
A scaling algorithm for the generation of jerk-limited

trajectories in the operational spaceI

Corrado Guarino Lo Bianco1, Fabio Ghilardelli

Dipartimento di Ingegneria dell’Informazione, University of Parma, Viale delle
Scienze,181/A, Parma, Italy, email:{guarino, fghilardelli}@ce.unipr.it.

Abstract

Kinematic singularities represent a relevant problem for trajectories that are
defined in the operational space. In case of industrial applications charac-
terized by non-repetitive tasks, feasibility cannot be checked in advance, so
that appropriate methods have been developed for the online management
of otherwise critical situations. In this paper, a scaling scheme proposed
in the past for the automatic handling of possibly unfeasible trajectories is
revised in order to generate jerk-limited reference signals: close to critical
points, trajectories are appropriately slowed down such to guarantee an ac-
curate tracking of the assigned path in the operational space. The actual
performances of the proposed system have been experimentally verified on a
commercial manipulator by means of extensive tests.

Keywords: Anthropomorphic manipulator, real-time singularity
management, wrist singularity, trajectory scaling, jerk constraints

1. Introduction

Trajectories for robotic manipulators are commonly planned by fulfilling
proper optimality criteria. Several performance indexes can be considered
to this purpose: energy consumption [1, 2], jerk minimization [3, 4] but, for
performance reasons, the most commonly used index is undoubtedly the total

I c© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/

1Corresponding author

Preprint submitted to Elsevier October 26, 2016

traveling time [5, 6]. Sometimes, hybrid performance indexes are considered
[7, 8].

In case of repetitive tasks, optimal trajectories can be evaluated offline [9],
but many applications require real-time planning capability. For this reason,
several real-time planners have been recently proposed for the management
of multi-axis problems in the configuration space. Among them, it is worth
citing those proposed in [10, 11, 12] for the generation of jerk constrained
trajectories or the recent algorithm proposed in [13] which is able to bound
up to nth generic derivative of the output signal by using a recursive strategy.
In all the previously mentioned techniques the path is not defined in advance,
but it is the result of the planning phase.

In alternative contexts, paths are specifically imposed by the task – or by
the users – through a curve p expressed as a function of a scalar variable s,
defined curvilinear coordinate. Optimality is subsequently gained by properly
planning a time law s(t): the overall trajectory is given by the composite
function p[s(t)]. The advantage of this approach, originally proposed in
[14] and known as path-velocity decomposition, is that it splits the original
problem into two simpler sub-problems.

The path-velocity decomposition strategy can indifferently be used for
the management of problems in the configuration space or in the operational
space. The first solutions to the optimal, minimum-time planning problem,
based on the path-velocity decomposition, were proposed in [15, 16, 17, 18]
in an offline context and by considering velocity, acceleration, and torque
constraints. Still in an offline context, in [19] and in [20] the problem was
extended by also accounting for third order constraints concerning the actu-
ator feeding voltages and the torque derivatives, respectively. The original
problem has been successively re-elaborated by considering alternative ap-
proaches. For example, a sequential convex programming method is used in
[21], while a strategy based on the Pontryagin Maximum principle is adopted
in [22] for the generation of optimal trajectories subject to velocity, acceler-
ation, and torque constraints. An interesting characteristic of the approach
proposed in [22] is that, despite it can be classified as an offline method, its
evaluation times are compatible with those of many real-time applications.

The planning strategy must necessarily change when considering systems
which target is not known in advance – for example, in a pick-and-place ap-
plication driven by a visual system – or which are moved by the users through
a teaching device. In both cases the path and the time-law must be planned
in real-time, thus raising possible feasibility issues that must be online man-

2

aged through appropriate algorithms. The most common approach to the
problem is based on the online scaling of s(t). The first real-time strategies
were proposed in [23, 24] for problems in the configuration space and by
considering torque constrained systems. That early approach was affected
by some drawbacks which limited its diffusion in industrial contexts. For
example, the time law was specified in an unnatural way as ṡ(s). A direct
consequence of this choice is that delays introduced to preserve feasibility
cannot be eliminated. Such drawback has been eliminated in two alternative
approaches proposed in [25, 26].

Another interesting real-time planning approach has been proposed in
[27] for a pure kinematic problem concerning a manipulator subject to jerk
bounds. The trajectory scaling approach has been subsequently extended
in [28, 29], still considering planning strategies in the configuration space,
by simultaneously managing velocity, acceleration, jerk, torque and torque
derivative constraints.

In [30, 31] the scaling problem has been extended to trajectories that
are not defined through the path-velocity decomposition. Joint reference
signals are online modified in order to fulfill a set of kinematic constraints
in the configuration space by preserving, at the same time, the underlying
trajectory path.

The previously cited approaches consider paths and/or constraints in the
configuration space. The problem complicates when the path primitive is
defined in the operational space and it becomes critical especially close to
singular points, when given limits could be violated even in case of slow
movements. Several applications in the operational space might benefit from
the use of real-time scaling approaches. The most obvious ones concern man-
ually operated manipulators that are moved in the Cartesian space through
a teaching device like, e.g., in [32], or applications in which assigned paths
must be modified in real time in order to avoid obstacles like, e.g., in [33].
In [32], close to a kinematic singularity, s(t) is scaled down by means of an
optimization procedure which preserves feasibility. The evaluation times of
the optimization algorithm limit make the method suitable for slow motions
or to manage a limited number of constraints. More bounds are considered
in [33], but joint constraints are not handled in case of trajectories in the
operational space.

