884

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

[30]
(31]

[32]

J. Angeles, G. Yang, and I. M. Chen, “Singularity analysis of three-
legged, six-DOF platform manipulators with RRRS legs,” in Proc. 2001
IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, July 2001,
pp. 32-36.

F. C. Park and J. W. Kim, “Singularity analysis of closed kinematic
chains,” ASME J. Mechan. Des., vol. 121, no. 2, pp. 32-38, Mar. 1999.
G. Yang, I. M. Chen, W. Lin, and J. Angeles, “Singularity analysis of
three-legged parallel robots based on passive joint velocities,” IEEE
Trans. Robot. Automat., vol. 17, pp. 413-422, Aug. 2001.

C. M. Gosselin, “Determination of the workspace of 6-DOF parallel ma-
nipulators,” ASME J. Mechan. Des., vol. 112, pp. 331-336, Sept. 1990.
I. A. Bonev and J. Ryu, “A new approach to orientation workspace anal-
ysis of 6-DOF parallel manipulators,” Mechanism and Machine Theory,
vol. 36, no. 1, pp. 15-28, 2001.

E. F. Fichter, “A Stewart platform-based manipulator: General theory
and practical construction,” Int. J. Robot. Res., vol. 5, no. 2, pp. 157-182,
1986.

O. Masory and J. Wang, “Workspace evaluation of Stewart platforms,”
in Proc. ASME 22nd Biennial Mechanisms Conf., vol. 45, 1992, pp.
337-346.

T. Arai, T. Tanikawa, J.-P. Merlet, and T. Sendai, “Development of a new
parallel manipulator with fixed linear actuator,” in ASME Japan/USA
Symp. Flexible Automation, 1996, pp. 145-149.

E. Ottaviano and M. Ceccarelli, “Optimal design of CaPaMan (Cassino
Parallel Manipulator) with a specified orientation workspace,” Robotica,
vol. 20, pp. 159-166, 2002.

J.-P. Merlet, “Détermination de 1’espace de travail d’un robot parallele
pour une orientation constante,” Mechanism and Machine Theory, vol.
29, no. 8, pp. 1099-1113, 1994.

R. P. Podhorodeski and K. H. Pittens, “A class of parallel manipulators
based on kinematically simple branches,” ASME J. Mechan. Des., vol.
116, pp. 908-914, 1994.

R. Brockett, “Robotic manipulators and the product of exponential for-
mula,” in Int. Symp. Math. Theory of Network and Systems, Israel, 1983,
pp. 120-129.

F. C. Park, “Computational aspect of manipulators via product of expo-
nential formula for robot kinematics,” IEEE Trans. Automat. Contr., vol.
39, no. 9, pp. 643-647, 1994.

R. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation. Boca Raton, FL: CRC Press, 1994.

C. M. Gosselin and J. Sefrioui, “Polynomial solutions for the direct
kinematic problem of planar three-degree-of-freedom parallel manipula-
tors,” in Proc. 5th Int. Conf. Advanced Robotics, Pisa, Italy, June 19-22,
1991, pp. 1124-1129.

L.-W. Tsai, Robot Analysis. New York: Wiley, 1999.

G. Yang, W. H. Chen, and I. M. Chen, “A geometrical method for the
singularity analysis of 3-RRR planar parallel robots with different ac-
tuation schemes,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, 2002, pp. 2055-2060.

J. S. Rao and R. V. Dukkipati, Mechanism and Machine Theory. New
Delhi, India: Wiley Eastern Ltd., 1989.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

Smooth Motion Generation for Unicycle Mobile
Robots Via Dynamic Path Inversion

Corrado Guarino Lo Bianco, Aurelio Piazzi, and Massimo Romano

Abstract—A new motion-generation approach is proposed for wheeled
mobile robots described by the unicycle kinematic model. This approach
permits the generation of smooth continuous-acceleration controls using a
dynamic path-inversion procedure that exploits the concept of G*-paths,
i.e,, Cartesian paths with third-order geometric continuity (both the
curvature function and its derivative, with respect to the arc length, are
continuous). The exposed steering method is well suited to be adopted for
the robot’s iterative steering within a supervisory control architecture for
sensor-based autonomous navigation. A worked example illustrates the
approach.

Index Terms—Dynamic path inversion, geometric continuity, smooth
motion generation, unicycle mobile robots.

1. INTRODUCTION

The work of Dubins [1] and Reeds and Shepp [2] devoted to the plan-
ning with minimal length paths are well-known fundamental results in
the field of nonholonomic motion generation of wheeled mobile robots
and car-like vehicles (see the survey [3] by Laumond et al.). A known
limit of the Dubins—Reeds—Shepp approach is that the resulting paths
are composed by line segments and circular arcs and do not have overall
continuous curvature. Therefore, swift high-performance maneuvers
cannot be achieved. At the end of the 1980s, many authors [4]-[6] pro-
posed several curve primitives to overtake this limit: in all of the cases,
continuous-curvature paths, usually denoted as G*-paths, were gen-
erated. Subsequently, many authors have worked on planning schemes
ensuring continuous-curvature paths [7], [8]. A recent approach to con-
tinuous-curvature motion generation was proposed in [9] where con-
tinuous-curvature paths were obtained by using a new primitive, the
7-spline or quintic G*-spline. This primitive was adopted to achieve a
straightforward approach for the iterative steering of vision-based au-
tonomous vehicles.

In this paper, the discussion is focused on the generation of a smooth
motion control for unicycle mobile robots (UMRs), i.e., wheeled mo-
bile robots whose kinematics is described by the unicycle model. In
more detail, it will be demonstrated that, if such robots are driven
with smooth linear and angular velocity command signals, i.e., signals
which are continuous with their derivatives, they generate G*-paths,
i.e., paths for which both the curvature function and its derivative with
respect to the arc length are continuous. It will be further demonstrated
that, conversely, the UMRs can be driven along any G*-path by means
of appropriately devised C' command signals. A possible control
strategy is then proposed. Its main features are the following.

1) A dynamic path inversion algorithm is designed to synthe-
size the UMR inputs. This algorithm requires planning with
G®-paths [10] using interpolating conditions at the path
end-points.

Manuscript received July 9, 2003; revised December 19, 2003. This paper
was recommended for publication by Associate Editor K. Lynch and Editor H.
Arai upon evaluation of the reviewers’ comments. This work was supported in
part by MIUR Scientific Research Funds under the framework of a COFIN 2002
project. This paper was presented in part at the 2002 IEEE Intelligent Vehicles
Symposium, Versailles, France, June 18-20, 2002.

The authors are with the Dipartimento di Ingegneria dell’Informazione,
Universita di Parma, 1-43100 Parma, Italy (e-mail: guarino@ce.unipr.it;
piazzi@ce.unipr.it; romano@ce.unipr.it).

Digital Object Identifier 10.1109/TRO.2004.832827

1552-3098/04$20.00 © 2004 IEEE

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

2) The UMR inputs, i.e., the linear and angular robot velocities,
are globally generated as C"' functions (velocities and acceler-
ations are continuous time functions).

The proposed inversion-based procedure, which does not require any
integration because it relies on the differential flatness of the unicycle
model [11], will permit the real-time generation of continuous-accel-
eration feedforward inputs.

Due to the inevitable mismatch between the ideal unicycle model and
the real one, the UMR tends to drift from the planned paths. These path
errors can be reduced with a timely updating of the path replanning in
accordance with an iterative steering technique [12]. As is known, this
technique can be interpreted as a discrete-time feedback which is very
useful in a real robot navigation scenario [13].

This paper is organized as follows. Section II introduces notation
and preliminaries on first-, second-, and third-order geometric conti-
nuity of curves and paths. Section III poses a reachability problem in
an extended state space of the unicycle model and derives a first re-
sult (Proposition I). The dynamic path-inversion-based procedure is
detailed in Section IV. A worked example illustrates the approach in
Section V. The concluding remarks of Section VI end the paper.

II. NOTATION AND PRELIMINARIES ON G -PATHS

The Euclidean norm of a vector p is denoted by ||p||. Let C* indicate
the set of functions that are continuous until the ith derivative and let
C,, indicate the class of piecewise continuous functions. A curve on the
{x, y} plane can be described by means of the following parametriza-
tion p(u):

p: [uo,u1] — R?

u — [a(u)B(u)]” (1

where [uo, u1] is a real closed interval. The “path” associated with the
curve p(u) is p([uo, u1]), i.e., the image of [uo, u1] under the vectorial
function p(u).

Definition 1: A curve p(u) is regular if p(u) € Cp([uo,u1]) and
p(u) # OVu € [ug,uq].

The curve length measured along p(u) is denoted by s; it can be
expressed as a function f of u as

[fuo,ur] = [0, f(u1)]
v = /||p(£)||d£. @

Evidently, given a regular curve p(u), the length function f(-) is con-
tinuous over [u¢, u1] and bijective; hence, its inverse is continuous too
and it will be denoted as

£ 00, f(un)] = [uo, ui]
s—u=f""(s) 3)

Associated with every point of a regular curve p(u), there is the
orthonormal moving reference frame {7(«), »(«)} which is congruent
with the axes of the {x, y} plane and where 7(u) = p(u)/||p(v)||
denotes the unit tangent vector to the curve p(u). Define arg{7(-)} as
the angle § between T and the « axis. The angle ¢ is counterclockwise
positive.

