(c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

An experimentally validated technique for the real-time management of wrist
singularities in non-redundant anthropomorphic manipulators

Corrado Guarino Lo Bianco!, IEEE Senior Member, and Marina Raineri

Abstract—The automatic management of kinematic singularities, which
are typical for trajectories planned in the operational space, is arousing
a renewed interest among the scientific community because the most
recent strategies make it possible their real-time management. The
approach described in this paper allows executing trajectories in the
operational space which pass through wrist singularities. It introduces
several novelties w.r.t. known alternative strategies. First of all, it
is conceived for trajectories which are planned on-the-fly. Secondly,
singularities are avoided by changing slightly the tool-frame orientation
while strictly preserving both the assigned Cartesian path and time-
law. Finally, the approach is effective also for manipulators moving
at standard operative speeds and it explicitly handles given limits on
joint velocities and accelerations. In this paper an approach proposed
in early works is revised in order to make it ready for an industrial
implementation. In particular a procedural method is proposed for
the tuning of the algorithm, so as to make it more deterministic and
to increase the success rates. Furthermore, the singularity avoidance
problem is theoretically analyzed in order to devise a necessary condition
for the the existence of a solution. Results are experimentally validated
through an anthropomorphic industrial manipulator.

NOMENCLATURE

The notation used along the paper is summarized in the following.
Missing terms are directly defined in the text.

s €RT Curvilinear coordinate which identifies
the position along the path;

qcR® Vector of the joint variables;

2R € R3*3 Rotation matrix associated to the
tool-frame orientation;

pPT € R3 Position of the tool-frame;

wr € R® Angular velocity of the tool-frame;

vr € R? Linear velocity of the tool-frame;

ar € R? Angular acceleration of the tool-frame;

ar € R? Linear acceleration of the tool-frame;

Jr(q) € R®*®  Jacobian matrix associated to the tool-frame.

T indicates the tool-frame. According to the definitions, pr(s) and
9R(s) specify the position and the orientation of the tool-frame
expressed as functions of the curvilinear coordinate. Trajectories
are obtained by combining positions and orientations with time-
law s(t), so that p(t) := p[s(t)] is a Cartesian trajectory, while
R(t) := $R[s(t)] is an orientation trajectory. The same notation
is used for velocities and accelerations of the tool-frame.

I. INTRODUCTION

One of the major problems that must be tackled when trajectories
are planned in the operational space is associated to the management
of the so-called kinematic singularities, i.e., configurations in which
bounded Cartesian speeds lead to endless joint speeds and bounded
joint torques lead to unbounded end-effector forces. Anthropomorphic
manipulators admit three types of singularities: shoulder singularities
are only significant for hanging robots and appear when the wrist
crosses the first axis; elbow singularities are scarcely relevant since
they occur at the border of the workspace, i.e., in areas which are
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Fig. 1. Typical planner scheme for trajectories in the operational space.

seldom used; wrist singularities appear when the 4th and the 6th
joint axes are aligned. This paper focuses on the management of wrist
singularities since they may occur in any point of the workspace and,
consequently, they are relevant in many practical applications.

Kinematic singularities can be handled in several ways. The most
commonly used approaches react to singularities by marginally mod-
ifying the assigned paths and time-laws. Planners for the operational
space are typically based on the functional scheme in Fig. 1: the
Cartesian trajectory planner is immediately followed by an inverse
kinematics block, which is also in charge for the management of
possible kinematic singularities. All works proposed during 80th and
90th were practically based on such conceptual scheme.

Many of the techniques in the literature derive from the original
approach proposed in [1] for the solution of the inverse kinematics
of redundant manipulators: the generated joint reference signals
guarantee that the trajectory in the operational space is exactly
executed, while available degrees of freedom are used to accomplish
secondary tasks. The strategy was later revised and better formalized
in [2]. For the first time, it was explicitly remarked that such technique
is potentially suited for the management of kinematic singularities.
The methodology was later extended in [3], [4] in order to manage
constraints through a task priority approach. The task priority strategy
was later revised in [5] by explicitly considering its use for the
management of kinematic singularities.

In the same years other alternative methods were proposed for
the solution of the inverse kinematic problem. Some of them were
based on a damped least-square approach [6], [7] while others were
based on closed loop schemes and were able to manage constrained
problems by means of a proper augmentation of the task space
dimension [8], [9].

Researches based on the above methods prosecuted up to nowadays
as proved by several works in the literature [10]-[13]. All mentioned
techniques, when extended to non-redundant manipulators, show
some common characteristics:

1) singularities are managed by introducing small position and
orientations errors;

2) the amplitude of such errors is kept small through proper
tunings, but explicit bounds are not imposed;

3) velocities and accelerations are generically limited, but they are
not forced within given bounds.