This work proposes an algorithm – which core is represented by a recently
devised nonlinear filter [34] – for the real-time scaling of trajectories in the
operational space. Differently from any other real-time strategy proposed in

3

controller

longitudinal

time law

generator

q
d

q
d

.

q
d

..

s

s
.

s
..

s
d

s
d

.

manipulator
scaling

filter

S
+

S
-

U
+

U
-

bounds

estimator

trajectory

scaling

system

path

generators
d

..

R
+

R
-

s
...

q
d

...

Figure 1: A trajectory scaling system is placed between the longitudinal time law generator
and the path generator in order to achieve feasible trajectories. The scaling filter generates
an output which is compatible with the assigned bounds: ṡ ∈ [R−, R+], s̈ ∈ [S−, S+], and
...
s ∈ [U−, U+].

the literature, it is able to simultaneously manage constraints on velocities,
accelerations, and jerks indifferently assigned in the configuration space – for
the fulfillment of the joint actuators’ limits – and in the operational space – in
order to guarantee an adequate comfort of the payload and to reduce system
vibrations. This result is achieved with an efficient real-time algorithm which
computational time is close to 50 µs. Differently from the system proposed in
[23, 24], it uses a time-law which is directly defined as a function of the time
and eliminates delays accumulated to preserve feasibility. Finally, even if
this work, for space reasons, will specifically focus on kinematic constraints,
the paper will show how dynamic limits can be easily included in the scaling
scheme.

This work is the natural prosecution of the one described in [35] for the
management of the sole velocity and acceleration constraints, so that compar-
isons between the two strategies are proposed in the experimental section.
Additional comparisons have been carried out with respect to the perfor-
mances of the commercial controller that is sold together with the Comau
Smart SiX 6.14 manipulator, for a total of more than 8000 trajectories pass-
ing close to a singular configuration. Results have shown that, with the aid
of the scaling system, areas that were previously precluded to the motion
become reachable.

The higher complexity of the novel algorithm with respect to the one
proposed in [35] has raised problems correlated to the evaluation times. For
example, the novel scaling system requires the analytical evaluation of the
second derivative of the Jacobian matrix associated to the end-effector, which
is defined, owing to path-velocity decomposition, as follows: JT{p[s(t)]}.
This operation, that could be potentially time consuming, represents the
main problem which needs to be solved for the actual implementation of the

4

jerk-constrained scaling system. For this reason, the paper proposes a novel
algorithm which simultaneously evaluates the first and the second derivatives
of JT{p[s(t)]} with a computational burden that is only slightly higher than
the one required in [35] for the evaluation of the sole first derivative. The
algorithm, despite it represents the main outcome of the paper, is described
in Appendix A for readability reasons, while the paper is mainly focused on
the description of the novel scaling system and, as previously announced, on
the comparison of its performances with the ones that can be achieved with
the acceleration-bounded version.

The paper is organized as follows. The real-time, constrained planning
problem is formulated in Section 2. Section 3 shows how constraints in the
operational and in the configuration space can be converted into equivalent
constraints in the curvilinear-coordinate space. Experimental results are re-
ported in Section 4. In the same section, the acceleration-constrained and
the jerk-constrained scaling systems are compared in order to establish the
most appropriate application fields for each of them. Final conclusions are
drawn in Section 5.

Notation

The following notation is used along the paper
q generalized joint variables
pi position of the origin of frame i w.r.t. frame 0
0
iR rotation matrix which describes the orientation of

frame i w.r.t. frame 0
vi linear velocity of frame i w.r.t. frame 0
ωi angular velocity of frame i w.r.t. frame 0
ai linear acceleration of frame i w.r.t. frame 0
αi angular acceleration of frame i w.r.t. frame 0
ji linear jerk of frame i w.r.t. frame 0
ιi angular jerk of frame i w.r.t. frame 0
Ji jacobian matrix associated to frame i

Subscript i = T indicates quantities which refer to the tool frame.
Generalized velocities, accelerations, and jerks associated to any generic

frame i are respectively defined as follows: ṽi := [vT
i ω

T
i]T , ãi := [aT

i α
T
i]T ,

and j̃i := [jTi ι
T
i]T .

5

2. Problem formulation

In many robotic contexts, trajectories are defined according to the path-
velocity decomposition, i.e., they are obtained by specifying a path, which is
function of the so-called curvilinear coordinate s, and a Longitudinal Time
Law (LTL) s(t), which associates s to time. The path is typically specified
through two different functions: the first one, i.e., pT (s), expresses the posi-
tion of tool frame T w.r.t. an inertial frame which typically coincides with
frame 0, while the second one, i.e., 0

TR(s), expresses its orientation.
The main assumption of this work is that trajectories are provided to the

system without any preliminary investigation, so that they could potentially
violate the physical constraints of the system or they could be insufficiently
smooth for the considered task. The resulting, undesired effects can be mit-
igated by adopting a Trajectory Scaling System (TSS) like the one shown in
Figure 1, which automatically modifies the user-provided LTL, i.e., sd(t), in
order to fulfill a given set of constraints and to preserve the assigned path. As
shown in Figure 1, the scaling system does not require any feedback from the
controller. The design solution adopted in this paper is clearly different from
the ones used in other works (see e.g. [28]) where feedback signals coming
from the controller were exploited in order to mitigate undesired behaviors
caused by model uncertainties and external disturbances. The change in the
design approach is motivated by the necessity of enlarging the number of
potential users: schemes which exploit feedbacks from the controllers can be
hardly implemented, since controllers of commercial manipulators are typi-
cally “closed”, i.e., their internal structure is unknown, so that it is practically
impossible to obtain any feedback from them.