Definition 2 (G -curves): A parametric curve p(u) has first-order
geometric continuity, and we say p(u) is a G -curve, if p(u) is regular
and its unit tangent vector is a continuous function along the curve, i.e.,
7(-) € C°([uo,u1]).

For any regular curve such that p(u) € C,([uo,u1]), the
scalar curvature can be defined according to the Frenet formula

885

T(u) = re(uw)v(u) (see, for example, [14, p. 109]). This defines the
curvature function with respect to the parameter v as follows:

Ke: [uo,u1] = R
w — Ke(u). (€))

According to the theory of planar curves, an explicit expression of
fe(u)is ke(u) = [&(u)F(u) — &(u)B(u)]/ (62 (u) + 32 (u))*?. The
scalar curvature can also be expressed as a function of the curve length
s. In the following, such a function will be indicated as

£:]0, f(u)] = R
5 — £(s) (@)

and the bijectivity of function f(u) makes it possible to write
K(s) = ke (fil(b)) (6)

Evidently, by virtue of relation (6), the curvature function x.(u) is
continuous if and only if function (s) is continuous, i.e., ko(-) €
C%([uo, ua]) & r(-) € C°([0, f(ur)]).

Definition 3 (G?-curves): A parametric curve p(u) has second-
order geometric continuity, and we say p(u) is a G*-curve, if p(u) is
a G'-curve, p(+) € C,([uo,w1]) and its scalar curvature is continuous
along the curve, i.e., k.(-) € C°([uo, u1]) or k() € C([0, F(u1)]).

G"- and G*-curves were originally introduced by Barsky and Beatty
[15] in a computer graphics context. The main results of this paper re-
quire the introduction of curves with third-order geometric continuity.
This can be done according to the following definition.

Definition 4 (G*-curves): A parametric curve p(u) has third-order
geometric continuity, and we say that p(u) is a G*-curve, if p(u) is a
G*-curve, p'(-) € Cp([uo,u1]), and the derivative of the scalar cur-
vature, with respect to the arc length s, is continuous along the curve,
ie., #(-) € C°[0, f(u1)]).

Definition 5 (G -, G*-, and G -paths): A path of a Cartesian space,
i.e., a set of points of this space, is a G*-path (i = 1, 2, 3) if there exists
a parametric G* -curve whose image is the given path.

Remark 1: The definitions provided herein for the geometric conti-
nuity are not the most general ones and are restricted to planar curves.
A recent survey devoted to the kth-order geometric continuity of curves
and surfaces in a general context can be found in [16].

III. THE PROBLEM AND A FIRST RESULT

Consider a wheeled mobile robot governed by the nonholonomic
unicycle model

(t) =v(t) cos0(t) (7
y(t) =w(t)sin 0(¢) (8)
Bt) =w(t) ©)

where = and y indicate the robot position with respect to a stationary
frame, ¢ is its heading angle, and v and w are its linear and angular
velocities to be considered as the control inputs of the robot. In order
to achieve high-motion performances, these inputs v(¢) and w(t) will
be synthesized as C'*-functions, i.e., linear and angular accelerations
will be continuous signals.

From a mathematical standpoint, the state of model (7)—(9), at time
t,is given by {x(t), y(t), #(t)}. In the following, it is convenient to use
an extended state, comprising the inputs and their derivatives, defined
as

{J’(f): y(t),0(1). (1), ".}(t)v w(t), "‘J(f)} .

Then, the considered motion generation problem can be stated as a
reachability problem in the extended state space.

886

The Problem: Given any assigned traveling time ¢y > 0, find con-
trol inputs v(-),w(-) € C*([0,%,]) such that the mobile robot starting
from an arbitrary initial extended state

pa=[zaya]" = [2(0) y(0)]"

64 =6(0)
va =v(0)
va =v(0)
wa =w(0)
24 =0(0)

reaches the arbitrary final extended state

ps =[r5 y5]" = [c(tr) y(ty)]"

Op =0(ty)
vp =v(ty)
op =0(ty)
wp =w(ty)
b =ity).

A solution to the introduced problem will be provided by the path
dynamic inversion procedure described in Section IV and the overall
motion strategy can be then based on an iterative steering [12] issued by
a supervisory control system [17]. The real-time knowledge of the robot
position is used by the supervisory system to steer the UMR from the
current extended state to a future extended state in an iterative fashion.
In such a way, for the UMR, swift high-performance motion is possible
while intelligent or elaborate behaviors are performed.

The following proposition that is the first contribution of the paper is
essential to understand how to plan a desired path connecting p 4 with
PB.

Proposition 1: Assign any ty > 0. If a Cartesian path is generated
by model (7)~(9) with inputs v(¢), w(t) € C*([0,ts]), and v(t) #
0Vt € [0,t], then it is a G*-path. Conversely, given any G -path,
there exist inputs v(¢), w(t) € C'([0,%7]) with v(¢) # 0Vt € [0,]
and initial conditions such that the path generated by model (7)—(9)
coincides with the given G*-path.

Proof: Let us demonstrate the first part of the proposition.
Consider a Cartesian planar {x,y}-path generated by the model
(7)—(9) by means of two command signals v(t) and w(¢) continuous
with their derivatives. The generated path can be found by explicitly
solving (7)—(9) for any ¢ belonging to a given time interval [0, ¢]. Let
us indicate by [2(t), y(t)] the generated trajectory. A known result
of the planar curve theory makes it possible to express the curve unit
tangent vector as

[#(t) 5(0)]"

=——7 """ =cos sin T if v
T(t) = \/m = [cos §(t) (), ifwu(t)>0
T(t) = [£() §(0)] = —[cosf(t) sinf(t)]", ifu(t) <O.

Taking into account model (7)—(9) and the continuity of w, it is pos-
sible to deduce that § and, consequently, the unit tangent vector T, are
continuous.

The scalar curvature for a planar path is defined as

FH(D() = (2)3(t)

K(t) = s (10)
(@2(0) + 32()F
Explicit expressions for # and ¢ can be derived from (7)—(9) as
Z(t) =0(t) cos () — v(t)w(t)sin 6(¢) an
§(t) =0(t)sin () + v(t)w(t) cos O(t). (12)

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

By using (11)-(12) and the model (7)—(9), (10) becomes

if o(t) > 0 (13)

if v(t) < 0. (14)

- v(t)’
Hence, the continuity on v and w infers the continuity of the curvature
K.

Finally, the curvature derivative with respect to curve length s is ex-
pressed as

du(t) Lty — wi(t) 1
ds % - v2(t) v(t)’

As a consequence, it is possible to assert that, according to the conti-
nuity of v, ¢, w, and @, the curvature derivative dr/ds is continuous
also. This demonstrates that the path generated by model (7)—(9) is a
G*-path.

The second part of the proposition will be demonstrated construc-
tively. Suppose that we want to assign a path in the {x, y} plane by
means of a G -curve parametrized by u, i.e., p(u) := [a(u) B(u)]”
with v € [ug, u1].

Let us assume as initial conditions x(0) = a(uo), y(0) = B(uo),
and #(0) = arg{T(uo)}. Freely assign v(¢t) € C"'([0,t;]) with ¢ €
[0, t£] such that v(¢) > 0, and the equation

ty
/v@ﬂ&zf@ﬂ (1)
0
is satisfied.
Finally, assign w(t) according to the following equation:
(16)

w(t) = vBr6N e

s

Owing to the G continuity of the planned curve, we can claim the
continuity of #(s) so that, since v(¢t) € C*([0,tr]), it is possible to
conclude that w(t) € C°([0,¢]). Moreover, its first derivative can be
expressed as

drk

ds .q:f; v(€)de

w(t) = v>(t) +(t)r(s)| _ [(e (17)

All of the functions appearing in (17) are continuous. This proves that,
as required, w(t) € C'([0,,]).

To conclude the demonstration of the second part of the proposition,
it is necessary to prove that the following time functions:

a(u)|u:f—1(f0tu(5)d5) (18)
’6(’11)|u:f*1 (fot w;(E)dE) (19)
(20)

g ATy ([0 ugerae)

are a solution of model (7)—(9). First of all, it is immediately possible
to verify that (18)—(20) satisfy the given initial conditions. By differen-
tiating with respect to the time both (18) and (19), we can write

d
EOZ(U) |“:f71 ([01 ,,(5)45)
_ éu) olt
IDCO Lz ([wteyae) "

:mﬂmshﬁQégﬁ)L:fwﬁw@@

= v(t) cos [arg (T(u))] |u:f71(f0t o(e)de)

@n

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

d
E’H(“”u:f*l (jot b(f)dg)
_ B o(t)
IDCOH .z pmr (f7 oerae)

v(t) sin {arg(bly))} u=f =1 ([1 o) i)

B (w)l|
o(t) sin [arg (7(u))] |, - (] w(eye)”
Equations (21) and (22) exactly match the first two equations of model
(7).

The time derivative of (20) can be evaluated bearing in mind (23),
shown at the bottom of the page. Thus

(22)

d—’t arg [r(w)] |

u=f =1 [v(eag)
a(u)ﬁ(u) —a(u)13(u)

(a2(u) + B2(u))?

usfot([e(e)dg)

= U(f) Kc(llr”":ffl (f(: 1:(5)d5) ’ (24)
Definition 6 makes it possible to rewrite (16) as
’U(t) = v(t)ﬁ'“(u”u:f—l (fot v(ﬁ)d&) (25)
so we can conclude that
d
It arg [T(u’)] |u:f*1 (fot v(‘f)d‘f) = W(t) (26)

i.e., (26) matches the third equation of model (7)—(9).