Such characteristics may or may not be appropriate depending on
the application at hand. For example, there exist applications which
do not allow deviations from the assigned Cartesian path, so that
the problem must be tackled through alternative methods. If the path
does not exactly cross singular configurations and the time law is not
assigned, control methods based on predictive controllers can be used
for the generation of efficient trajectories [14]-[18]. Alternatively, if
the time law is assigned, the trajectory can be slowed down so as to
preserve both path and orientation of the end-effector [19]-[21].
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Fig. 2. The manipulator frames assigned according to the modified Denavit-
Hartenberg method

The situation becomes more critical if the assigned path crosses a
kinematic singularity and the time-law is given and unmodifiable. In
that case, singular points can be managed by slightly modifying the
nominal orientation of the end-effector. In many industrial processes,
indeed, small orientation changes have a minimal impact on the
product quality, while speed and/or path changes may worsen the final
result. This is the case, for example, of welding, gluing, or painting
processes [22]-[24]. The acquired degrees of freedom can be used
to avoid the singular configurations by preserving, simultaneously,
both the assigned Cartesian path and the time-law. The Singularity
Avoidance System (SAS), i.e., the algorithm considered in this paper,
belongs to this class of methods.

The mentioned problem may be alternatively handled by means
of offline planners, but nowadays applications require trajectories
generated on-the-fly on the basis of data acquired by perceptual
sensors. Some real-time planners, able to preserve the Cartesian path,
have been already proposed. They are typically conceived for the
generation of slow motions like the ones deriving, for example, from
the use of teaching devices handled by human operators [25]-[27].
Conversely, the SAS manages wrist singularities of non-redundant
anthropomorphic manipulators through a real-time strategy whose
evaluation times are in the order of a few microseconds. The SAS
has characteristics which are not owned by the methods previously
cited. In particular, if a singularity is encountered the Cartesian
path and the time-law are preserved with certainty, while the tool-
frame orientation is slightly modified w.r.t. the nominal reference.
The orientation change is superiorly bounded. Furthermore, joint
velocities and accelerations are not generically kept small, but they
are explicitly constrained within assigned limits. Finally, the SAS is
conceived to work at normal operative speeds, i.e., its usability is not
limited to slow motions.

The first SAS release appeared in [28] for the management of
trajectories passing close to wrist singularities, while a subsequent
version, proposed in [29], allowed improved performances with
the aid of nonlinear optimization techniques. The scheme recently
proposed in [30] — differently from the solutions appeared in [28],
in [29] or in any other paper in the literature — can even manage
trajectories which cross singularities, with computational times which
are compatible with the ones required by real-time applications.

In this paper, the SAS implementation proposed in [30] is revised
to achieve better performances. More precisely, the tuning procedure
of the algorithm has been totally reconsidered so as to make the SAS
“industrially ready”: the new release handles wrist singularities of the
whole workspace with success rates which are neatly higher than the
ones obtained in [30].

Additionally, a necessary condition, which must be satisfied by any
algorithm for the singularity avoidance, is proposed. Such condition
is not specific to the SAS and may be used for the synthesis of
alternative strategies. Analogously, some theoretical considerations
concerning the selection of the rotation axis are proposed: they can

TABLE 1
KINEMATIC PARAMETERS OF A TYPICAL ANTHROPOMORPHIC
MANIPULATOR.
i o1 a1 0; d;
T 0 0 4 0
2 —7/2 Ly q2 0
30 Ls g 0
4 —7/2 Lsg qe Ly
5 w2 0 gs O
6 —7/2 0 g Ls

be used as a starting point for further advances.

The paper is organized as follows. Section II proposes a necessary
condition that must be satisfied in order to avoid singularities, while
the problem formulation is demanded to Section III. In the same
section, the SAS structure proposed in [30] is briefly recalled, while
Section IV summarized the foundations of the SAS approach and
proposes the novel tuning strategy. Section V reports the outcomes
of the validation tests executed on a real manipulator and proposes
comparisons with the results achieved in [30]. Final conclusions
are drawn in Section VI. Eventually, a graphical abstract has been
prepared so as to show the SAS at work.

II. PRELIMINARY CONSIDERATIONS

The analysis in the following will consider a standard anthropo-
morphic manipulator equipped with a spherical wrist. Its structure is
shown in Fig. 2. Frames have been assigned according to the modified
Denavit-Hartenberg method [31] and the corresponding kinematic
parameters are listed in Table I.

The SAS is activated, as shown later in the paper, only in
proximity of kinematic singularities, i.e., it operates, for a short time,
within small regions of the operational space. Inside such regions,
trajectories can be reasonably approximated by their tangent and a
constant tool-frame orientation can be assumed. Such simplifications
allow drawing some considerations concerning the system behavior
in the vicinity of singularities and suggest the strategy to be used for
their avoidance.

According to the premise, the orientation of the Z¢ axis is assumed
constant in the surroundings of the singularity, while no restrictions
are posed on X¢ and y6. The following proposition applies:

Proposition 1: Any linear trajectory, executed with constant Zg,
admits at most one wrist singular configuration if the variable
associated to the first joint, i.e., g1, changes during the motion, or
two if g1 is constant.