The approach to the problem is clearly the same already considered in
[35], with the addition of the jerk constraints that have been explicitly in-
troduced in order to increase the motion smoothness. The proposed scaling
strategy handles constraints that can be indifferently assigned in the con-
figuration and/or in the operational space. More in detail, limits in the
configuration space involve joint velocities, accelerations and jerks and can
be summarized as follows

q̇ ≤ q̇ ≤ q̇ , (1)

q̈ ≤ q̈ ≤ q̈ , (2)
...
q ≤

...
q ≤

...
q , (3)

6

where q̇, q̈,
...
q , q̇, q̈, and

...
q are proper upper and lower bounds. Velocity

limits normally depend on the maximum motors’ speeds and reduction gears’
speeds. Acceleration bounds are correlated to the maximum motor torques,
while jerk constraints are used to limit the system wear. The presence of jerk
bounds guarantees that generated trajectories will be continuous together
with their first and second time derivatives, i.e., q ∈ C2.

The approach proposed in this paper also handles constraints in the op-
erational space in order to reduce the mechanical solicitations acting on the
payload. Given proper upper and lower bounds vT , vT , aT , aT , j

T
, and jT

for the generalized velocities, accelerations, and jerks of the tool frame, tra-
jectories must be scaled such to guarantee that the following inequalities are
satisfied

vT ≤ ṽT ≤ vT , (4)

aT ≤ ãT ≤ aT , (5)

j
T
≤ j̃T ≤ jT . (6)

A last set of constraints directly acts on the LTL. To this purpose, the
following additional limits have been considered

ṡ ≤ ṡ ≤ ṡ , (7)

s̈ ≤ s̈ ≤ s̈ , (8)
...
s ≤ ...

s ≤
...
s , (9)

where ṡ, ṡ, s̈, s̈,
...
s , and

...
s are given bounds.

The problem that is solved in the paper can be formulated as follows:

Problem 1. Given a nominal trajectory, planned according to the path-
velocity decomposition approach, smoothly scale its LTL s(t), by means of
minimum-time transients, such that (1)–(9) simultaneously hold and q ∈ C2.
Moreover, delays accumulated to preserve feasibility must be eliminated in
non-critical configurations through minimum-time transients and compatibly
with the given bounds.

The problem is solved by first converting all constraints defined in the opera-
tional and in the configuration spaces, i.e., (1)–(6), into analogous constraints
in the curvilinear-coordinate space, i.e., into a form that is similar to the one
proposed in (7)–(9) for s(t). Such transformation evidently simplifies the
problem, since it can then be handled by operating within a single domain.

7

The conversion is accomplished by the bound estimator block shown in Fig-
ure 1, which online evaluates equivalent lower and upper bounds ṡ(t), s̈(t),
and

...
s (t). The nominal time-law sd(t) is then modified by a nonlinear filter

which generates a feasible output signal s(t) ∈ C2. The filter characteristics
and its performances have been widely described in [34]. Its main character-
istics can be summarized here for the reader convenience: if sd(t) is feasible,
then s(t) = sd(t), otherwise s(t) is generated such to be the best feasible
approximation of sd(t). Another relevant property of the filter is that, com-
patibly with the given bounds, it always attempts to eliminate, by means of
minimum-time transients, any possible delay between sd(t) and s(t). Readers
that are interested to a detailed description of the nonlinear filter can refer
to [34].

3. Evaluation of the equivalent bounds for the longitudinal time-
law

As seen in Section 2, the first problem which needs to be dealt with
concerns the conversion of the constraints originally defined in the configu-
ration space and in the operational space into equivalent constraints in the
curvilinear-coordinate space. In order to achieve this result, the trajectory
in the operational space needs to be converted into an analogous one in the
joint space. More precisely, given a LTL, defined through a function s(t)
of class C2, and a path given by the pair pT (s), 0

TR(s), still composed by
functions of class C2, the first step of the procedure requires the derivation of
the following closed-form equations: q(s), q̇(s, ṡ), q̈(s, ṡ, s̈), and

...
q(s, ṡ, s̈,

...
s).

The evaluation of q(s) is straightforward, since it requires the solution of an
inverse kinematics problem. The analytic synthesis of its derivatives is more
complex, since it is based on the evaluation of the Jacobian matrix and of
its first two time derivatives. It is known, indeed, that generalized velocities,
accelerations and jerks can be evaluated according to the following equations

ṽT = JT q̇ , (10)

ãT = J̇T q̇ + JT q̈ , (11)

j̃T = J̈T q̇ + 2J̇T q̈ + JT

...
q , (12)

8

which can be clearly rearranged as follows

q̇ = J−1T ṽT , (13)

q̈ = J−1T (ãT − J̇T q̇) = J−1T (ãT − J̇T J−1T ṽ) , (14)
...
q = J−1T (̃jT − J̈T q̇− 2J̇T q̈)

= J−1T

[̃
jT − J̈T J−1T ṽT − 2J̇T J−1T (ãT − J̇T J−1T ṽT)

]
. (15)

Closed form representations for q̇(s, ṡ), q̈(s, ṡ, s̈), and
...
q(s, ṡ, s̈,

...
s) can thus

be obtained by expressing all terms in (13)–(15) as functions of s(t) and
its derivatives. Such operation, already considered in [20] for an offline ap-
proach, raises efficiency concerns in view of real-time implementations since
evaluation times become relevant. The computation of terms ṽT , ãT , and
j̃T does not pose particular problems. In particular, by extending to j̃T the
procedure already seen in [35] for ṽT and ãT , it is possible to derive the
following equations starting from the knowledge of pT (s) and 0

TR(s)

ṽT (s, ṡ) = ṽT (s) ṡ , (16)