We can conclude that the trajectory (18)—(20) is generated by model
(7)—(9) owing to the chosen input functions v(¢) and w(t). Hence, the
path generated by (7)—(9) coincides with the planned curve p(u). ®

Remark 2: In order to generate G 3 -paths with model (7)—(9), it is
not strictly necessary to guarantee that v(¢) # 0. On the other hand,
if such a condition is not satisfied, there exist degenerate situations
where the required geometric continuity is lost. For example, assign
two command signals v(t), w(t) € C*([0,]) such that there exists
t* € [0,t5] where v(t") = 0 and w(¢*) # 0. It is immediately pos-
sible to verify that, according to (10)—(12), we have

* . t)w(t
o) = T 20 _

= [v2(1)]?
hence, the curvature « is not defined at t*. This implies that, according

to Definitions 3—5, the corresponding path is neither a G*-path nor a
G?-path.

@n

IV. PATH-INVERSION ALGORITHM

In this section, the proposed motion generation problem is solved by
means of a dynamic path-inversion procedure. The aim is to synthesize
a feedforward control such that, for any given interval [0, ¢], the UMR
starting at time O from the extended state

A={pa,fa,va,va,wa,wa}

will reach, at time ¢, the extended state
B= {p37 957 UB, i"Ba WH, LUB}

while the following geometric and kinematics requirements are
ensured:

I) The robot Cartesian path connecting p. with pg is a G*-path.

I o(t) # 0Vt € (0,¢5).

The above conditions I and II impose some formal restrictions on
both the initial and final extended states. In order to satisfy condition I,
all of the following statements must be simultaneously verified.

1) Ifva =0,thenws = 0.
2) If(va =0)A(0va =0),thenwa = 0,04 = 0.
3) Ifvp = 0,thenwp = 0.
4) If(vg =0)A (0 =0),thenwp = 0,05 =0.

On the other hand, condition II is satisfied only if all of the following
statements are true.

5) Ifwva > 0,thenvp > 0.
6) If(va > 0)A(ve =0),thenor < 0.
7) Ifva < 0,thenvg < 0.
8) If (va < 0)A (v =0),thendp > 0.
9) If (va =0)A (¥4 > 0),thenvg > 0.

10) If (va = 0) A (04 > 0) A (ve = 0), then 05 < 0.

11) If (va = 0) A (94 < 0),thenvp < 0.

12) If (va = 0) A (04 < 0)A (v =0), thenvp > 0.

In light of Proposition 1, it is sensible to impose that the path con-
necting pa with pg is a G*-path even for the cases where v(0) = 0
and/or v(t;) = 0. Consequently, it is necessary to enforce statements
1)-4). Indeed, if any of the statements from 1) to 4) are violated, the
corresponding robot motion path cannot be a G*-path

Analogously, focusing on statements 5)—12), if any of these are vio-
lated then, considering that v(#) must be synthesized as a C -function,
condition II cannot be satisfied. For example, assume that statement 6)
is not true because v4 > 0, vg = 0, and 5 > 0. Therefore, it is
easy to show that there does not exist a function v(-) € C'([0,%/])
satisfying v(0) = va, v(ty) = vg, 0(ty) = 0, and v(t) > 0Vt €
(0,2y).

Condition II simply means that we can have either v(t) > 0 or
v(t) < 0 for all of the time instants ¢ belonging to the open interval
(0,tr). This should not be considered a loss of generality. Indeed,
if the robot motion direction needs to be inverted as, for example,
when there exists t* € (0,#y), such that v(#) > 0Vt € (0,t") and
v(t) < 0Vt € (¢*,ts), then the supervisor can split the motion gen-
eration into two parts, each of them characterized by a well-defined
sign of the velocity inside the pertinent time interval. In the following,
we denote as a forward movement (FM) the robot motion for which
v(t) > 0Vt € (0,t;). Conversely, a backward movement (BM) is
characterized by v(t) < 0Vt € (0,t5).

The overall procedure can be described with four steps. First, the
supervisor has to decide for a FM or BM to reach the final extended
state B. This choice mainly depends on the given interpolating data.
The same data are used in the second step to plan the desired G -path.
Then, the linear velocity command signal v(¢) is synthesized and, fi-
nally, the angular velocity command w () is designed by exploiting the
constructive proof provided for Proposition 1.

arctan [

,L;i(‘u, i|
a(u)

T + arctan [’a

arg [T('U,)] |u:f_1 (ft v(i)d&) =

| w2

e

u)

if &(u) >0

“L([Feeae)

if &(u) < 0
[w@ae)’ (v

u=f— 1 (23)

if &(u) = 0and 3(u) >0
if &(u) =0and 5(u) <0

888
TABLE 1
SELECTION CRITERIA FOR THE MOTION DIRECTION
(va > 0) A (v > 0)

(va >0) A (vp =0) A (vp <0)

(va =0) A (vg > 0) A (04 >0) FM
(va=0)A(vp =0)A(va >0)A(ip <0)
(va=0)A(vp =0) A (94 >0) A (b5 <0)

(va <0)A (v <0)

(va <0) A (vs =0) A (vp > 0)

(va =0) A (v <0) A (04 <0) BM
(va=0)A (v =0)A(va <0)A (v >0)
(va=0)A(vp =0) A (V4 <0) A (b > 0)

FM

(va =vp =0)A(va =0 =0) or

BM
YA
Forward movement
Backward movement
>
Fig. 1. Ifvy =vp =0and v, = vp = 0, then B can be reached by means

of an FM or a BM.

Step 1: The motion direction is decided on the basis of the inter-
polating data v4, U4, vB, and . Table I can be used to select the
motion direction (FM or BM). Note that, in the last case of Table 1
(va = vg = 0and ¥4 = s = 0), the supervisor can arbitrarily
choose an FM or a BM (see Fig. 1).

Step 2: Determine a G*-path connecting p4 with pg. This corre-
sponds to finding a G*-curve p(u), denoted according to (1), that sat-
isfies the interpolation data deduced from the extended states A and B.

Two cases can be distinguished:

1) a general case: va # 0 and v # 0;

2) acritical case: v4 = 0 and/or vg = 0.

For both cases, the curve p(u) must satisfy the following interpolating
conditions:

p(uw) =pa, p(u1)=ps (28)
[cosfa sinfa]”, if FM

up) = 29

7(uo) { [—cosfa —sin 044]T, if BM (29
[cosfp sin 95]1', if FM

1 = 30

rw) {[— cosfp —sinfp]’, if BML. (30)

From Section II, let us recall that (s) and #(s) denote the curvature
and its derivative with respect to the arc length s [in particular, see (6)].
Then define

ka = k(0), Ffa=k(0),
kg =k (f(ur)), kp:=Frk(f(u1)).

For the general case, the curvatures and their derivatives at the path
end-points must be determined according to the formulas

“wA
v
RA = { _AWA

vp

if FM

if BM G

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

(== ifFM ,
8-k, ifBM (32)
iy = WAVA : WAUA (33)

v
I%B:wB'UB—wB'UB (34)

3
U

Now, consider the critical case. If va = 0,v4 = 0, wa = 0, and
w4 = 0, then the supervisor can freely assign any desired £ 4 and % 4.
Analogously, if vg = 0,98 = 0,wp = 0,and wp = 0, then K and
#p can be arbitrarily chosen.

On the other hand, if va = 0, wa = 0,and v4 # 0, then

wa
_ va’
kA = WA
-,

and £ 4 can be freely assigned. Analogously, if vg = 0, wp = 0, and

v # 0, then
wp
P
KB = BH"B
—a

and £ g is arbitrarily chosen.
The interpolating conditions on curve p(u) are then completed by
imposing [see (6)]

if FM (04 > 0)

if BM (4 < 0) 33)

if FM (o5 > 0)

if BM (95 < 0) (36)

Ketg) =K a 37
Ke(u1) =kp (38)
fee(to) =Fa [[P(uo)| 39)
fee(ur) =fp [[pu)]]. (40)

An actual G3-curve p(u) can be obtained by means of the closed-form
expressions set out in [10]. In that work, a new curve primitive, named
G*-spline, was proposed. Such a primitive makes it possible to satisfy
any set of interpolating conditions (28)—(30) or (37)-(40) and, at the
same time, to finely shape the resulting curve by means of some freely
assignable parameters.

Step 3: Choose v(-) € C([0,t;]) with v(t) # 0Vt € (0,t),
such that

v(0) =va 41)
o(ty) =vg 42)
0(0) =4 43)
1','(tf) =UR (44)

by

. . [f(w), ifFM
/t(f)di = { “f(w1), ifBM (45)
0

(we recall that f(u1) is the total arc length of the planned G*-path
connecting p 4 with ps). Choosing v(?) according to the interpolating
conditions, (41)-(45) can be accomplished according to various
schemes.