Proof — According to the premises, unit vector zs := [zz 2y 22]”
is supposed constant. A wrist singularity occurs every time g5 = 0
or, equivalently, when z4 = Zg (see Fig. 3). Therefore, the first part
of the proposition is verified if condition z4+ = Zg applies for a single
point of the trajectory.

Proper expressions for z4 can be obtained by solving a direct
kinematic problem. Given the parameters of Table I, it is possible
to write
c1C23
sicas | , M

523

Z4 =

where ¢1 = cos(q1), s1 = sin(q1), ces = cos(q2 + g3), and s23 =
sin(g2+¢s). Let us assume that the trajectory admits a singularity for
the following configuration: ¢1 = 01, q2 = s, qs = 5. Evidently,
axes 4 and 6 are aligned and the following condition is satisfied

C1C23 Zz
Zy = [S1C23| = |2y | = Ze, (2)
So3 Zz
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Fig. 3. Side view of the anthropomorphic manipulator. Any constant vector
Zg generates a circumference of singular points lying on plane g1 = 61. Any
straight trajectory can intersect such circumference, at most, into two points.

wher_e C1 = COS((§1), 51 = sin(él), Co3 = COS(9_2 + 53), and 503 =
sin(92:+ 03). Is it possible to have another singular configuration

q1 = 01, g2 = 02, and g3 = 03 along the same trajectory? If yes, the
following equation must apply

C1C23 C1C23 Zx
S1C23 | = |S1C23| = |2y | , 3)
S23 S23 2z

wherp C1 = COS((§1), 51 = sin(él), Co3 = COS(9_2 =+ 53), and §23 =
sin(f2 4 03). If q; is variable along the trajectory then, clearly, 0, #
9:1, so that (3) cannot be satisfied by any combination of 05 and
03: the trajectory admits only one singularity. Conversely, if ¢ is
constant, i.e., 1 = 01, then condition 24 = 2¢ is satisfied if the
following equality applies

§2+53 2524-53. (@)

Let us study such eventuality. The origin of the fourth frame, i.e.,
the wrist position, can be obtained from the direct kinematics of the
manipulator and written as follows

(Lscas — Lasaz + Laca + L1)cr
(Lscos — Lasaz + Laca + L1)s1 | . 5)
—Laco3 — L3saz — Loso

P4 =

If 6, = 0; and (4) apply, then the position of a further singular point
P4 can be expressed as follows

(L3C23 — L4823 + LaCa + L1)Cy
51

Pa = |(L3Co3 — Las2z + LaCo + L1) (©6)
—L4C23 — L3S23 — La52
(L3C2s — LaS23 4+ LaCa + L1)c1
= [(L3C23 — L4323 + LaCa + L1)51 %)
—L4C23 — L3523 — L2532
or, equivalently, as follows
kl + kZEQ
Pa = |ks + ka2 ®)
k5 + k‘6§2
where & .= (L3@s3 — L4Sa3 + L1)é1, ko := Loc,
ks := (L3Cas — L4823 + L1)31, ka:= L251, ks = —L4éa3

— L3523, and kg := —Lo are constants. With a few algebraic
manipulations, it can be shown that (8) is the equation of a
circumference lying on plane q; = 0; = 6, centered in [k; k3 ks]”,
and whose radius is L. It contains all the singular points which
satisfy §, = 6, and (4). Fig. 3, which shows a schematic side view
of the manipulator, provides a graphical interpretation of the result.
If the manipulator is executing a linear trajectory, the singular point
circumference can be intersected, at most, into two points. [ |

Proposition 1 asserts that linear trajectories executed with a con-
stant Z¢ normally admit no more than one kinematic singularity,
since two may only appear for motions in which g1 is constant.
Consequently, if a singularity is avoided with a method which brings
back the system to the original trajectory, no further problems have
to be expected. Evidently, the singularity avoidance transient may be
critical since, according to the premises, the tool frame orientation is
certainly changed, thus invalidating one of the conditions required by
Proposition 1: a novel singular point may potentially appear during
the transient. Next proposition poses a necessary condition which
must be satisfied in the vicinity of the singularity: if it does not
apply the system is driven toward a further singularity.

Proposition 2: A necessary condition required for the avoidance
of kinematic singularities is that sgn(q4) and sgn(gs) do not change
during the motion.

