l is
included in a compact interval according to Tε l = Tεb σ

2Tεn
c ∈ [

σ
2n−

Tε, σ2n + Tε] and W(Tε l) is a continuous function of its argument.
This means that limTε→0 ‖W

−1(Tε l)‖ εyM = 0. Choose ε̄ > 0 (and
consequently Tε̄) sufficiently small such that pair (ûTε , ŷTε ) satis-
fies the input and output constraints and dt∗f /Tε̄eTε̄ − t

∗

f < σ/4,
i.e., kTε̄ Tε̄ − t

∗

f < σ/4. Considering the introduced sequence {Ti} of
decreasing sampling times, there exists r ∈ N such that Tr ≤ Tε̄
and

kTr Tr − t
∗

f < σ/4, (51)

k∗f (Tr)Tr − t
∗

f ∈

[
3
4
σ ,
5
4
σ

]
. (52)

Pair (ûTr , ŷTr ) satisfies the input and output constraints and per-
forms the required rest-to-rest transition in kTr + nl steps. Taking
into account that nl ≤ σ

4Tr
, from (51)

(
kTr + nl

)
Tr − t∗f < σ/2, and

from (52) k∗f (Tr)Tr − t
∗

f ≥ (3/4)σ . Therefore, k
∗

f (Tr) > kTr +nl and
this violates the optimality of k∗f (Tr). This completes the proof of
(44) and therefore (41) holds.
Let Ti be a sequence of decreasing sampling times such that

limi→∞ Ti = 0. Hence, limit (41) holds, i.e., limi→∞ k∗f (Ti)Ti = t
∗

f .
Consider the sequence pairs (u∗Ti(k), y

∗

Ti
(k)) and apply the proce-

dure devised in the first part of this proof to obtain continuous-
time pairs (ûi(t), ŷi(t)) for which, when i → ∞, the transition
time Tf (ûi, ŷi) converges to t∗f . By Proposition 8 in Appendix A,
the sequence (ûi(t), ŷi(t)) converges a.e. to the unique opti-
mal pair (u∗(t), y∗(t)) as i → ∞. Since limi→∞ ‖u∗Ti(b

t
Ti
c) −

ûi(t)‖∞ = 0 and limi→∞ ‖y∗Ti(b
t
Ti
c) − ŷi(t)‖∞ = 0, the pairs

(u∗Ti(b
t
Ti
c), y∗Ti(b

t
Ti
c)) converge a.e. to (u∗(t), y∗(t)) when i → ∞

and therefore (42) holds. �

6. Examples

Example 1. Consider a continuous-time system described by
transfer function H1(s) = 10(s+2)

(s+1)2+9
. We desire a rest-to-rest

transition from y = 0 to y = 3(=yf ) to be completed inminimum-
timewith amplitude input constraints defined byUc = [u−c , u

+
c ] =

[−1.8, 1.8]. In a first case no output constraints are considered,
i.e. Yc = (−∞,∞), and in a second case we impose Yc =
[y−c , y

+
c ] = [−0.1, 3.1]. This corresponds to regulation constraints

given by a maximum 3.3% overshooting and 3.3% undershooting.
The system static gain isH1(0) = 2 and conditions (8) of Theorem1
are satisfied: {0, 1.5} ⊂ (−1.8, 1.8), {0, 3} ⊂ (−∞,∞) and
{0, 1.5} ⊂ (−1.8, 1.8), {0, 3} ⊂ (−0.1, 3.1). Hence theminimum-
time feedforward constrained regulation problem has solution in
both cases. The optimal control u∗(t) is computed by applying the
discretization procedure of Section 5 with sampling period T =
0.002 s.
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Fig. 1. Example 1, bang–bang control.

Fig. 2. Example 1, generalized bang–bang control.

The results are exposed in Figs. 1 and 2. Both figures plot the
pair (u∗(·), y∗(·)) over the optimal transition interval. Fig. 1 shows
that u∗(t) is the well-known bang–bang control that permits to
obtain the minimum-time t∗f = 0.6805 s at the price of a large
overshooting (more than 100% of the final rest value). In the second
case, due to the imposed output constraints, the overshooting is
almost completely removed (see Fig. 2) and the resulting optimal
feedforward control u∗(t) is composed of a bang–bang function
followed by a zero dynamics mode (in which the output saturates
the constraint) and a final short bang–bang spike. The associated
minimum-time is t∗f = 1.898 s.