A viable velocity planning has been recently proposed in [18]. The
command signal v(-) € C*([0,t¢]) is generated with five properly
joined spline curves (i = 1,2,...,5):

vi(t) = a1; + 2a2:t + 3a3,'t2, t €10, h;] (46)

with Z‘;’:l h; = ty.In[18], it has been demonstrated that the gener-
ated velocity function, in the absence of velocity and acceleration upper
bounds, is C'' and strictly positive for any ¢ € (0,¢;) and, moreover,
satisfies with certainty constraints (41)—(45) for any set of interpolating
conditions. When kinematics bounds have to be considered, as is cer-
tainly the case in the practical applications, it is still possible to use this
velocity planning by applying a time-scaling procedure on 7.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

Step 4: The angular velocity function w(-) € C*([0, t¢]) is defined
according to

47
(43)

w(t) ::'v(t)iq,(s)|szf; o(€)de Vit € [0,tf] if FM

w(t) = —v(t)r(s)| vt € [0, t5] if BM

s=— .fot v(€)dg

where r(s) is the curvature expressed as a function of the arc length s
[see (6)].

The following result highlights the role of the inversion algorithm in
steering the UMR.

Proposition 2: Let us consider any traveling time ¢y > 0 and any
extended states A and B satisfying assumptions 1)-12). Then, the con-
trol inputs v(+), w(-) € C*(]0,tf]), synthesized by the proposed pro-
cedure, steer the UMR from the extended state A, at time 0, to the
extended state B, at time t¢, in such a way that the generated motion
path exactly matches the G*-path planned at step 2 of the procedure.

Proof: This proof mainly relies on the “sufficiency” proof of
Proposition 1.

First note that, as required, both v(¢) and w(#) belong to C"' ([0, ¢]).
By definition, velocity v(t) is C*([0,#]) when planned according
to the method proposed in [18]. It has already been demonstrated
that an angular command signal defined according to (16) belongs to
C*([0,%7]) when the planned curve is G*. Thus, in the case of FM, the
command signal (47) belongs to C'' ([0, #/]). Using similar reasonings
in the case of BM, the command (48) belongs to C"* ([0, %/]).

As a second step, it is necessary to prove that the path generated by
the robot exactly matches the planned G*-path. In the case of FM, in
the proof of Proposition 1, it has been demonstrated that the trajectory
(18)—(20) is generated by model (7)—(9) with inputs (46) and (47) and
initial state [x 4 ya 914]T. Thus, the path generated by (7)—(9) coincides
with the planned curve p(w) so that, at time ¢ ¢, the robot state exactly
coincides with the desired final state [v5 y5 6 B]T. It is relevant to
observe that the demonstration does not degenerate even in the case of
initial and final velocities equal to zero.

In the case of BM, it is immediately possible to verify that §(-) =
arg{T(-)} so that it is necessary to demonstrate that the following time
functions:

ﬂ(u”u:f*l(—f(f ‘u(E)dE) (50)
arg {—7(u)} |u:f71 (= [wle)de) (62))

satisfy model (7)—(9) with command inputs (46) and (48) and initial
state [;v AYA 944]T . The demonstration is analogous to that already seen
for the FM and is omitted for conciseness.

To conclude the proof, it is necessary to demonstrate that the
boundary conditions are satisfied not only for the robot state but also
for the whole “extended state.” The linear velocity profile is planned by
imposing (41)—(44) so that the boundary conditions are automatically
satisfied for both v(¢) and ¢(t). The demonstration for w(t) and &(t)
requires one to consider several cases depending on the initial and
final linear velocities v(0) and v(ts). In the following, only the FM
case will be analyzed.

First consider the nondegenerate case v(0) # 0. Taking into account
the command signal (47) and the first equation of (31), we obtain

w(0) =v(0)r(0) = vara =va A _ WA.
va

889

The angular acceleration w(0) can be obtained by deriving (47) [see
also (17)]. The initial angular acceleration is obtained with the help of
(31) and (33) as follows:

©(0) = v*(0)4(0) 4+ 9(0)x(0)

2 . .
=VARA T VARA

5 WAVA —WADA | . WA
=i A
v VA

S

Analogously, for ¢ = ¢ty and v(ts) # 0, (32) makes it possible to
write

wlty) = v(tp)r(ty) = v(ty)r(f(ur)) = vskp = 'UB% = ws.

Moreover, considering also (34), we obtain
VP (tg)ie(ty) 4+ (tp)R(ty)

= 0% (tg)ik (f(un) +0(tp)R (f(ur))

vpKB + UBKB

w(ty)

WBUB — WBURB . wa
— 3 Tus_—
vy vB

o

= v

= wA.

This demonstrates that, in case of nondegenerate situations, the initial
and final interpolating conditions are exactly matched.

Now consider the critical situation where v4 = 0 and va = 0. For
any finite value of k 4 and £ 4, we correctly obtain [see statement 2) of
Section V]

w(0) = v(0)k(0) =vara =0
(0) = v*(0)4(0) 4+ 9(0)k(0) = vika 4+ 0ara = 0.

Analogously, when vg = 0 and v = 0, we correctly obtain [see
statement 4) of Section IV]

w(ty) = v(tp)r(tr) = v(ts)r (f(w1)) = verp =0
D(ts) = v2(tp)ilts) + 0 (tr)R(ty)

O (tp)ie (f(ur)) + o(tp)s (F(ur))

Vika 4 Daka

=0.

To conclude, consider the last critical case v4 = 0 and ¥4 # 0. For
the FM, taking into account (35), the initial angular velocity is correctly
[see statement 1) of Section IV]

w(0) = 0(0)k(0) = vara = vat =0
oA

while the angular acceleration, for any arbitrarily assigned # 4, coin-
cides with the assigned w4 as follows:

w(0) =0? (0)i(0) + 2(0)k(0) = vhka +Oaka = i’A% = wa.

Further considering the FM, and taking into account (36), the final an-
gular velocity is correctly [see statement 3) of Section IV]

w(ty) =v(ty)r(ty) = vBrB = ’UB% =0

890

while the angular acceleration, for any arbitrarily assigned /5, coin-
cides with the assigned wg as follows:

Vi (tg)i(t) + it)m(ty)
O ()i (F(wn)) + o(tp) s (f (ur))

2 . .
= Upkp + UBKB

w(ty)

. WB
B T—
UB

= wn.

The same reasonings are applicable to the BM case.

Thus, it is possible to conclude that the proposed control law makes
it possible to steer the UMR from any feasible extended state A to any
feasible extended state B while the resulting motion path coincides
with the planned G*-path. [|

Obviously, if the extended state A, used to replan the trajectory, co-
incides with the current extended state of the system, the C'* continuity
of the command signals is guaranteed also at the updating time. Thus,
the composite command signals are globally C'* and the piecewise path
resulting from this iterative steering approach is globally a G -path.

V. MOTION GENERATION EXAMPLE

Consider that, at time O, the extended state of the UMR is
A=1{[21]",7/4,0,0,0,0}. The desired future extended state at the
chosen time t; = 4 sis B = {[4 3], —x/6,0.5,0,-0.5,0.05}. In
A and B, the Cartesian coordinates are expressed in meters, the angles
in radians, the (angular) velocities in (radians/s) m/s, and the (angular)
accelerations in (radians/s*) m/s®. These extended states satisfy all the
assumptions 1)-12) (see Section IV) so that the steps of the inversion
algorithm can be directly applied.

Step 1: According to Table I, we plan an FM. Indeed, the logical
statement (va = 0) A (vB > 0) A (04 > 0) is true.
Step 2: The supervisor has to choose a G*-curve p(u) satisfying

interpolating conditions that depend on the extended
states A and B. First, let us assume wp = 0 and u; = 1
for simplicity. Therefore, from (28)—(30), we have

p(O) =pa = ﬁ]

p(1) =ps = m
vz

=[]

r=[%]

2

Because the extended state A is a critical case with vq =
0,94 = 0, ws = 0,and wa = 0, we can arbitrarily
choose k4 and £ 4, for example, k4 = 1 and k4 = 0.
Consequently, from (37) and (39), we obtain

ke(0) =1, £.(0)=0.

On the other hand, from (32) and (34), we compute
kp=-1, kp=20.2,

and, eventually, from (38) and (40)

ke(l) = —1, i.(1) = 0.2]p(1)].

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

TABLE 1I
COEFFICIENTS OF THE POLYNOMIAL G*-CURVE

1 0 1 2 3 4 5 6 7
2.00 2.33 -3.85 0.00 4.75 11.37 -20.61 8.00
yi | 1.00 2.33 3.85 0.00 -15.04 18.79 -10.07 2.13

x

!

[m]
354

3
25

Fig. 2. G?®-path planning example.

TABLE III
COEFFICIENTS OF THE POLYNOMIAL VELOCITY FUNCTION v(t) AND
CORRESPONDING TRAVELING TIMES

i a1y ag asi hi

1 0 0 0.2719 | 0.8034
2| 0.5264 0.6552 -0.1848 | 0.8000
3| 1.2198 0.2116 -0.1134 | 0.7966
4] 1.3412 -0.0593 -0.1820 | 0.8000
5| 0.8969 -0.4961 0.2067 | 0.8000

The above interpolating conditions are then applied to a
seventh-order polynomial curve p(u) where

a(u) =xg+ 110+ wgu2 —+ .Zg’ltg =+ :c4u4
—+ ,7?_571,5 =+ ,rgu,G =+ .73771,7

Blu) :==yo + y1u + y2u” + ysu® + yau’
+ ysu® + you® +yru'.

The coefficients x; and y;, listed in Table II, are deduced
following the approach proposed in [10]. The resulting
G® -path connecting p 4 with p is plotted in Fig. 2. The
total path length is f(u1) = 3.3856 m.