Proof — The tool-frame associated to the modified trajectory will
be indicated in the following by 7" in order to distinguish it from 7,
i.e., from the one associated to the nominal trajectory. The Jacobian
matrix for 7" is defined as follows

Jvz(a) }
J= = .
T(q) l: ‘]Wf (q)
It is consequently possible to express wy, i.e., the angular speed of
T, through the following equation

wi = Jup (@) @ = [Juy (@) Iy (@)] @, ©)

where Jo,. (q) and Jo . (q) are 3x3 matrices obtained by partition-
2

ing Jo - (a). ws can also be obtained through the composition rule

used for angular velocities. Consequently, it is possible to write

wz = wr + 7R(q) Twz 1 (10)

where wr is the nominal angular speed of the tool-frame, while
TwiT is the relative angular speed between the nominal tool-frame
and the modified one, described w.r.t. T. By combining (9) with
(10) and by performing some algebraic manipulations, the following
equation can be obtained

FR(@) Iy (@) d = §R(a) [wr — Tuy (@] + Twrp, (D
where § := [41 g2 gs]" while q := [d4 G5 gs] . Practically, § and q
are partitions of § := [q” | §”]*. By defining
@ = R(q) [wT —Joz (@) 51] +Tws
it is finally possible to write (11) as follows
oR(@) Juy (@A =@
and, in turn, to obtain

a=J;! (@)TR(q)&.
2

The structure of (13) can be analyzed by considering the manipu-
lator parameters reported in Table I. To this purpose, let us redefine
the joint variables as follows ¢; := 0; + 0;, where 6; is the value
assumed by the joint variables in the singular point, so that it is
constant along the trajectory, while 6; is the displacement w.r.t. such
value and it clearly changes during the motion. Evidently, 05 = 0,
while no restrictions are imposed on the other 6;s since the discussion
in the following applies to any wrist singularity of the workspace.

According to the premises zr = 2g is constant along the
nominal trajectory, so that the tool-frame can only rotate around
such axis. As a consequence, 7R(q) can be obtained from the
orientation assumed in the singular point by admitting further ro-
tations around the Ze axis. Practically, the orientation of the tool-
frame along the nominal trajectory can be obtained by assuming

(12)

(13)
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s . T
q = [91 02 03 (04 + 04) 0 (06 + 06)] . A few algebraic manipu-
lations make it possible to express the three components of (13) as
follows

fl (q7 ('17 T“‘”]‘:VT)

= = 14
Ga = 0a sin(0s) (14
s =05 = fa(q, 4, wz 1) (15)
. . fd(q7 q? TwN )

o =0 = ——— 1% (16)

sin(95)

Functions f;, which are not reported for space reasons, are highly
nonlinear. However, from (14) it can be inferred that
fl (q7 qa wayT)

04 '
Singularities are certainly avoided if 05 # 0, i.e., if the sign of 65
does not change along a trajectory. Consequently, (17) allows one
asserting that such condition can be achieved if during the execution
of a trajectory the signs of f; and of 0, always switch simultaneously
or, conversely, if they do not switch at all. The first condition can be
hardly obtained with any real-time method because of the complexity
of the functions involved, so that the second method is the only one
that can be actually exploited. Similar considerations apply for 0. M

A more accurate formulation of the proposition should state “An
almost necessary condition...” since the demonstration shows that
an alternative one could be potentially proposed. However, the
sign maintenance is the easiest one to be guaranteed. Practically,
Proposition 2 asserts that, during any transient for the singularity
avoidance, motion directions of joints 4 and 6 must not invert. SAS
trajectories fulfill such condition.

sin(0s) = (17)

III. PROBLEM FORMULATION AND SAS STRUCTURE

Differently from other methods in the literature, the SAS handles
separately the inverse kinematics and the singularity problems. More
precisely, the first one is solved through a standard algorithm based
on efficient closed-form equations, while singularities are handled by
the SAS, which only acts on the tool-frame orientation: as shown in
Fig. 4, position references are directly sent to the inverse kinematics
block, so as to guarantee that assigned Cartesian paths and time-law
are preserved with certainty.

The main assumption made in this work is that trajectories are
planned and then immediately processed by the SAS in real time,
so that there is no dead-time between the planning phase and the
trajectory execution. Every time a new trajectory is generated, the fol-
lowing information is provided to the SAS: the path equation, given
by pr(s) and $R(s) where s is the curvilinear coordinate along the
path, and subsequently, at each sample time, the instantaneous values
of %R(t), pr(t), wr(t), vr(t), ar(t), and ar(t). The output of
the system is represented by a modified trajectory which fulfills, for
all the joints, the following velocity and the acceleration constraints

(18)
19)

a <a<q’,
a <a<qr,

where g and q are the first and the second time derivatives of joint
variables q := [q1, g2, ¢3, 44, G5, ¢6]* € RS, while =, 4~ € (R7)Y,
and g, " € (R*)6 are user defined bounds for joint velocities
and accelerations. Such bounds may also be variable, so as to
account, for example, for the presence of torque constraints (see
also the discussion in [28]). Far from singularities, trajectories must
coincide with the original ones, while in critical configurations minor
orientation displacements can be admitted in order to fulfill (18) and
(19). The imposition of specific bounds represents an improvement

Trajectory Pr(®). vr(0. ar(0) | Inverse
9 g -
N RO, 1@, ar@®) |, . ) >
planner X I » kinematics
o {1 0
wr(1) > a0
aT(l) JTA Nonli ooz q(t)
> Orientation k onlmear | g g o
; filtering
»| modifier > stem
4 0,0 Tx
Singularity > Singularity 9‘7’ 947 0',, é*
avoidance »| detector P
quivalent |
system > bound
\ »| cvaluator [

Fig. 4. Schematic representation of the SAS. The dashed line indicates the
orientation reference signals which are normally directly sent to the inverse
kinematics. With the proposed approach, such direct connection is eliminated
and orientations are processed by the SAS (see the dash-dotted box).

w.r.t. classical methods, which generically limit joint velocities and
accelerations, but do not explicitly bound them.