ãT (s, ṡ, s̈) = ṽ′T (s) ṡ2 + ṽT (s) s̈ , (17)

j̃(s, ṡ, s̈,
...
s) = ṽ′′T (s) ṡ3 + 3 ṽ′T (s) ṡs̈+ ṽT (s)

...
s , (18)

where ṽ′T (s) := [dṽT (s)]/[ds] and ṽ′′T (s) := [d2ṽT (s)]/[ds2].
The synthesis of closed form equations for J(s), J̇(s, ṡ), and J̈(s, ṡ, s̈) is

more critical since, depending on the algorithmic implementation, the com-
putational burden could be excessive. To this purpose, the procedure devised
in [35] for the computation of J̇(s, ṡ) has been revised in order to simulta-
neously provide J̈(s, ṡ, s̈) with a minor additional burden, so that, while the
sole first derivative is obtained in 11.3 µs, the combined evaluation of the
two derivatives only requires 14.1 µs (Intel Core2 Duo E8400 @3GHz). For
readability reasons, the algorithm is described in Appendix A. Its outcome
is represented by the following analytic functions

J̇T (s, ṡ) = J′T (s) ṡ , (19)

J̈T (s, ṡ, s̈) = J′′T (s) ṡ2 + J′T (s) s̈ . (20)

Equations (16)–(20) permit rewriting (13)–(15) in function of the curvi-
linear coordinate and of its derivatives. In particular, a few algebraic manip-

9

ulations lead to the following equations

q̇(s, ṡ) = a(s) ṡ , (21)

q̈(s, ṡ, s̈) = b(s) ṡ2 + a(s) s̈ , (22)
...
q(s, ṡ, s̈,

...
s) = c(s) ṡ3 + 3 b(s) ṡs̈+ a(s)

...
s , (23)

where

a(s) := J−1T (s) ṽT (s) , (24)

b(s) := J−1T (s)[ṽ′T (s)− J′T (s) a(s)] , (25)

c(s) := J−1T (s)[ṽ′′T (s)− J′′T (s) a(s)− 2J′T (s) b(s)] . (26)

Equations (16)–(18) and (21)–(26) can now be used to convert the orig-
inal constraints in the operational space and in the configuration space into
equivalent constraints in the curvilinear-coordinate space. Let us consider,
for example, constraints (1)–(3) in the joint space. Their scalar components
can be written as follows (i = 1, 2, . . . , N)

q̇
i
≤ q̇i ≤ q̇i , (27)

q̈
i
≤ q̈i ≤ q̈i , (28)

...
q
i
≤

...
q i ≤

...
q i . (29)

Equations (27)–(29) must evidently be simultaneously satisfied for any i =
1, 2, . . . , N . By virtue of (21)–(23), it is possible to rewrite (27)–(29) as
follows

q̇
i
≤ ai(s) ṡ ≤ q̇i , (30)

q̈
i
≤ ai(s) s̈+ bi(s) ṡ

2 ≤ q̈i , (31)
...
q
i
≤ ai(s)

...
s + 3 bi(s) ṡs̈+ ci(s) ṡ

3 ≤
...
q i . (32)

Equations (30)–(32) can be rearranged in order to convert the original joint
bounds into equivalent constraints for the curvilinear coordinate. For exam-

ple, joint i fulfills (30) if ṡ ∈
[
ζ
i
, ζ i

]
where ζ

i
and ζ i are given in Table 1.

The same inclusion must simultaneously apply for all joints, so that velocity

constraint (1) is satisfied only if ṡ ∈
⋂N

i=1

[
ζ
i
, ζ i

]
. Similar considerations ap-

ply for the acceleration and for the jerk constraints, thus equations (31) and
(32) are satisfied, and in turn also (2) and (3), only if s̈ ∈

⋃N
i=1[µi

, µi] and

10

Table 1: Equivalent longitudinal bounds.

ai > 0 ai < 0 ai = 0

σi (
...
q i − ciṡ3 − 3biṡs̈)/ai (

...
q
i
− ciṡ3 − 3biṡs̈)/ai ∞

σi (
...
q
i
− ciṡ3 − 3biṡs̈)/ai (

...
q i − ciṡ3 − 3biṡs̈)/ai −∞

µi (q̈i − biṡ2)/ai (q̈
i
− biṡ2)/ai ∞

µ
i

(q̈
i
− biṡ2/)ai (q̈i − biṡ2)/ai −∞

ζ i q̇i/ai q̇
i
/ai ∞

ζ
i

q̇
i
/ai q̇i/ai −∞

ṽTk
> 0 ṽTk

< 0 ṽTk
= 0

γk (jk − ṽ′′Tk
ṡ3 − 3ṽ′Tk

ṡs̈)/ṽTk
(j

k
− ṽ′′Tk

ṡ3 − 3ṽ′Tk
ṡs̈)/ṽTk

∞
γ
k

(j
k
− ṽ′′Tk

ṡ3 − 3ṽ′Tk
ṡs̈)/ṽTk

(jk − ṽ′′Tk
ṡ3 − 3ṽ′Tk

ṡs̈)/ṽTk
−∞

βk (ak − ṽ′Tk
ṡ2)/ṽTk

(ak − ṽ′Tk
ṡ2)/ṽTk

∞
β
k

(ak − ṽ′Tk
ṡ2/)ṽTk

(ak − ṽ′Tk
ṡ2)/ṽTk

−∞
αk vk/ṽTk

vk/ṽTk
∞

αk vk/ṽTk
vk/ṽTk

−∞

11

...
s ∈

⋃N
i=1[σi, σi], where terms µ

i
, µi, σi, and σi can be evaluated through the

expressions provided in Table 1.
A similar procedure can be used to transform the limits in the operational

space. Equations (4)–(6) make it possible to write (k = 1, 2, . . . , 6)

vk ≤ ṽTk
≤ vk , (33)

ak ≤ ãTk
≤ ak , (34)

j
k
≤ j̃Tk

≤ jk , (35)

which, by virtue of (16)–(18), become

vk ≤ ṽTk
(s) ṡ ≤ vk , (36)

ak ≤ ṽTk
(s) s̈+ ṽ′Tk

(s) ṡ2 ≤ ak , (37)

j
k
≤ ṽTk

(s)
...
s + 3 ṽ′Tk

(s) ṡs̈+ ṽ′′Tk
(s) ṡ3 ≤ jk . (38)