Example 2. This last example considers a system with transfer
function H2(s) = 10(3.5−s)(s2+25)

(s+2)(s+3)(s+4)(s+5) . The required rest-to-rest
transition is from y = 0 to y = 3. The constraint intervals are
Uc = [−2,+2] and Yc = [−0.1,+3.1]. Again conditions (8) of
Theorem 1 are satisfied. The optimal u∗(t) and the corresponding
y∗(t) are plotted in Fig. 3. The input is composed of a bang–bang
spike, a zero mode function and a bang–bang function. The
achieved minimum-time is t∗f = 1.382 s. The sampling time used
for the computation is T = 0.002 s. It is worth noting the intricate
behavior of the optimal y∗(t): after a relatively long time plateau
the output increases till to a local maximum, then decreases till
to a local minimum and finally reaches the desired rest position.
The surprising details of the optimal input–output pair are due to
the intrinsic difficulty in regulating a systemwith both an unstable
zero and a couple of purely imaginary zeros.
Fig. 3. Example 2, generalized bang-bang control.

7. Conclusions

This paper has posed a new minimum-time feedforward regu-
lation problem with input and output amplitude constraints. The
provided solution leads to a generalization of the classic bang–bang
control that can be determined bymeans of a discretization proce-
dure based on linear programming feasibility tests. A novelty of the
proposed approach to constrained regulation is the ability to deal
with both (i) arbitrarily stringent constraints on input and output
and (ii) nonminimum-phase plants with purely imaginary zeros.
This appears a significant improvement over the inversion-based
approach to feedforward constrained regulation (Piazzi & Visioli,
2001, 2005).
An interesting extension of the proposed approachwould be the

MIMO (multi-input multi-output) case. Conceptually, the MIMO
solution should still exhibit a generalized bang–bang structure
(i.e. almost at all times at least one of the inputs or one of the out-
puts saturates on the constraint). However possible degeneracies
may emerge in the non-square case (when the number of inputs
and outputs are different). This will be investigated in future re-
search. The generalized bang–bang control seems a technique that
can be applied to a broad range of applications. First results in pro-
cess control and mechatronics have recently appeared (Consolini,
Gerelli, Guarino Lo Bianco, & Piazzi, 2009; Consolini, Piazzi, & Visi-
oli, 2007).

Appendix A. Existence and uniqueness of the solution to the
minimum-time feedforward constrained regulation problem

First we recall a result from Polderman and Willems (1998)
regarding the closedness of the system behavior setB.

Proposition 4. If (ui, yi) ∈ B i ∈ N is a sequence converging to
(ũ, ỹ) in the sense of Lloc1 , then (ũ, ỹ) ∈ B .
The following definition introduces a subset of Tp that repre-

sents the input–output pairs that perform the constrained rest-to-
rest transition with a transition time less or equal thanM .

Definition 4. Given a real number M > 0, the set of constrained
rest-to-rest transitions with transition time bounded byM is given
by T Mp = {(u, y) ∈ Tp : Tf (u, y) ≤ M}.

The following proposition shows that set T Mp is compact in the
sense of L1.

Proposition 5. Given any sequence of input–output pairs (ui, yi) ∈
T Mp , there exists a subsequence (uli , yli) and a pair (u, y) ∈ T Mp , such
that

lim
i→∞

∫ M

0

(
|u− uli | + |y− yli |

)
dt = 0.
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Proof. Define the functional

T̃f (u, y) = inf
{
tf ≥ 0 : ∀(a, b) ⊂ (tf ,+∞) :∫ b

a

∣∣∣∣u− yf
H(0)

∣∣∣∣ dt = 0, ∫ b

a
|y− yf |dt = 0

}
.

First of all we prove that T̃f is a lower semicontinuous functional.
This is equivalent to checking that

T̃−1f ((c,+∞)) =
{
(u, y)|∃(a, b) ⊂ (c,+∞), ε > 0 :∫ b

a

∣∣∣∣u− yf
H(0)

∣∣∣∣ dt = ε or ∫ b

a
|y− yf |dt = ε

}
is an open set (see Theorem 7.1.1 of Kurdila and Zabarankin
(2005)). Choose (u1, y1) ∈ T̃−1f ((c,+∞)), and consider the open
ball centered in (u1, y1):

Bε/2 =
{
(u, y) ∈ Lloc1 × L

loc
1 |‖(u− u1, y− y1)‖1 <

ε

2

}
.