The SAS is based on the functional scheme shown in Fig. 4. When
the singularity detector block ascertains that the tool-frame is moving
toward a singularity, the orientation modifier proposes a candidate
angular displacement between 7" and 7" — where 7' indicates the
orientation-modified tool-frame — so as to allow its avoidance. The
displacement is specified by defining an appropriate rotation axis,
described through unit-vector Tk, and an angular offset 6. A proper
choice of Tk and 6 allows the fulfillment of the condition posed by
Proposition 2. An analytical method for the evaluation of Tk was
proposed in [30], so that interested readers can refer to that paper for
equations and details.

Tk is directly sent to the orientation synthesizer, i.e., to the block
which generates the modified trajectory. Conversely, 6 is processed in
order to allow smooth and feasible orientation changes. Indeed, any
instantaneous change of ¢ would cause unfeasible joint speeds and
accelerations. The nonlinear filtering system (see [32], [33] for details
concerning its implementation) is used to solve possible feasibility

issues. Its output signal is given by 6, 6, and 6. 0 is the best
approximation of 6 which satisfies the following limits

6~ < <6+, (20)

§- <0<t @1

Bounds §~, 6T, 6, and 6, which are computed by the “Equivalent
bound evaluator” through the procedure proposed in [30], directly
descend from q~, §~, T, and g™, so that (18) and (19) are fulfilled
as long as (20) and (21) are satisfied.

IV. SELECTION OF THE ROTATION AXIS AND TUNING PROCEDURE

Proper conditions for the singularity avoidance may potentially be
devised from (14) and (16). However, functions f; and f3 depend on
the Cartesian path through a set of highly nonlinear relationships,
so that it was not possible to devise analytical relations for the
preservation of the feasibility. For such reason, the SAS is founded
on a heuristic strategy proposed in [30], which rationale is explained
in the following by means of a simple example based on the two-link
planar manipulator shown in Fig. 5.

The ellipsoid of manipulability [34], evaluated in the neighborhood
of a singularity, provides some useful information concerning the
relationships between velocities in the operational and in the configu-
ration space. In particular, its shape immediately indicates the motion
direction which has a minimal impact on the joint speeds and which
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Fig. 5. Case (a): the trajectory (dashed line) passes close to the singularity.
The ellipsoid of manipulability indicates Tk as a possible escape direction.
Velocity o Tk is added to v in order to modify the path (dash-dotted line)
thus reducing the joint speed. Case (b): the trajectory crosses the singularity.
Theoretically, no link flip is required, but minor rounding problems always
force it. As a consequence, Tk* must be used instead of Tk, which is
suggested by the ellipsoid of manipulability, in order to escape from the
singularity.

other should be avoided due to the high velocities it would require.
As known, the first one coincides with the major principal axis of the
ellipsoid, while the second one with the minor principal axis [34].

Fig. 5a schematically shows what happens when a straight trajec-
tory passes in the surroundings of a kinematic singularity. At the point
of minimum distance between trajectory and singularity, the motion
of the first joint is subject to a sharp acceleration, with speeds that
may be unfeasible. Unit vector Tk, associated to the major principal
axis of the ellipsoid, if evaluated in such point, indicates the motion
direction which would produce the lowest joint velocities. Tk can
be used to generate a small speed aTk to be added to v, so as
to generate a path passing farther from the singularity. Consequently,
the speed of the first joint will be lowered.

Trajectories crossing singular points must be handled differently.
Such trajectories, as suggested by the alignment between the major
principal axis of the ellipsoid and the given path, may be theoretically
executed by avoiding the 7 turn of the first joint (see also Fig. 5b).
However, under actual operating conditions, any small numerical
rounding in the forward/inverse kinematics forces an undesired sud-
den turn of joint 1. As a consequence, it is always better to force a
controlled rotation of joint 1. To this purpose, a speed o Tk* can be
added to the nominal vr, where Tk* is obtained by rotating Tk of
an appropriate angle. In Fig. 5 such angle is equal to 7/2 but, for
the problem at hand, the actual amplitude was chosen through the
procedure later proposed in this section.