The command signal v(-) € C"([0,4]) is made of five
properly joined polynomial curves (46), according to the
approach proposed in [18]. The splines coefficients are
shown in Table III together with the traveling time of each
single curve. The overall velocity function is C'' and posi-
tive for any ¢ € (0, 4). Moreover, it satisfies the boundary
conditions (41)—(45).

Taking into account both (47) and (6), the command
angular velocity w(-) € C*([0,4]) can be numerically
computed as

Step 3:

Step 4:

() = v(t)re (F7'(5)) (52)

S:f(: v(€)de "

The control inputs v(t) and w(t) are plotted in Fig. 3.
It is worth noting that the supervisor can decide to do a path replan-
ning before the running commands (46) and (52) are completed. There
may be a variety of reasons to perform an early replanning, for example,

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

o) mfsl N/
...... w(t) [radfs]
-9 : - .

0 05 1 15 2 25 3

Fig. 3. Command signals v(¢) and w(t).

to adjust for a sudden obstacle interfering with the robot’s motion or to
correct for an increasing path following error due to the mismodeling
determined by (7)-(9) with respect to the robot actual behavior.

VI. CONCLUSION

In this paper, a new steering method that guarantees continuous-
acceleration control inputs has been proposed for unicycle wheeled
mobile robots. This approach relies on a path planning with third-order
geometric continuity and on a dynamic path-inversion algorithm.

The exposed method is well suited to be implemented using an itera-
tive steering strategy issued by a supervisory control system to perform
sensor-based autonomous navigation. The design of such a supervisor
is indeed a promising possible direction for future research work.

REFERENCES

[1] L. Dubins, “On curves of minimal length with a constraint on average
curvature and with prescribed initial and terminal positions and tan-
gents,” Amer. J. Math., vol. 79, pp. 497-517, 1957.

[2] J. Reeds and R. Shepp, “Optimal paths for a car that goes both forward
and backward,” Pacific J. Math., vol. 145, no. 2, pp. 367-393, 1990.

[3] J. Laumond, S. Sekhavat, and F. Lamiraux, “Guidelines in nonholo-
nomic motion planning for mobile robots,” in Robot Motion Planning
and Control, J.-P. Laumond, Ed. Berlin, Germany: Springer, 1998, pp.
1-53.

[4] W. Nelson, “Continuous-curvature paths for autonomous vehicles,”
in Proc. IEEE Conf. Robotics and Automation, vol. 3, May 1989, pp.
1260-1264.

[5] Y. Kanayama and B. Hartman, “Smooth local path planning for au-
tonomous vehicles,” in Proc. IEEE Int. Conf. Robotics and Automation,
ICRAS89, vol. 3, Scottsdale, AZ, May 1989, pp. 1265-1270.

[6] K.Komoriya and K. Tanie, “Trajectory design and control of a wheeled-
type mobile robot using b-spline curve,” in Proc. IEEE/RSJ Int. Work-
shop Intelligent Robots and Systems, IROS89, Tsukuba, Japan, Sept.
1989, pp. 398-405.

[7]1 H. Delingette, M. Hébert, and K. Ikeuchi, “Trajectory generation with
curvature constraint based on energy minimization,” in Proc. IEEE-RSJ
Int. Conf. Intelligent Robots and Systems, Osaka, Japan, Nov. 1991, pp.
206-211.

[8] S. Fleury, P. Soueres, J.-P. Laumond, and R. Chatila, “Primitives for
smoothing paths of mobile robots,” in Proc. IEEE Int. Conf. Robotics
and Automation, Atlanta, GA, Sept. 1993, pp. 832-839.

[9] A. Piazzi, C. Guarino Lo Bianco, M. Bertozzi, A. Fascioli, and A.

Broggi, “Quintic G?-splines for the iterative steering of vision-based

autonomous vehicles,” IEEE Trans. Intell. Transport. Syst., vol. 3, pp.

27-36, Mar. 2002.

A. Piazzi, M. Romano, and C. Guarino Lo Bianco, “G?-splines for the

path planning of wheeled mobile robots,” in Proc. 2003 Eur. Control

Conf. ECC 2003, Cambridge, U.K., Sept. 2003.

M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of

nonlinear systems: introductory theory and examples,” Int. J. Contr., vol.

61, no. 6, pp. 13271361, 1995.

[10]

(11]

[12] P.Lucibello and G. Oriolo, “Stabilization via iterative state steering with
application to chained-form systems,” in Proc. 35th IEEE Conf. Deci-
sion and Control, vol. 3, Kobe, Japan, Dec. 1996, pp. 2614-2619.

A. De Luca, G. Oriolo, and C. Samson, “Feedback control of a non-
holonomic car-like robot,” in Robot Motion Planning and Control, J.-P.
Laumond, Ed. Berlin, Germany: Springer, 1998, pp. 171-253.

C.-C. Hsiung, A First Course in Differential Geometry. Cambrige,
MA: International Press, 1997.

B. A. Barsky and J. C. Beatty, “Local control of bias and tension in
beta-spline,” Computer Graph., vol. 17, no. 3, pp. 193-218, 1983.

[16] J.Peters, “Geometric continuity,” in Handbook of Computer Aided Geo-
metric Design, G. Farin, J. Hoschek, and M.-S. Kim, Eds. Amsterdam,
The Netherlands: North-Holland, 2002, pp. 193-229.

L. de Souza and M. Veloso, “Al planning in supervisory control sys-
tems,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, vol. 4,
Oct. 1996, pp. 3153-3158.

C. Guarino Lo Bianco, A. Piazzi, and M. Romano, “Velocity planning
for autonomous vehicles,” in Proc. IEEE Intelligent Vehicles Symp.
1V2004, Parma, Italy, June 1417, 2004, pp. 413-418.

[13]

[14]

[15]

[17]

(18]

A Timing Model for Vision-Based Control
of Industrial Robot Manipulators

Yanfei Liu, Adam W. Hoover, and Ian D. Walker

Abstract—Visual sensing for robotics has been around for decades, but
our understanding of a timing model remains crude. By timing model, we
refer to the delays (processing lag and motion lag) between “reality”” (when
a part is sensed), through data processing (the processing of image data
to determine part position and orientation), through control (the compu-
tation and initiation of robot motion), through ‘“arrival” (when the robot
reaches the commanded goal). In this study, we introduce a timing model
where sensing and control operate asynchronously. We apply this model
to a robotic workcell consisting of a Stiiubli RX-130 industrial robot ma-
nipulator, a network of six cameras for sensing, and an off-the-shelf Adept
MYV-19 controller. We present experiments to demonstrate how the model
can be applied.

Index Terms—Timing model, visual servoing, workcell.

I. INTRODUCTION

Fig. 1 shows the classic structure for a visual servoing system [1].
In this structure, a camera is used in the feedback loop. It provides
feedback on the actual position of something being controlled, for
example, a robot. This structure can be applied to a variety of sys-
tems, including eye-in-hand systems, part-in-hand systems, and mo-
bile robot systems.

In an eye-in-hand system [2]-[6], the camera is mounted on the
end-effector of a robot and the control is adjusted to obtain the desired
appearance of an object or feature in the camera. Gangloff [2] devel-
oped a visual servoing system for a six—degree—of—freedom (DOF)

Manuscript received July 3, 2003; revised January 22, 2004. This paper was
recommended by Associate Editor Y.-H. Liu and Editor S. Hutchinson upon
evaluation of the reviewers’ comments. This work was supported by the South
Carolina Commission on Higher Education and the U.S. Office of Naval Re-
search. This paper was presented in part at the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Las Vegas, NV, October 2003.

The authors are with the Electrical and Computer Engineering De-
partment, Clemson University, Clemson, SC 29634-0915 USA (e-mail:
lyanfei @clemson.edu; ahoover @clemson.edu; iwalker@clemson.edu).

Digital Object Identifier 10.1109/TRO.2004.829460

1552-3098/04$20.00 © 2004 IEEE

892 IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004
desired +
position amplifiers
actual [camera [®
u L]
position
Fig. 1. Classical visual servoing structure.
desired
position)
joint —P| robot |—>| encoders I——
controller
actual
position
Fig. 2. Vision-guided control structure.

manipulator to follow a class of unknown but structured three-dimen-
sional (3-D) profiles. Papanikolopoulos [3] presented algorithms to
allow an eye-in-hand manipulator to track unknown-shaped 3-D ob-
jects moving in two-dimensional (2-D) space. The object’s trajectory
was either a line or an arc. Hashimoto [4] proposed a visual feedback
control strategy for an eye-in-hand manipulator to follow a circular
trajectory. Corke [5], [6] presented a visual feedforward controller
for an eye-in-hand manipulator to fixate on a ping-pong ball thrown
across the system’s field of view.

In a part-in-hand system [7], the camera is fixed in a position to ob-
serve a part which is grasped by a robot. The robot is controlled to move
the part to some desired position. For example, Stavnitzky [7] built a
system to let the robot align a metal part with another fixed part. Since
the part is always grasped by the manipulator, we can also say that the
part is something being controlled. In other words, we can say that how
the object appears in the camera is controlled.

In some mobile robot problems [8], the camera is mounted over an
environment to sense the actual position of the mobile robot as feed-
back to the controller. For example, Kim [8] built a mobile robot system
to play soccer. The camera is fixed over the field and acts as a feed-
back position sensor. Here, the camera observes something which is
directly controlled.