Assume for instance that
∫ b
a |u1 −

yf
H(0) |dt = ε, the case in which∫ b

a |y1 − yf |dt = ε is analogous. For (u, y) ∈ Bε/2∫ b

a

∣∣∣∣u− yf
H(0)

∣∣∣∣ dt ≥ ∫ b

a

∣∣∣∣u1 − yf
H(0)

∣∣∣∣ dt − ∫ b

a
|u− u1|dt ≥

ε

2

then T̃f (u, y) ≥ a > c and Bε/2 ∈ T̃−1f ((c,+∞)) and T̃−1f
((c,+∞)) is open and the complementary set T̃−1f (−∞, c] is
closed. Consider the set T̃ Mp = {(u, y) ∈ T̃p : T̃f (u, y) ≤ M},
this can be written as T̃ Mp = E ∩ B ∩ T̃−1f (−∞,M], where E =
{(u, y)|u(t) ∈ Uc, y(t) ∈ Yc,∀t ∈ [0,M]} and B is the behavior
set. By a trivial continuous linear affine transformation it is possible
to map the set E on the unit ball of L∞× L∞, then by Alaoglu’s The-
orem, set E is weakly* compact (see Theorem 7.3.2 of Kurdila and
Zabarankin (2005)). This means that for every sequence of func-
tions (ul, yl) ∈ E, there exists a pair (u, y) ∈ E and a subsequence li
such that ∀f , g ∈ L1 it is limi→∞

∫ M
0 ((u− ui)f + (y− yi)g) dt =

0, in particular it follows that limi→∞
∫ M
0 (|u− ui| + |y− yi|) dt =

0, therefore E is a compact set in the (strong) topology of L1. More-
over T̃ Mp is compact because is the intersection of the compact
set E with the closed sets B and T̃−1f (−∞,M]. Since T̃ Mp is com-
pact and T Mp ⊂ T̃ Mp , there exists a pair (u, y) ∈ T̃ Mp and a sub-

sequence li such that limi→∞
∫ M
0

(
|u− uli | + |y− yli |

)
dt = 0.

Finally apply to the pair (u, y) the following flattening operator
Π : T̃ Mp → T Mp ,Π(u, y) = (u2, y2), where u2(t) = u(t),∀t ≤
Tf (u, y), u2(t) =

yf
H(0) ,∀t > Tf (u, y) and analogously y2(t) =

y(t),∀t ≤ Tf (u, y), y2(t) = yf ,∀t > Tf (u, y). Since (u2, y2) ∈ T Mp

and limi→∞
∫ M
0

(
|u2 − uli | + |y2 − yli |

)
dt = 0, the proposition is

proved. �

Proposition 6. There exists an optimal pair (u∗, y∗) ∈ Tp such that
Tf (u∗, y∗) = t∗f .

Proof. The generalized Weierstrass theorem (see 7.3.1 of Kurdila
and Zabarankin (2005)) implies that t∗f = infT̃ Mp T̃f (u, y), where

T̃ Mp is a compact set and T̃f is a lower semicontinuous function
as shown in the proof of Proposition 5. Let (u, y) ∈ T̃Mp be
the corresponding optimal pair and apply the flattening operator
Π defined in the same proof, setting (u∗, y∗) = Π(u, y), then
∀(u, y) ∈ TpTf (u∗, y∗) = T̃f (u∗, y∗) ≤ T̃f (u, y) ≤ Tf (u, y),
therefore (u∗, y∗) is an optimal pair. �
Consider the following notation (see Polderman and Willems
(1998, page 35) for the multiple integral of a function u. Define
(
∫ (0) u)(t) = u(t) and, ∀i > 0, i ∈ N, (

∫ (i) u)(t) = ∫ t
0

(
∫ (i−1) u)(v)dv.
Lemma 2. Let be given a function u(t) : R → R and real numbers
a < b < c, then
(a)

∫ b
a |u(t)|dt = 0 if and only if there exist real constants c0,

c1, . . . cn−1 such that ∀t ∈ [a, b], (
∫ (n) u)(t) = c0 + c1t + c2t2 +

· · · cn−1tn−1,
(b) if

∫ c
b |u(t)|dt = 0 and ∀t ∈ [a, b], (

∫ (n) u)(t) = p(t), where
p(t) is a polynomial of degree n − 1, then ∀t ∈ [b, c](

∫ (n) u)(t) =
p(t).