In the planar example just considered, kinematic singularities
are avoided by modifying linear velocities and, in turn, the path.
However, the same concept also applies for angular velocities, so
that, for a 6 degrees of freedom manipulator, singular configurations
can be avoided by changing the tool frame orientation instead of its
path. To this purpose the orientation modifier proposes a candidate
rotation in the following form

Tk.=0"k. (22)
A characteristic of rotation axis "k is that it always lies on the
zy-plane of the tool-frame. The association of a proper value of
0t Tk represents a complex problem, since no evident theoretical

Fig. 6. Schematic representation of the 12 poses assumed by links 2 and 3
for the experimental validation of the SAS.

considerations are available for the synthesis of adequate analytical
equations. For evident reasons, small values of 6 are desirable. In the
same way, the angular deviation from the nominal trajectory should
last for a short period: curvilinear coordinates s, := s* — d, and
8d := 8" + dg, at which the SAS must be respectively activated and
deactivated, are very important. s* indicates a point along the path
which is located just before the singular configuration and d, is the
activation distance which must be kept as small as possible.

0 and d, have been tuned through a procedure totally based on
simulative tests. Its outcomes have been later verified on the actual
manipulator. A set of wrist singular points, uniformly distributed in
the workspace, were first selected by aligning the fourth and the sixth
joint axes, i.e., by posing g5 = 0, and, subsequently, by assigning all
possible combinations of g2 and g3 taken from the following sets:
¢ € {—7/2 —7w/4 0 7/6}, g3 € {—7/6 0 7/6}. In facts, as
shown in Fig. 6, the combinations of g2 and g3 were chosen so as to
cover the whole workspace. Upper and lower bounds on g2 and g3
were imposed by the end-strokes of the actual manipulator.

A “star” of straight trajectories passing through the resulting 12
singular points was then generated so as to cover all possible direc-
tions in the 3D space. Joint variables q1, q4, and gs have no influence
on the singularity analysis: the results obtained apply independently
from their values. The tuning set is potentially composed by 4440
unfeasible trajectories (370 for each singular point) but, since some
of them partially fall outside the workspace, the actual one contains
3110 cases. The following bounds have been assumed for velocities
and accelerations (: = 1,2,...,6): ¢; = —10rad s (jf = 10 rad
s7', g7 = —25rad s72, and § = 25 rad s>,

The tuning procedure starts by first choosing, for each trajectory
of the tuning set, the proper rotation axis Tk [30] and, then, the
trajectory is executed at the maximum speed (0.4 ms~!) by activating
the SAS and by assuming a constant value of 6 for the whole segment:
the procedure is repeated by progressively increasing 6 until a feasible
trajectory is obtained. At the end of the process, a threshold value @
is associated to each feasible trajectory of the tuning set.

As early asserted, since tuning trajectories exactly cross singular
configurations, Tk must be perturbed w.r.t. to the one suggested by
the ellipsoid of manipulability: the tuning procedure was repeated for
different orientations of 'k — which must always lie on the xy-plane
of the tool-frame — trying to minimize the average value of all Os:
the best performances were achieved by adopting a rotation for Tk
in the range [0.8, 0.9] rad.

The acquired data highlighted, for each trajectory, a relationship
between @ and the derivative of g5 w.rt to s, ie., g5(s*) =
|[dgs(s)]/ds|,_,., where s* indicates a position along the path
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Fig. 7. For each trajectory of the test-set a blue dot associates qf(s*) to the
minimum value § which guarantees feasibility. Red lines represent the output
of (24) and are used by the SAS for the evaluation of the tool-frame rotation
angle.

located just before the singular configuration. Such relationship is
shown in Fig. 7a: for each trajectory, a dot indicates the value of
associated to the corresponding g5(s*). Such information was used
to define the following function
0lgs(s7)] := a+ b min{|g5(s")], ¢} , (23)

which output, obtained by assuming a = 0.0147, b = 0.1033, and
c = 1.6 is shown in Fig. 7a by means of a red line. Coefficient a and
b are the intercept and the slope coefficients of the leftmost linear
segment, respectively. 0 is superiorly saturated by means of c. For the
problem at hand, ¢ was chosen so as to guarantee a maximum angular
displacement equal to 0.18 rad (10.31 deg). It is worth to mention
that smaller angular displacements may be imposed by reducing c,
but lower travel speeds must be assumed in order to maintain high
success rates. With the values chosen for the three coefficients, 91.0%
trajectories lie below the red line and, consequently, are feasible.

The angular displacements obtained through (23) are excessive
if used for ||vr|| lower than 0.4 ms™' and, consequently, 0 is
subsequently downscaled according to the following equation

60— 6o
0.4

0:=00+ vl - (24)
The red lines in Fig. 7 show the output of (24) at different speeds
for fp = 0.009. By is not critical: it represents the minimum
angular displacement to be introduced when the SAS is activated.
It can be noticed that the percentage of points above the red lines,
corresponding to unfeasible trajectories, decreases together with the
speed. For ||vr| = 0.1 ms™" the success rate increases up to 96.8%.
Evidently, ||vr| = 0.4 ms™! is a critical speed which strongly
solicits some joints and which would potentially require higher values
for 6.