All of these systems, regardless of where the camera is mounted,
use the camera in the same control structure. In each case, the system
regulates how the object appears in the camera.

In this letter, we consider the problem where the camera is used
to provide the desired or reference position to the internal robot con-
troller. Fig. 2 shows the structure for this system. There are several
types of problems that fit this kind of system, where the object of
interest cannot be controlled directly. For example, imagine a robot
trying to pick up live chickens or a robot trying to manipulate parts
hanging on a swaying chain conveyor. Similar problems have been in-
vestigated in some works. Houshangi [9] developed a robot manipu-
lator system to grasp a moving cylindrical object. The motion of the
object is smooth and can be described by an autoregressive (AR) model.

Allen [10] demonstrated a PUMA-560 tracking and grasping a moving
model train which moved around a circular railway. Miyazaki [11] built
a pingpong robot to accomplish the pingpong task based on virtual
targets. Nakai [12] developed a robot system to play volleyball with
human beings. From the above systems, we notice that the motion of
the object was limited to a known class of trajectories. In this letter, we
seek to extend this to let the robot follow an unstructured (completely
unknown) trajectory. This will be enabled in part by providing a generic
timing model for this kind of system.

Our timing model considers the problem where image processing
and control happen asynchronously. The task of the robot is to inter-
cept moving objects in real time under the constraints of asynchronous
vision and control. We are faced with the following three problems.

1) The maximum possible rate for complex visual sensing and pro-
cessing is much slower than the minimum required rate for mechan-
ical control.

2) The time required for visual processing introduces a significant
lag between when the object state in reality is sensed and when the
visual understanding of that object state (e.g., image tracking result)
is available. We call this the processing lag.

3) The slow rate of update for visual feedback results in larger
desired motions between updates, producing a lag in when the
mechanical system completes the desired motion. We call this the
motion lag.

Consider problem 1). A standard closed-loop control algorithm
assumes that new data can be sensed on each iteration of control.
Common industrial cameras operate at 30 Hz while common control
algorithms can become unstable at rates less than several hundred
Hertz. Complex image processing tasks, such as segmentation, pose
estimation, and feature matching, typically run even slower than
30 Hz, while control problems can require rates as high as 1 kHz. In
general, this gap in rates will not be solved by the trend of increasing
computational power (Moore’s Law). As this power increases, so will
the amount of desired visual processing, and so will the complexity
of the control problem. In this letter, we propose to address this

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

893

TABLE 1
SUMMARY OF RELATED WORK

work [| image processing rate (HZ) | control rate (HZ) | processing lag (ms) | motion lag (ms)
Papanikolopoulos et. al. [3] 10 300 100 -
Hashimoto et. al. [4] 4 1000 - -
Corke and Good [5], [6] 50 70 48 -
Stavnitzky and Capson [7] 30 1000 - -
Kim et. al. [8] 30 30 90 -
Houshangi [9] 5 36 196 —
Allen et. al. [10] 10 50 100 -
Miyazaki et. al. [11] 60 - - -
Nakai et. al. [12] 60 500 - -
this work 23 250 151 130
As, As,
; |]] | | | | | | 5
sensing | [| | | | [I I |
. Au, Au,
image | | | | >
processing I | I I >
synchronizing Aq o
) | | | | | | >
tracking I | I | [I [o
Ac, **+ Acy
controlling { I I % I I >
finishing l Af | _
motion | I o
processing : :
< > <+—motion lag—™
: lag : :
reality estimated reached

Fig. 3. Timing model for estimating the lag and latency.

problem directly by modeling the visual sensing, processing, and
control processes as having fundamentally different rates, where the
sensing and processing are at least one order of magnitude slower
than the control.

Problem 2) is a consequence of the complexity of the image
processing operations. There is always a lag (processing lag) between
reality and when the result from processing a measurement of the
object state is available. In a high-speed (e.g., 1 kHz) closed-loop
control, this lag can usually be ignored. However, as the processing
complexity increases, a nonnegligible lag is introduced between
when the image was acquired (the object state in reality) and when
the image processing result is available (e.g., estimate of object
position). We incorporate an estimate of the processing lag directly
into our timing model.

Problem 3) is also a consequence of the slow rate of visual sensing
and processing. In a high-speed closed-loop control, the motion exe-
cuted between iterations is expected to be small enough to be com-
pleted during the iteration. The motion lag (time it takes to complete
the motion) is considered negligible. But, as the sensing rate slows, the
tracked object moves farther between iterations, requiring the mechan-
ical system (e.g., robot) to also move farther between iterations. As a

consequence, it is possible to have a system that has not completed the
desired set point motion prior to the next iteration of control. We ad-
dress this problem by directly incorporating an estimate of the motion
lag into our timing model.

Table I presents a summary of how previous works have featured
and addressed these three problems. From this table, we note that the
first two of the three problems have been addressed to some extent
in previous works. However, no work appears to have explicitly con-
sidered problem 3). All of these works neglect the motion time (mo-
tion lag) of the robot. One work [10] noted this problem and used an
a — 3 — ~ predictor to compensate for it instead of explicitly mod-
eling it. None of these works has considered the generic modeling of
this type of system.

Some works synchronized the image processing rate and control fre-
quency for a more traditional solution. In [2], the frequency of visual
sensing, processing and control were all set to 50 Hz. Basically, the
control frequency was synchronized to the image processing rate for
simplicity. Simulation results of high frequency control, i.e., 500 Hz,
were also shown in [2]. Performance of the high-frequency controller
was, as expected, better than the low-frequency version, motivating a
more thorough investigation of a generic timing model to solve the

894

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

A A A A
: L2511 292 | gy B3 B | | | | [
sensing | I 1 o I I I I —
A i
image | Au, | Au, Ll Au, | Au, | -
processing I I H I I -
buffer 1 buffer 2
released released
Fig. 4. Timing model using double buffering for processing image data.
Sensing
(A/D to
framegrabber 1 2;_... 1, 2
memory) : :
Aw,
Bus transfer
framegrabber to 1 2 1
main memory) Aw
< m »
Image
processing 1 2

Fig. 5. Timing model of using consecutive double buffering.

problem. Corke [6] and Kim [8] presented timing diagrams to describe
the time delay. Based on the timing diagrams, these works tried to use
discrete time models to model the systems. In order to do this, the au-
thors simplify these asynchronous systems to single-rate systems. It
is well known that the discrete time model can only be applied into
single-rate systems or systems where the control rate and the vision
sensing rate are very close. However, from Table I, we notice that most
real systems do not satisfy this condition.

Therefore, in this letter, we propose a continuous generic timing
model to describe asynchronous vision-based control systems. This
letter is the first to explicitly model the motion lag of the robot and
presents a general timing model for vision-based robotic systems. The
approach is focused on improving real-time trajectory generation based
on vision (Fig. 2) and is independent of the control strategy applied.

The remainder of this letter is organized as follows. In Section II,
we describe our generic timing model and then apply this model to an
industrial robot testbed that uses a network of cameras to track objects
in its workeell. In Section III, we demonstrate the importance of the
application of our model by using it to derive a “lunge” expression
that lets the robot intercept an object moving in an unknown trajectory.
Finally, we conclude the letter in Section IV.

II. METHODS

Fig. 3 illustrates our timing model. From top to bottom, each line
shows a component of the system in process order (e.g., sensing comes
before image processing). The horizontal axis represents time. We use
this model to quantify the processing lag and motion lag of the system.
The processing lag is the time between reality and when an estimate
of the object state in reality is available. Similarly, the motion lag is
the time between when the control command is issued and when the
mechanical system finishes the motion.

Fig. 6. Our prototype dynamic workcell.

The sensing and control processes operate at fixed intervals As and
Ac, where As > Ac (sensing is slower than control). The time re-
quired for all image processing and tracking operations is designated
Aw. This processing starts when an input buffer is filled with image
data (on a clock or sync signal defined by the sensing line). An input
buffer cannot be filled with new image data until the processing of the
previous image data in that buffer is completed. In Fig. 3, this is why
Ay starts on the next sync after the end of Aw;.

Fig. 3 depicts the case where Au > As (the processing takes longer
than the sensing interval) and when there is only one image buffer.
Fig. 4 depicts the case where two input buffers are used (commonly
called “double buffering”). In this case, a second image buffer is being
filled while the image data in the first buffer is being processed. Double

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

bl_f
released

b2_f
released

bl_f
released

b2_f
released

bl_f
released

*

895

b2_f bl_f
released released

b2_f bl_f
released released

t t

Sensing I

| i 4 |
" '

1127m | bl m | b2Am | bl m | b2_m N b2_m
(33ms) reYeased released relea | released | eleased releas released
I : |
| T
PCI bus 33ms | 66ms, |
transfer |
(19ms) | \
L—p
N
52ms !
Image H
processing |
(30ms) :
|
T
s
Display :
(14ms)
|
T
272ms
Fig. 7. Information flow through system.

buffering increases the lag (note the extra time Aw between the end of
A's, and the start of Auz) but increases the throughput (note the greater
number of images processed in Fig. 4 as compared to Fig. 3).