The proof is omitted for brevity.

Proposition 7. The optimal pair (u∗, y∗) is essentially unique, i. e. if
(u, y) ∈ Tp and Tf (u, y) = t∗f then∫
+∞

0

(
|u(t)− u∗(t)| + |y(t)− y∗(t)|

)
dt = 0.

Proof. Let (u, y) be an input–output pair such that Tf (u, y) = t∗f ,
then all convex linear combinations of the form (uλ, yλ) = (1 −
λ)(u, y) + λ(u∗, y∗), satisfy Tf (uλ, yλ) = t∗f . As a consequence of

Theorem2,
∫ t∗f
0 min

{
d
(
uλ(t), {u−c , u

+
c }
)
, d
(
yλ(t), {y−c , y

+
c }
)}
dt =

0, this implies that∫
+∞

0
min{|u− u∗|, |y− y∗|}dt = 0. (53)

The pair (ū, ȳ) = (u − u∗, y − y∗) is a weak solution of (2) and
satisfies a.e.

B[ū](t) = A[ȳ](t)+ p(t), (54)

where B[ū] =
∑m
i=0 bi(

∫ (n−i+1) ū), A[ȳ] = ∑n
i=0 ai(

∫ (n−i+1) ȳ)
and p(t) is a suitable polynomial of degree not greater than n. Let
U = {t ∈ R : |ū| ≤ |ȳ|} and Y = {t ∈ R : |ū| > |ȳ|}. Sets U and Y
are such that U ∩ Y = ∅ and U ∪ Y = R. By Lebesgue integration
theory, there exist countable closed intervals Ui, Yi such that

U ⊂
⋃
Ui, Y ⊂

⋃
Yi,

∣∣∣∣∣
(⋃

i

Ui

)
∩

(⋃
i

Yi

)∣∣∣∣∣ = 0,
|U| =

∑
i

|Ui|, |Y | =
∑
i

|Yi|

and the intervals are ordered according to Ui < Yi < Ui+1 < Yi+1,
where < denotes the relation of left to right precedence between
nonoverlapping intervals, that is [a1, b1] < [a2, b2] when b1 ≤
a2. By (53),

∫
Ui
|ū(t)|dt = 0, therefore by part (a) of Lemma 2,

there exist polynomials ui of degree not exceeding n such that
B[ū](t) = ui(t), ∀t ∈ Ui. In the same way, there exist polynomials
yi such that A[ȳ](t) = yi(t), ∀t ∈ Yi. From (54), it follows that
∀t ∈ Ui, A[ȳ](t) = B[ū](t) − p(t) = ui(t) − p(t) and ∀t ∈ Yi,
B[ū](t) = A[ȳ](t)+ p(t) = yi(t)+ p(t). Therefore, in each interval
Ui and Yi, A[ȳ](t) and B[ū](t) are polynomials of degree less or
equal than n. Consider the two consecutive intervals Ui and Yi.
Since

∫
Yi
|y(t)|dt = 0 and A[ȳ](t) is a polynomial in interval Ui,

then, by part (b) of Lemma 2, function A[ȳ](t)must be equal to the
same polynomial in interval Yi, that is ∀t ∈ Ui ∪ Yi, A[ȳ](t) =
ui(t) − p(t) = yi(t). Analogously, as

∫
Ui+1
|u(t)|dt = 0, then

∀t ∈ Yi ∪ Ui+1B[ū](t) = ui+1(t) = yi(t) + p(t). By equating the
two different expressions for yi(t), it follows that ui = ui+1 for all
i. Hence, there exists one (unique) polynomial pu such that

B[ū](t) = pu(t), ∀t ∈ R. (55)
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(1) ũ(t) = 0, ∀t ≤ a and ũ(t) = uf , ∀t ≥ a+ ε;
(2) ỹ(t) = 0, ∀t ≤ a, ỹ(a + ε) = z0, Dỹ(a + ε) = z1, . . . ,
Dn−1ỹ(a+ ε) = zn−1;