The time interval during which the SAS modifies the nominal
trajectory depends on d, and must be kept as small as possible.
To this purpose the tuning set was newly executed by evaluating 6
according to (24) and by progressively reducing d, until feasibility
was lost. Simulations pointed out a relationship between ¢5(s*) and
dq: the higher |gs(s*)|, the lower d,. In the same way, a relationship
between d, and ||vy| was observed. Good success results were

vl =04ms’! “vr|=03ms!

@ . - ) @

% 2 3 4 % 2 3 4
q's(s*) (radm) q's(s*) (radm)

0.25 0.25
vl =02 ms! vl =0.1ms!

0.2

o

2 3 4
q's(s*) (rad m’)

@

2 3 4
q's(s*) (rad m’)

Fig. 8. For each trajectory of the test-set a blue dot associates gf(s*) to
the minimum value d, which guarantees feasibility. Red lines represent the
output of (25) and are used for the evaluation of the SAS activation distance.

obtained by selecting d, through the following hyperbolic function
(do — d)(|g5(s*)| — @) = k or, equivalently,

_dlds(s)| +k—qd

da : = 25)
lgs(s*)| —q
with J
- di
d:=do+ g1 lvrll (26)

and where k£ = 0.1, dop = —0.027, di = 0.147, and ¢ = —0.8.
The output of (25) is represented by the red lines shown in Fig. 8.
Coefficients k, d, and § were tuned so as to bound as many samples
as possible below the red line of Fig. 8a, i.e., the one corresponding
to the maximum speed: k£ acts on the shape of the hyperbole, while
d and § change its vertical and horizontal displacement, respectively.
Then the obtained value of d is subsequently scaled down by means
of (26), so as to account for smaller longitudinal speeds: obviously
do + di must coincide with the value of d previously obtained.
The subdivision between dp and d; is made by maximizing, for all
possible speeds, the number of samples lying below the red lines.

The tuning procedure only accounts for trajectories passing through
singularities. In order to verify if the obtained parameters can be
adopted to manage trajectories which do not exactly cross singular-
ities, they were tested by also considering alternative scenarios. In
particular, for each one of the 12 test configurations, 4 additional
points were placed 1073 m far from the singularity and, in each
of them, a “star” of 370 trajectories was generated. The experiment
was then repeated by considering 4 more points located 2 - 107% m
far from the singularity, and so on. The obtained success rates are
listed in Table II, where they are compared with the results achieved
through the tuning procedure proposed in [30]. The tuning procedure,
which is very fast and easily adaptable to alternative manipulators
or working conditions, always guarantees higher success rates with
respect to [30]. Evidently, the best performances are achieved for
trajectories crossing singularities, since they were used for the system
tuning. However for primitives passing close to singular points, the
success rate drop is limited and, in any case, it is smaller than the
one resulting with the approach proposed in [30]. The difference is
particularly evident for high values of ||vr]|.

It must be pointed out that 100% success rate can never be reached
for several reasons. Many configurations in Fig. 6 (see for example 4,
7, 8, 11, and 12) admit trajectories passing close or through shoulder
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TABLE 11
COMPARISON BETWEEN THE SUCCESS RATES OBTAINED THROUGH THE
OLD TUNING PROCEDURE PROPOSED IN [30] (OTP) AND THE NEW
TUNING PROCEDURE PROPOSED IN THIS PAPER (NTP). d INDICATES THE
DISTANCE BETWEEN TRAJECTORIES AND SINGULAR POINTS.

vzl (ms™1)

d (m) 0.1 0.2 0.3 0.4
0.10-3 OTP 962% 903% 84.5%  76.2%
NTP 97.7% 96.8% 95.1% 92.3%
1.10-3 OTP 727% 684%  66.0% 63.1%
NTP 91.1% 87.8% 854% 82.7%
9.10-3 OTP  688% 665% 587% 53.1%
NTP 942% 91.0% 882% 85.9%
5.10-3 OTP  697% 653% 533% 48.4%
' NTP  962% 94.7% 92.7%  90.7%
10.10-3 OTP  709% 632% 538% 43.8%
NTP 96.8% 953% 94.0% 91.9%

Fig. 9. The presence of desks limits the workspace of the Comau manipulator
used for the experiments.

singularities, which are not managed by the SAS. Furthermore, some
trajectories are almost singular everywhere and, finally, some others
are characterized by two singular configurations.

V. EXPERIMENTAL RESULTS

The SAS has been tested by means of a Comau Smart SiX 6-1.4
anthropomorphic manipulator. An external Linux-RTAI PC is used
to generate the trajectories and to process them with the SAS at a
sample rate equal to 2 - 1073 s. The obtained reference signals are
sent, with the same sample rate, to the feedback control loops of the
robot controller through a real-time Ethernet connection.

As shown in Fig. 9, the manipulator workspace is limited by the
presence of desks. As a consequence, only a part of the simulated
tests were replicated in the real environment and, more precisely, the
ones corresponding to configurations 1, 2, 5, and 9 of Fig. 6. The
experimentally acquired success rates were even better than simulated
ones, as proved by Table III. The reason of such performances is that
unmanageable configurations occur more frequently in areas which
are precluded to the real manipulator.