The structure of (36)–(38) is evidently the same of (30)–(32), so that it is
possible to assert that the trajectory is feasible if ṡ ∈

⋂6
k=1 [αk, αk], s̈ ∈⋂6

k=1

[
β
k
, βk

]
, and

...
s ∈

⋂6
k=1

[
γ
k
, γk

]
, whose lower and upper bounds can

be evaluated through the expressions given in Table 1.
Finally, constraints (7)–(9) are directly defined in the curvilinear-coordinate

space, thus they do not require any transformation.
In conclusion, time law s(t) is feasible if the following conditions are

simultaneously fulfilled

ṡ ∈ [R−, R+] , (39)

s̈ ∈ [S−, S+] , (40)
...
s ∈ [U−, U+] , (41)

where (i = 1, 2, . . . , N , k = 1, 2, . . . , 6)

R− := maxi,k{αk, ζ i, ṡ}, R+ := mini,k{αk, ζ i, ṡ}, (42)

S− := maxi,k{βk
, µ

i
, s̈}, S+ := mini,k{βk, µi, s̈}, (43)

U− := maxi,k{γk, σi,
...
s }, U+ := mini,k{γk, σi,

...
s }. (44)

Remark 1. For conciseness reasons, this work only considers kinematic
constraints, but the approach can be easily extended in order to include more

12

limits. For example, dynamic constraints can be accounted for by recalling
that generalized torques τ can be expressed as follows

τ (s) = d(s) ṡ2 + e(s) s̈+ g(s) , (45)

where d(s), e(s), and g(s) are proper functions derived from the dynamic
model and from (21)–(26) (see [17, 20, 21]). The structure of (45) is similar
to the one of (22), so that the classic torque constraint

τ ≤ τ ≤ τ

can be converted, with obvious manipulations, into further bounds on s̈ to be
added to (43). Analogously, torque-derivative constraints generate additional
limits for (44) (see [20]).

The knowledge of the equivalent bounds represents the key point for the
solution of Problem 1. Indeed, as explained in Section 2, once the equivalent
constraints are known, the feasibility is maintained by modifying the LTL
through the nonlinear filter proposed in [34]. Roughly speaking, the filter
approximates any possibly unfeasible sd(t) with a signal s(t) which represents
its best feasible approximation. The nominal LTL is changed by means of
minimum-time transients. Evidently, this implicitly implies that anytime
s(t) is feasible the filter gains the tracking condition, i.e., s(t) = sd(t), in
minimum time and with feasible transients, thus eliminating any possible
delay that has been accumulated to preserve feasibility.

The scaling mechanism proposed in this paper is subject to the same
feasibility issues already pointed out in [29] for trajectories in the configura-
tion space. The problem can be summarized as follows: depending on the
status of motion of the system, interval [S−, S+] could become very small.
Obviously, when this happens the dynamics of the speed signal is strongly
limited, so that such signal can only be slowly changed. Unfortunately, the
velocity bounds, i.e., R− and R+, are not constant: if they change too rapidly
the feasibility is lost since the available dynamics is not sufficient to permit
fast speed changes. A similar problem arises for the acceleration signal when
interval [U−, U+] vanishes. In [29] a solution was provided for trajectories
in the configuration space: roughly speaking, if [S−, S+] and/or [U−, U+]
become too small, it is possible to invert such trend by reducing the longi-
tudinal speed before any problem could occur. This result was achieved by
properly downscaling velocity bound R+ (more details on that strategy can

13

be found in [29]). Unfortunately, preliminary tests have revealed that such
technique is not suited for trajectories in the operational space since accel-
eration and jerk feasibility intervals are normally well open along the whole
trajectory, then they suddenly collapse to zero when the system is very close
to the critical point. Practically, the available time is not sufficient for any
reaction: the bound scaling method proposed in [29] can only be used in
uncritical zones to manage reference signals characterized by too demanding
longitudinal speeds.

For this reason, further investigations have been driven toward other di-
rections. Techniques based on the analysis of the singular values of the
Jacobian matrix associated to the end effector have given good results, but
due to their computational burden the final choice has fallen on an alterna-
tive method. The singularities of a 6R anthropomorphic manipulator can
be predicted by means of simple checks on the joint variables. For example,
anytime the manipulator approaches a wrist singularity, the fifth joint vari-
able, i.e., q5, goes to zero. In that case, bounds R− and R+ can be scaled as
follows [

R̃−, R̃+
]

=

{
[R−, ψR+] , if ṡ ≥ 0
[ψR−, R+] , otherwise

, (46)

where ψ is given by

ψ =

{
sat
[
1 + |ṡ|

vR

(
|q5|
q5
− 1
)]
, if |q5| < q5

1, otherwise
. (47)

Function sat(·) saturates its output between 0 and 1.
Threshold q5 is chosen such to guarantee a reasonably anticipated reaction

of the system, while vR coincides with the maximum longitudinal speed that
can be admitted for the considered application: more incisive reactions are
provided as ṡ approaches vR. The new bounds, i.e., R̃− and R̃+, replace R−

and R+, so that (39) becomes

ṡ ∈
[
R̃−, R̃+

]
.