Fig. 5 depicts the even more complicated case where double
buffering happens consecutively. For example, a framegrabber can
be equipped with enough memory to double buffer images on the
framegrabber itself as they are digitized. This double buffer can then
feed a second double buffer residing in the main (host) memory.
Although this again increases throughput, Fig. 5 shows how it also
increases the lag. Each box indicates the time spent by an image at
each stage. The interval Aw,, is the time an image spends waiting in
host memory for the completion of processing of the previous image.
This is similar to the term Aw in Fig. 4. The interval Awy is the
time an image spends waiting in the framegrabber for a host buffer
to become available. In this case, the image on the framegrabber is
waiting for the host to finish processing the previous image residing in
the buffer needed for transfer of the new image.

In all of these cases, we have assumed that the processing takes
longer than the sensing interval (Au > As). In the case where Au <
As (the processing is faster than the sensing rate), double buffering
makes it possible to process every image. In any case, there is always
a minimum lag of As + Aw, but, depending on the buffering used and
the relation of As to Aw, the lag can be larger.

In order to handle all of these cases, we introduce a synchronous
tracking process (line 3 in Fig. 3) operating at a rate of Aq. The tracking
line takes the most recent result from the image processing line and up-
dates it for any additional delay (depicted as A k%) using a Kalman filter.
In general, we desire Ag ~ Auw so that tracking is updated approxi-
mately as fast as new results become available. A secondary benefit of
the synchronous tracking line is that it satisfies standard control algo-
rithm requirements that assume synchronous input data. Without this
line, the results from image processing can arrive asynchronously (as
in Figs. 4 and 5).

The fourth and fifth lines in Fig. 3 represent the control process and
completion of motion. We consider the case where the distance traveled
by an object between tracking updates is larger than a robot could safely
or smoothly move during a single iteration of control. The control is
therefore broken up into a series of N submotion commands occurring
at a rate of Ac. Additionally, we expect the motion requested by any
new iteration of control to take A f time to complete. Fig. 3 depicts

the case where control commands are cumulative (each new control
command is relative to the last commanded goal). In Section II-A, we
describe our prototype, which uses an off-the-shelf Adept controller
that operates in this manner. For this controller, the motion is completed
some time A f after the last given control command. It is of course
possible to have an open architecture controller that finishes the motion
just prior to the next iteration of control. In this case, A f &~ Ac.

Once values are known for the variables As, Au, Ag, Ac,and Af,
it is possible to derive various expressions for controlling a robot to
solve specific problems, for example, to intercept a moving object. In
the next section, we describe our prototype workcell and derivation of
the timing variables. In Section III, we derive an expression for imple-
menting a “lunge” of the robot to intercept an object moving with an a
priori unknown trajectory.

A. Prototype

Fig. 6 shows a picture of our prototype workcell for this project.
We use a Stdubli RX130 manipulator with its conventional controller,
the Adept Corporation model MV-19. A network of six cameras
surrounds the workcell, placed on a cube of aluminum framing. The
cameras are wired to two imaging technology PC-RGB framegrabbers
(A/D video converters) mounted in a Compaq Proliant 8500 computer.
The Compaq has a standard SMP (system multiprocessor) architecture
equipped with eight 550-MHz Intel Pentium 3-Xeon processors. In
[14], we detailed the workcell configuration, calibration, image dif-
ferencing and real-time robot motion planning. In [15], we presented
some tracking experiments to show that our system can track different
kinds of objects using continuous visual sensing.

Fig. 7 shows a timing diagram describing the flow of information
through the system, along with how long each step takes. Some of these
estimates were derived analytically from knowledge of the hardware,
while other estimates were derived from measurements taken while
the system was operating. We will discuss each part in detail in the
following paragraphs.

Fig. 7 starts with an event that is happening in real time (e.g., an ob-
ject moves). The cameras operate at 30 Hz using the standard National
Television System Committee (NTSC) format, so that for this system
As = 33 ms. The object state in reality that is imaged takes 33 ms
to transfer from the camera to the framegrabber. The six cameras are
synchronized on a common clock for the vertical sync (start of image).

896

Fig. 8.

Experimental setup for lag measurement.

Each camera is greyscale, so that three cameras may be wired to the
red, green, and blue components of an RGB input on a framegrabber.
After 33 ms, all six images are digitized and residing in framegrabber
memory.

The framegrabbers have microcontrollers that can operate as pe-
ripheral component interconnect (PCI) bus masters, initiating trans-
fers from framegrabber memory to main memory. The Compagq is pro-
grammed to use a ring buffer (with room to hold two sets of six images)
to facilitate double buffering. While one set of six images is being pro-
cessed, a second set can be transferred from framegrabber memory to
main memory at the same time. Assuming negligible traffic on the PCI
bus, the time for this transfer can be computed as the total number of
image bytes divided by the bandwidth of the bus: (640 x 480 x 4 x
2 bytes)/(4 bytes x 33 MHz) = 19 ms, where the bandwidth is the
theoretical maximum provided by the 32-b 33-MHz PCI standard.

The image processing portion of our system creates a 2-D occupancy
map of the space in a horizontal plane of interest in the workcell, lo-
cates the centroid of an object in this space, and displays the result
on-screen [16]. Based upon empirical measurements of the run-time
of the image processing methods on the Compaq, we observed them to
take approximately 30 ms on average each iteration. This time can vary
by approximately =2 ms depending upon the content of the images.
We discuss the variances of our measurements in more detail at the end
of this section. We also measured that the image display takes 14 ms
on average. Therefore, the total processing time Aw for this system is
19+ 30 + 14 = 63 ms.

The images may wait in buffers before being processed, due to our
use of consecutive double buffering (see Fig. 5). The waiting time can
vary depending on the phasing of As and Aw, as shown in Fig. 7.
We noticed that, after several iterations, the waiting time repeats in
a pattern. The main memory waiting time Aw,, becomes a constant
(39 ms) after four iterations. From Fig. 7, we can observe that the
PCI bus transfer always happens right after image processing finishes.
Therefore, the main memory waiting time Aw,, equals the display
time plus image processing time, minus PCI bus transfer time, i.e.,
14 4 14 + 30 — 19 = 39 ms. The framegrabber waiting time Awj is
repeating in three numbers: 5, 16, and 27 ms. So we take the average
waiting time Awy as (5 + 16 4+ 27)/3 = 16 ms. Thus, we can get the
total average waiting time Aw = 39 4 16 = 55 ms. For our system,
the syncing time Ak is a variable that we get in real time. Adding up

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

Fig. 9. Scenario for intercepting objects.

the appropriate terms (As 4+ Au 4+ Aw 4 Ak), the processing lag for
this system is 33 + 63 + 55 + Ak = (151 4+ Ak) ms. To unify the
terms, we use Al to express the computable partial lag time (151 ms).

After synchronization, the state of the object is sent through a
10-Mb ethernet link from the Compaq to the Adept. Based on empir-
ical measurements, these operations were observed to collectively take
less than 1 ms. For this system, we set Ag = 40 ms which is near but
slightly under the occupancy map time plus the image display time
(30 + 14 ms).

At this point, the Adept (robot) has a new goal. This goal is directly
forwarded to the motor-level controller through the “Alter” command
[13]. According to the manufacturer (Adept), the maximum issue rate
for the Alter command is 500 Hz (once every 2 ms), but through exper-
imentation we observed that this rate could not always be maintained.
Therefore, we set Ac = 4 ms. The precise details of the motor-level
controller are proprietary to Adept Corporation and could not be de-
termined. Therefore, we determined A f empirically through repeated
measurements of the time it took to complete an Alter command. We
observed that the time vary from 120 to 150 ms, with a commonly oc-
curring median value of 130 ms. We therefore set A f to be 130 ms.

In our model, we assume constants for most of the lag terms. Our
estimates for all parameters, except for occupancy map computation
time, display time, and robot motion lag, were generated via analysis
of models based on known timing constraints, as discussed above.
The remaining three parameters listed above required information
not directly available to us and were obtained from averages via
empirical measurement. It is important to note that all of these
terms have variances, some of them having appreciable size in this
context (more than 1 ms). For the sensing and processing terms,
it would be ideal to timestamp each image upon acquisition and
measure the terms precisely. However, in order to solve problems
involving estimates into the future (for example to plan a catch
of an object), it is necessary to have averages. Therefore, we only
note the variances here and leave a more thorough understanding
of their effect to future work.

In order to validate our estimate of total lag for our system, we con-
ducted a series of experiments. Fig. 8 shows a picture of the exper-
imental setup. We set up another camera, completely external to our
system, to observe its operation. A conveyor was constructed to move
in a constant path at a constant velocity. A light bulb was attached to
the conveyor and the system was directed to track the object, keeping
the robot positioned above the light bulb. A small laser was mounted
in the end effector of the robot, so that it pointed straight down onto

IEEE TRANSACTIONS ON ROBOTICS, VOL.

20, NO. 5, OCTOBER 2004

)

Fig. 10. Experimental setup for catching the moving object. (a) Initial position. (b) Impact scene.

TABLE 1I
EXPERIMENTAL RESULTS FOR CATCHING THE MOVING OBJECT
Aq =40 Il Aq =80
velocity (mm/s) | stdev (mm/s) | catch percentage || velocity (mm/s) | stdev (mm/s) | catch percentage
844 -974 1.3 -38 100% 85.9 — 95.1 25-3.7 100%
129.8 — 146.7 1.7-3.2 100% 126.1 — 137.7 1.7 -3.3 100%
177.6 — 195.1 0.5-2.6 100% 175.8 — 192.8 1.1-27 100%

the conveyor. The experiment was configured to make it possible for
the external camera to estimate the distance between the light bulb and
the footprint of the laser on the conveyor. Knowing the velocity of the
light bulb, we were able to empirically measure the total lag of our
system, and verify that it matched the estimate derived from our timing
model. Complete details of this experiment can be found in a technical
report[17].