(3) ‖ũ‖∞ ≤ Mu(‖z‖ + |uf |), ‖ỹ‖∞ ≤ My(‖z‖ + |uf |).
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Likewise, there exists one (unique) polynomial py satisfying

A[ȳ](t) = py(t), ∀t ∈ R. (56)

As a consequence of (55), by Theorem 3.2.4 of Polderman and
Willems (1998), it follows that, almost everywhere, ū can be
expressed as a linear combination of the modes mZi (t) associated
to the zeros of (1) plus a constant term c0, i.e., ū(t) = c0 +∑m
i=1 cim

Z
i (t). Since, ∀t ≥ t∗f , ū(t) = u(t) − u∗(t) = 0 (in

fact the two functions reach the same final value), ci = 0, for
i = 0, . . . ,m; then ū = 0 and u(t) = u∗(t) almost everywhere,
i.e.,

∫
+∞

0 |u(t)−u∗(t)|dt = 0. In the same way, using relation (56)
it follows that

∫
+∞

0 |y(t)− y∗(t)|dt = 0. �

Proposition 8. Given a sequence of functions (ui, yi) ∈ Tp, if
limi→+∞ Tf (ui, yi) = t∗f , then ui → u∗, yi → y∗ in the sense of
L1 and Tf (u∗, y∗) = t∗f .

Proof. There exists a sufficiently large M such that (ui, yi) ∈ T Mp
for all i ∈ N. As shown in the proof of Proposition 5, T Mp is a
compact set, so that it is possible to find a convergent subsequence
of pairs (uli , yli) and its limit be denoted by (ū, ȳ). Hence Tf (ū, ȳ) =
t∗f , and by Proposition 7, it follows that

∫ M
0 |ū(t)− u

∗(t)| + |ȳ(t)−
y∗(t)|dt = 0. To prove that (ui, yi) converges to (u∗, y∗) assume by
contradiction that it does not. Then, there exists an ε > 0 such that
∀l > 0, ∃il > l :

∫ M
0 |uil(t)−u

∗(t)|+|yil(t)−y
∗(t)|dt > ε, sinceT Mp

is compact, it is possible to extract from the sequence with indexes
il, l = 1, . . . ,∞ a convergent subsequence, whose limit is denoted
by (u2, y2), such that Tf (u2, y2) = t∗f and

∫ M
0 |u2(t) − u

∗(t)| +
|y2(t)− y∗(t)|dt > ε, which contradicts Proposition 7. �

Appendix B. Lemmas used in the proof of Theorem 4

Lemma 3. Consider system Σ (1), set T > 0, t0 ∈ R and consider
an input–output pair (u, y) ∈ B for which u(t) = yf

H(0) ,∀t ≥ t0
and y(t) =

∫ t
−∞
h(t − τ)u(τ )dτ satisfies y(t0 + kT ) = yf , for k =

0, . . . , n−1. Moreover, assume that the distinct roots p1, . . . , pl of the
polynomial sn + an−1sn−1 + · · · + a0 satisfy pi − pr 6= k

2π j
T ,∀i, r =

1, . . . , l,∀k ∈ Z − {0} where j denotes the imaginary unit. Then it
follows that y(t) = yf ,∀t ≥ t0.

The proof is based on the properties of the generalized
Vandermonde matrix. This proof and those of the next two
technical Lemmas have been omitted for sake of brevity.

Lemma 4. Consider systemΣ (1) and an input–output pair (u, y) ∈
B for which u is constant in the intervals [kT , (k+ 1)T [,∀k ∈ Z and
y(t) =

∫ t
−∞
h(t−τ)u(τ )dτ satisfies y(kT ) ∈ [y−c , y

+
c ], ∀k ∈ Z. Then

∀t ∈ R

y(t)− y+c ≤ T
(
|h(0+)| + ‖Dh(·)‖1

)
‖u(·)‖∞,

y−c − y(t) ≤ T
(
|h(0+)| + ‖Dh(·)‖1

)
‖u(·)‖∞.

(57)

Lemma 5. Consider systemΣ (1). Given ε > 0, there exist two posi-
tive constantsMu,My, such that for any vector z = [z0, z1, . . . , zn−1]T
∈ Rn, and any uf , a ∈ R, there exists an input–output pair
(ũ(t), ỹ(t)) ∈ B ∩ Cn such that