It is important to mention that analogous detection methods, still based on
the use of appropriate joint variables (more precisely on q2 and on q3), can
be adopted to manage elbow or shoulder singularities, i.e., the target of the
proposed scaling strategy is not specifically represented by wrist singularities.

14

It is worth highlighting that in this paper, for coherence with the real-time
specification, any decision is taken on the basis of the current status of the
system, so that scaling term ψ is evaluated on the basis of the current value
of q5. In order to increase the method robustness, further studies, in which
such requirement has been partially dropped, are being currently carried out.
Practically, by preliminary inspecting the path a few steps ahead, looking for
critical configurations, it is possible to almost eliminate the possibility to be
entrapped in unfeasible configurations.

4. Experimental results

The experimental tests proposed in this section have been mainly con-
ceived to compare the performances of the Jerk Constrained TSS (JC-TSS)
with those that can be achieved with its previous release proposed in [35], i.e.,
with the Acceleration Constrained TSS (AC-TSS) and with those achievable
with the commercial controller of a Comau Smart Six 6-1.4 manipulator. To
this purpose, the trajectory planner of the commercial controller has been
initially replaced with a novel reference generator, alternatively equipped
with one of the two TSSs. Conversely, joint motors have been driven with
the control loops of the commercial controller. The trajectory updating time
is equal to 2 · 10−3 s.

The first comparisons concern the execution of a linear trajectory from
pA = [0.25 0.83 1.095]T to pB = [−0.25 0.83 1.095]T , which passes close to
a wrist singularity located at p = [0 0.83 1.07765]T and that, consequently,
requires unfeasible velocities for joints 4 and 6.

The nominal LTL is given by a step signal defined as follows

sd(t) :=

{
0 m t = 0
0.5 m t > 0

,

ṡd(t) = 0 ms−1, s̈d(t) = 0 ms−2, and
...
s d(t) = 0 ms−3. Both planners react

to such signal by generating almost minimum-time trajectories which are
compatible with the user defined limits. For the problem at hand, the upper
and lower bounds for (1)–(6) are reported in Table 2, while the limits for (7)–
(9) are given by ṡ = −0.4 ms−1, ṡ = 0.4 ms−1, s̈ = −15 ms−2, s̈ = 15 ms−2,
...
s = −1000 ms−3,

...
s = 1000 ms−3 (jerk bounds only apply to the JC-

TSS). As explained in Section 3 the assigned bounds are online converted
into equivalent limits for the LTL through (39)–(44) and Table 1, with the

15

Table 2: Kinematic limits that have been used for the experiments. Jerk bounds only
apply to the JC-TSS.

q̇ (rad s−1) [−10 −10 −10 −7.5 −10 −9]T

q̇ (rad s−1) [10 10 10 7.5 10 9]T

q̈ (rad s−2) [−100 −100 −100 −100 −100 −100]T

q̈ (rad s−2) [100 100 100 100 100 100]T
...
q (rad s−3) [−4000 −4000 −4000 −4000 −4000 −4000]T
...
q (rad s−3) [4000 4000 4000 4000 4000 4000]T

vT (m s−1) [−0.4 −0.4 −0.4 −10 −10 −10]T

vT (m s−1) [0.4 0.4 0.4 10 10 10]T

aT (m s−2) [−5 −5 −5 −100 −100 −100]T

aT (m s−2) [5 5 5 100 100 100]T

j
T

(m s−3) [−400 −400 −400 −1000 −1000 −1000]T

jT (m s−3) [400 400 400 1000 1000 1000]T

sole exception of R− that has been forced to 0 in order to prevent backward
movements.

The output of the AC-TSS is shown in Fig. 2. Since transients are
minimum-time, the acceleration suddenly assumes its maximum value and
the velocity increases until its upper limit is reached. During this phase
the motion is essentially limited by the constraints in the operational space.
Fig. 3 shows the same transient achieved with the JC-TSS. The motion is
still minimum-time and the cruising speed is reached with a bang-zero-bang
jerk signal. Transient time is evidently longer due to the imposed continuity
on the acceleration.

In the neighborhood of the singular point, bounds on joint velocities and
accelerations become dominant, so that the longitudinal speed is reduced in
order to maintain the feasibility. Figs. 2 and 3 make it possible to appreciate
the different behaviors of the two scaling systems. In particular, while the
AC-TSS shows an evident chattering on the acceleration, the JC-TSS admits
much smoother transients. Fig. 3 is also useful to understand the importance
of the downscaling action on R+, obtained by means of (46) and (47) and by
assuming vR = 0.4 ms−1 and q5 = 0.1 rad. The JC-TSS, indeed, owing to

16

the acceleration continuity, normally reacts less promptly than the AC-TSS
to sudden changes of the velocity limits and, consequently, constraint viola-
tions could occur more easily. Equation (46) anticipates critical situations by
reducing in advance upper bound R+. It is worth to mention that also the
AC-TSS could benefit from the use of the same downscaling strategy since,
as shown in Fig. 2, it can be subject to minor constraint violations.

The fulfillment of the equivalent constraints implies that original bounds
(1)–(6) are satisfied as well. In order to prove this assertion, the reference sig-
nals generated by the two planners for joints 4 and 6, i.e., the most solicited
joints, are compared in Fig. 4 with the corresponding user-defined bounds.
Evidently, both scaling systems guarantee that the assigned constraints are
fulfilled, even if minor violations can be detected for the AC-TSS (see the
dash-dotted areas in Fig. 4): they are caused by the above mentioned vio-
lations of the equivalent bounds. Another difference between the two TSSs
can be noticed by observing the acceleration signals: the AC-TSS shows an
evident chattering, which can be potentially troublesome depending on the
characteristics of the manipulator controller.