III. EXPERIMENTS

In order to test our methods, we experiment with the problem of
catching a moving object. Fig. 9 depicts the scenario. The object is
moving at an unknown constant velocity in a straight line. In this ex-
ample, the object is moving in one dimension; however, we formulate
the solution using vectors to indicate that the solution is also applicable
to 2-D and 3-D problems. Due to the processing lag, the most recently
measured position of the object is where the object was (Al + Ak) ms
previously. We denote this location as #+— a;— ax. The current position
of the object, i.e., the time when the robot starts to lunge toward the ob-
ject, is denoted as ;. The current velocity of the object is denoted as
¥, and is assumed to be equal to the last measured velocity ¥ —aj—ak.
Therefore, the relationship between &; and &;_a;—a is described in
the following equation:

-

B = Fr—ai—ak + Ve—ai—ar(Al + Ak). (1

It will take some amount of time A¢ ms for the robot to reach the point
of impact where it will catch the object. We denote the impact location
as ff,+ Ai.

There is more than one way to consider implementing a catch. One
approach is to keep the robot’s position at the most recently measured

position (#;_a;—ax) and then lunge to the final impact position. The
advantage to this approach is that the robot is only moving to loca-
tions where the object has actually traveled. The disadvantage to this
approach is that the robot must lunge a distance that covers the lag time
plus the time to impact. A second approach is to keep the robot’s posi-
tion at the current position (Z;) or even keep the robot’s position near
the predicted impact position (Z:4a;). If the object is moving at a con-
stant velocity or in a fixed pattern, this approach will not suffer from
misprediction and will always decrease the lunge distance. However, if
the object motion is not so controlled, this approach could cause unfa-
vorable behavior, for example increasing the lunge distance in the case
where the object reverses direction. In either approach, we can describe
the intercept problem as the following: if the robot desires to intercept
the object at time ¢ while following the object, how many control com-
mands (V) should be issued between time ¢ and the time when the
robot intercepts the object, and what is the constant distance (AJ) that
each single control command should move.

For some problems, N is fixed. The solution for a fixed N problem
involves only one equation

Foraili] = #uli] + @A x (N = 1) + Af). 2)

For our problem, N is varying. Suppose that #;_a4 is the position
where the robot was last commanded to move to, i.e., the position where
the object is at time ¢ — Ag, 7 is the number of alters which will be
executed, and d is the maximum distance a single alter can move. The
solution now involves the following two equations:

Fft] + i (Ae x (Al - 1)+ Af)3)
“

Zegaili]

|Freadli] = Fraglill = i) x d.

898

Combining (3) and (4), based on the assumption that the object does
not change velocity direction between ¢ ...t — Ag, we obtain

oo [(Af = A|T[| + [Fe[i] = F1oag[d]]
ii] = { 7= Acal| . 5)
When we solve for 7, the following constraint exists:
L l
|7 7] < i 6)

This equation represents the constraint for successful intercept be-
tween the velocity of the moving object and the key parameters in the
timing model.

Then N is chosen as the maximum element of vector 7i. Therefore

A(i[i] _ Tryadli] Z_\/vfthq[i] . 7

A. Experimental Setup and Results

To verify that our model is effective, we design an experiment to let
our industrial manipulator catch a moving object. A small cylindrical
object is dragged by a string tied to a belt moving at a constant velocity.
The belt is moved by a dc motor. The object moves along a straight line.
Fig. 10 shows our experimental setup. The robot follows the object
with the end-effector pointing straight down approximately 300 mm
above the object. When the robot is commanded to intercept the object,
the robot will lunge and cover the object on the table with a modified
end-effector, a small plastic bowl. The diameter of the object is 70 mm,
the diameter for the small bowl is 90 mm. Therefore, the error should be
less than 10 mm on each side in order to successfully catch the object.

In order to test the applicability of our timing model, we conducted
two sets of experiments. We set Aq to two different values, 40 and 80,
in these two sets of experiments. We varied the voltage of the motor
driving the conveyor to let the object move at three different velocities.
For each velocity, we kept the voltage of the motor constant to make
the object move in a relatively fixed velocity and ran the experiment
ten times. Table II shows the results of the experiments. The velocity
column is filled with the range of the average velocity in the ten ex-
periments. The standard deviation column is the range of the standard
deviation of the velocity of each experiment. The results demonstrate
that, if the object moves at a relatively fixed velocity, the robot catches
the object 100% of the time independent of the velocity of the object
and the position update time (Agq). We have additionally conducted nu-
merous experiments with more unpredictable object trajectories (using
fans to blow objects in the workspace in semipredictable ways), and
found the results to generalize well. These results will be reported in
more detail in future publications.

IV. CoNCLUSION

In this letter, we present a generic timing model for a robotic system
using visual sensing, where the camera provides the desired position

IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 5, OCTOBER 2004

to the robot controller. We demonstrate how to obtain the values of the
parameters in the model, using our dynamic workcell as an example.
Finally, we show how this timing model can be used to solve problems,
using as an example the problem of our industrial robot intercepting a
moving object. The results of the experiments show that our model is
highly effective and generalizable.

ACKNOWLEDGMENT

The authors would like to thank the Staubli Corporation, Duncan,
SC, for donating in part a state-of-the-art RX-130 industrial
manipulator.

REFERENCES

[1] S. Hutchinson, D. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Trans. Robot. Automat., vol. 12, pp. 651-670, Oct.
1996.

[2] J. Gangloff and M. F. de Mathelin, “Visual servoing of a 6-DOF manipu-
lator for unknown 3-D profile following,” IEEE Trans. Robot. Automat.,
vol. 18, pp. 511-520, Aug. 2002.

[3] N. Papanikolopoulos, P. K. Khosla, and T. Kanade, “Visual tracking
of a moving target by a camera mounted on a robot: A combination of
control and vision,” IEEE Trans. Robot. Automat., vol. 9, pp. 14-33,
Feb. 1993.

[4] K. Hashimoto, T. Kimoto, T. Ebine, and H. Kimura, “Manipulator con-
trol with image-based visual servo,” in Proc. IEEE Int. Conf. Robotics
and Automation, Scramento, CA, Apr. 1991, pp. 2267-2272.

[5] P.Corke and M. Good, “Dynamic effects in visual closed-loop systems,”
IEEE Trans. Robot. Automat., vol. 12, pp. 671-683, Oct. 1996.

[6] ——, “Dynamic effects in high-performance visual servoing,” in Proc.
IEEE Int. Conf. Robotics and Automation, Nice, France, May 1992, pp.
1838-1843.

[7] J. Stavnitzky and D. Capson, “Multiple camera model-based 3-D vi-
sual servo,” IEEE Trans. Robot. Automat., vol. 16, pp. 732-739, Dec.
2000.

[8] S.H.Kim,]J.S. Choi, and B. K. Kim, “Visual servo control algorithm for
soccer robots considering time-delay,” Intell Automation Soft Comput.,
vol. 6, no. 1, pp. 33—43, 2000.

[9]1 N. Houshangi, “Control of a robotic manipulator to grasp a moving
target using vision,” in Proc. IEEE Int. Conf. Robotics and Automation,
Cincinnati, OH, May 1990, pp. 604-609.

[10] P. Allen, A. Timcenko, B. Yoshimi, and P. Michelman, “Automated
tracking and grasping of a moving object with a robotics hand-eye
system,” IEEE Trans. Robot. Automat., vol. 9, pp. 152-165, Apr.
1993.

[11] F. Miyazaki, M. Takeuchi, M. Matsushima, T. Kusano, and T.

Hashimoto, “Realization of the table tennis task based on virtual tar-

gets,” in Proc. IEEE Int. Conf. Robotics and Automation, Washington,

DC, May 2002, pp. 3844-3849.

H. Nakai, Y. Taniguchi, M. Uenohara, and T. Yoshimi, “A volleyball

playing robot,” in Proc. 1998 IEEE Int. Conf. Robotics and Automation,

Leuven, Belgium, May 1998, pp. 1083-1089.

V4 User’s Manual. Adept Corporation.

Y. Liu, A. Hoover, and I. Walker, “Sensor network based workcell for

industrial robots,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and

Systems, Maui, HI, Oct. 2001, pp. 1434-1439.

, “Experiments using a sensor network based workcell for industrial

robots,” in Proc. IEEE Int. Conf. Robotics and Automation, Washington,

DC, May 2002, pp. 2988-2993.

A. Hoover and B. Olsen, “A real-time occupancy map from multiple

video streams,” in Proc. 1999 IEEE Int. Conf. Robotics and Automation,

Detroit, MI, May 1999, pp. 2261-2266.

C. Hermanson, A. Hoover, M. Joseph, B. Judy, Y. Liu, and I. Walker, “A

Timing Model for a Dynamic Robotic Workcell,” Dept. Elect. Comput.

Eng., Clemson Univ., Tech. Rep., Nov. 2002.

Y. Liu, A. Hoover, I. Walker, B. Judy, M. Joseph, and C. Hermanson,

“A new generic model for vision based tracking in robotics systems,” in

Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Las Vegas,

NV, Oct. 2003, pp. 248-253.

[12]

(13]
[14]

[15]

(16]

[17]

(18]