Fig. 10 shows a typical transient for joints 4 and 6, i.e., the
most solicited ones. The figure proves that, differently from other
approaches in the literature, the proposed strategy does not simply
reduce joint velocities and accelerations, but it explicitly bounds
them between given limits. Similar results were obtained for all
the trajectories of the test set. Another detail, still pointed out by
Fig. 10, concerns the exchange of position between joints 4 and 6:

TABLE III
SUCCESS RATES OBTAINED WITH THE ACTUAL MANIPULATOR. d
INDICATES THE DISTANCE BETWEEN TRAJECTORY AND SINGULAR POINT.

vl (ms~")

d (m) 0.1 0.2 0.3 0.4
0 96.6% 949% 94.7%  93.2%
1-1073 95.1% 939% 929% 91.1%
2.1073 96.3% 95.0% 93.9%  92.5%
5-1073 973% 96.5% 954%  94.2%
10-1073  97.9% 97.0% 96.5%  95.2%

q (rad)

q (rad/s)

§ (rad/s?)

04 08 12 1.6 20 24 28 32 36
t(s)

Fig. 10. The velocity and acceleration signals for joints 4 and 6 associated to
two horizontal trajectories passing through a singular configuration: the given
bounds are fulfilled.

it occurs for all the trajectories and it is a direct consequence of
Proposition 2. In order to prove such assertion, let us consider a
simplified representation of (14) and (16) obtained for very common
operating conditions. Many applications do not require the tool-
frame rotation, i.e., X¢ and ys can be assumed constant together
with Zg, so that wr = 0. Furthermore, the SAS strategy actuates
the angular displacement between nominal and modified tool-frame
when the system is sufficiently far from the singularity: close to
critical configurations it can be reasonably assumed TwT r =0
and, additionally, sin(fs) ~ 65 and cos(65) ~ 1. Bearing in mind
such premises, (14) and (16) simplify as follows

01cas23 + (02 + 63)s4
05

. O1cas23 + (02 + 03)s4

05

where ¢4 = cos(éi; + 01) = cos(qa), sa = sin(0y + 04) =
sin(q4), Co3 = COS(92 + 03 + 05 + 93) = COS(QQ + qg), and so3 =
sin(f@z + 03 + 02 + 03) = sin(ga + g3). Close to the singularity
05 ~ 0, so that from (27) and (28) it is possible to infer that

04 = 91C23 + 27)

0 = (28)

N O1cas23 + (62 + 03)sa
~ o

i.e., the velocities of joints 4 and 6 are each other opposite so that the
positions of the corresponding joints swap. It is important to stress
that the simplifications were only introduced in order to propose a
compact representation of (14) and (16), but (29) is still valid even
when they do not apply.

The novel SAS performances can also be appreciated by means of
the proposed multimedia attachment. The velocity assumed is always
equal to ||vr| = 0.4 ms™'. Experiment 1 shows the execution of
random trajectories lying on a vertical plane. For time reasons, the
video shows the first 7 trajectories of the 100 that were actually
executed. Experiment 2 shows some of the trajectories of the test set.
They are relative to configurations 1, 2, and 5 of Fig.6. Some of them

04 = —0s, (29)
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are particularly critical since they are close to a workspace border
or to an elbow singularity. All the trajectories that were classified
“manageable” by the algorithm were actually executed with the aid
of the SAS and feasibility was never lost, i.e., all trajectories were
feasible w.r.t. the imposed velocity and acceleration constraints.

For which concerns the performances, the average computational
time, obtained with an Intel Core2 Duo PC running at 3.0GHz,
was equal to 4.211 - 1075 s. It typically spans in the range
[2.800-107°,1.690-107*] s: evaluation times are, roughly, four times
smaller than the ones obtained in [28] and are plenty compatible with
the manipulator sample time (2 - 107° ).

VI. CONCLUSIONS

The technique proposed in this paper for the automatic handling
of wrist singularities occurring in non-redundant anthropomorphic
manipulators is explicitly suited to trajectories planned on-the-fly, be-
ing totally based on a real-time strategy. Differently from alternative
methods in the literature, it preserves the user-defined Cartesian path
and time-law. In addition, joint velocities and accelerations are not
generically reduced, but they are explicitly limited within assigned
bounds. The tuning procedure proposed in this work enhances the
performances achieved in an early work, by allowing higher success
rates. Results were experimentally validated on a real manipulator by
means of extensive tests. A very good agreement has been verified
between simulated and experimental results.

At the moment, some preliminary tests have been performed by
considering curvilinear paths and by assuming the algorithm “as it is”.
Clearly, Proposition 1 does no more apply, so that multiple singular
points may appear along a single path. The success rate necessarily
decreases depending on the path curvature and on the orientation of
the osculating-circle associated to the path, but preliminary statistics
show very promising performances.
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