As known, the characteristics of reference signals affect the controller per-
formances. It is possible to get an idea of the different behaviors that can be
achieved when using each one of the two TSSs by considering the trajectory
tracking errors in the operational space. To this purpose, the Cartesian ref-
erence signal has been compared with the actual position of the end-effector,
derived from the joint encoders through the direct kinematics. Fig. 5 shows
the tracking errors for the z axis, i.e., along the vertical axis, while tracking
errors along the x and the y axes have not been reported being negligible. At
the beginning and at the end of each trajectory the two TSSs show similar
performances, while differences become significant in the neighborhood of
the singularity: the smoother accelerations which characterize the JC-TSS
transients guarantee better control loop performances and, in turn, tracking
errors of reduced amplitude. The numerical comparisons proposed in Table 3
further confirm that smaller tracking errors can be achieved by means of the
JC-TSS. It is worth mentioning that data shown in Fig. 5 and in Table 3 are
consistent since the manipulator is equipped with 24 bit encoders and has a
repeatability equal to 5 · 10−5 m.

The solicitations acting on the payload have been verified by means of a
further experiment. The end-effector of the manipulator has been equipped
with an accelerometer in order to measure the structural vibrations. So-
licitations along the y and the z axes are negligible, so that they have not

17

0 0.4 0.8 1.2 1.6
t (s)

0

0.2

0.3

0.4

0.5

0.1

s
 (

m
)

0

0.2

0.3

0.4

0.1

0

2

6

4

-2

-6

-4

a

b

s
 (

m
 s

-1
)

.

s
 (

m
 s

-2
)

..

c

sd

s

s
.

s
..

R

_

R
+

S

_

S
+

Figure 2: Outputs of the AC-TSS compared with the equivalent longitudinal bounds: (a)
Longitudinal time law s(t); (b) Longitudinal velocity ṡ(t); (c) Longitudinal acceleration
s̈(t). Dash-dotted lines point out minor constraints violations.

18

0

0.2

0.3

0.4

0.5

0.1

s
 (

m
)

0

0.2

0.3

0.4

0.1

0

2

6

4

-2

-6

-4

s
 (

m
 s

-1
)

.

s
 (

m
 s

-2
)

..

0

40

80

-40

-80

s
 (

m
 s

-3
)

..
.

0 0.4 0.8 1.2 1.6
t (s)

a

b

c

d

sd

s

S
+

S

_

s
.

U
+

U

_

s
..

R
+

R

_

R
+~

Figure 3: Outputs of the JC-TSS compared with the equivalent longitudinal bounds: (a)
Longitudinal time law s(t); (b) Longitudinal velocity ṡ(t); (c) Longitudinal acceleration
s̈(t); (d) Longitudinal jerk

...
s (t).

19

0

-4

4

8

-8

0

-4

4

8

-8

q
6
 (

m
s-1

)
.

q
4
 (

m
s-1

)
.

b

a

q4

._

q4

.
_

q6

._

q6

.
_

0

-40

40

80

-80

q
6
 (

m
s-2

)
..

0

-40

40

80

-80

q
4
 (

m
s-2

)
..

d

c

q4

.._

q4

..
_

q6

.._

q6

..
_

AC-TSS

JC-TSS

AC-TSS

JC-TSS

AC-TSS

JC-TSS

AC-TSS

JC-TSS

0 0.4 0.8 1.2 1.6
t (s)

0

2

4

-2

-4

x 103

0

2

4

-2

-4

x 103

q
6
 (

m
s-3

)
..

.
q

4
 (

m
s-3

)
..
.

f

e

q4

..._

q4

...
_

q6

..._

q6

...
_

JC-TSS

JC-TSS

Figure 4: Joint reference signals generated by the AC-TSS and by the JC-TSS for joints 4
and 6: (a) and (b) Joint velocities; (c) and (d) Joint accelerations; (e) and (f) Joint jerks.

20

0 0.05 0.1 0.15 0.2 0.25-0.05-0.1-0.15-0.2-0.25

x (m)

0

5

10

15

|e
|

(m
)

x 10-4

AC-TSS

JC-TSS

Figure 5: Trajectory tracking errors along the x axis.

Table 3: Statistics on trajectory tracking errors.

AC-TSS JC-TSS
emax (m) 1.44 · 10−3 1.10 · 10−3

E [|e|] (m) 3.20 · 10−4 3.01 · 10−4

variance (m2) 13.14 · 10−8 9.61 · 10−8

erms (m) 4.84 · 10−4 4.32 · 10−4∫
T
|e| (m) 2.86 · 10−1 2.69 · 10−1

been reported. From Fig. 6 it is possible to evince that differences between
the two TSSs are generally negligible, but they become evident close to the
singularity, where the AC-TSS shows much more evident oscillations in the
range 12–16 Hz. This detail is also confirmed by Fig. 7, which compares the
spectra of the signals acquired in the neighborhood of the singularity. In par-
ticular, it highlights that, in the range of frequencies previously mentioned,
the AC-TSS produces resonant harmonics with higher peaks.

The last set of experiments has been conceived to verify how close to a
singular point it is possible to pass with the aid of the two scaling systems.
In order to provide realistic operating conditions, the robot starts moving
immediately after it receives the path parameters: any decision is taken by
the system during the motion, i.e., in real time. An initial trajectory is ex-
ecuted in the xz-plane sufficiently far from the singularity. If feasibility is
not violated, a parallel one, 10−3 m closer to the singularity, is generated.
The approaching process continues until feasibility is lost: the minimum dis-
tance from the singularity of the last feasible trajectory is acquired and then
reported in Fig. 8. The procedure is then repeated for another set of par-
allel trajectories still lying in the xz-plane, but with a different slope m.
The supplementary video file shows two approaching procedures for m = 0

21

0 0.4 0.8 1.2 1.6
t (s)

2

0

4

8

-4

-8

0

4

8

-4

-8

a

b

a
T

1
 (

m
 s

-2
)

~
a
T

1
 (

m
 s

-2
)

~

JC-TSS

AC-TSS

Figure 6: Accelerations measured along the x axis. During the trajectory scaling phase,
the AC-TSS excites self-oscillations in the range from 12 to 20 Hz (see the area surrounded
by the dash-dotted lines).

AC-TSS

JC-TSS

0

0.4

0.8

a
T

1
 (

m
 s

-2
)

~

0 4 8 12 20
freq (Hz)

16

Figure 7: Frequency spectra of the acceleration signals (x component) in the area close
the singularity, i.e., during the periods in which the two TSSs modify the trajectory. The
peaks of the AC-TSS are generally higher than the ones of the JC-TSS.

22

0 0.04-0.04 0 0.04-0.04
x (m) x (m)

m = 1

m = 0

m = -0.5

m = 2

1.14

1.10

1.06

1.02

1.10

1.06

z
 (

m
)

z
 (

m
)

a b

c d

1

2

3

1
2

3

1

2

3

1 2

3

Figure 8: Minimum distance points from singularity achieved by executing linear segments
and for different slopes m. Points have been obtained (1) without any TSS, (2) with the
JC-TSS, and (3) with the AC-TSS. Experiments refer to different longitudinal speeds: (a)
0.4 m s−1; (b) 0.3 m s−1; (c) 0.2 m s−1; (d) 0.1 m s−1.

23

and for m = 0.5 obtained by means of the JC-TSS (in order to shorten the
video length, the distance between two parallel paths has been posed equal
to 10−2 m). The experiment has been executed by using 1) the commercial
planner, 2) the JC-TSS, and 3) the AC-TSS. All tests have been repeated
for different longitudinal speeds for a total of more than 8000 real-time tra-
jectories. Fig. 8 summarizes the achieved results. The use of the two TSSs
evidently permits closer approaches to the singularity. Improvements are es-
pecially evident at the highest speeds. Notice that the AC-TSS, owing to
the discontinuity of the acceleration signal, reacts more promptly to critical
configurations, so that feasibility is preserved even in areas that cannot be
reached with the aid of the JC-TSS. Conversely, the JC-TSS can modify the
assigned trajectories by means of very smooth transients, as can be evinced
from the supplementary video file. Independently from the approaching di-
rection, Cartesian tracking errors always assume shapes and maximum values
that are very similar to the ones shown in Fig. 5. Such behavior can be easily
justified. Close to the singularity, in all the 20 cases joints 4 and 6 reach, and
maintain for a significant time-interval, their respective maximum speeds.
Tracking errors are proportional to the joint speeds, so that their maximum
values in the joint space are practically the same in all the experiments,
while minor differences can be verified in the Cartesian space owing to the
nonlinear relationships existing between the two spaces.

The two scaling methods have been also compared in terms of algorith-
mic efficiency by using an Intel Core2 Duo E8400 @3GHz processor. Indeed,
differently from the common feeling, the CPU time still represents a pre-
cious resource, so that novel algorithms can be embedded in existing control
architectures only if their execution times are short and known. Such char-
acteristics are common to both planners. The AC-TSS does not use any
iterative procedure, so that its evaluation time is practically constant: for
the six degrees of freedom manipulator used in the experiments the whole
planning system shown in Fig. 1 is executed in 3.48 · 10−5 s. Evaluation
times slightly increase for the JC-TSS, since its scaling filter uses an itera-
tive procedure. However, its overall computational time is almost constant
being equal, on average, to 4.98 · 10−5 s with a standard deviation equal to
2.797 ·10−6 s. The computational burden of both systems is compatible with
the sampling times of many real-time applications, even considering proces-
sors that are less powerful than the one used for the experiments. It is worth
to highlight that, despite the JC-TSS is much more complex than its pre-
cursor, their computational times are comparable. This is possible thanks to

24

the efficient procedure used for the evaluation of J̇T (s, ṡ) and of J̈T (s, ṡ, s̈).

5. Final discussion and conclusions.

The validation tests proposed in Section 4 make it possible to assert that
the performances of two TSSs are, in any case, better than those achievable
with the commercial controller, since closer approaches to the singularities
are permitted. The mutual comparison between the two TSSs permits draw-
ing further conclusions. The behaviors of the two scaling systems are clearly
different for high speeds and close to singular points: the AC-TSS is gen-
erally characterized by a higher reactivity, while the JC-TSS induces lower
mechanical stresses on the structure and causes smaller tracking errors and
vibrations. Performances become similar at low speeds. This behavior is
mainly justified by the characteristics of the position controller of the Co-
mau Smart SiX manipulator, which only accepts reference signals given by
joint angles and by their derivatives: the acceleration signals provided by the
two TSSs are not used, so that the acceleration discontinuities, which are
typical of the AC-TSS, produce almost negligible effects on the system. In
case of inverse dynamics controllers or, more in general, of controllers which
use the acceleration signal for feedforward actions, the situation could totally
change: discontinuous accelerations are indeed converted into discontinuous
signals for the inner torque controller which, in turn, excite the elastic modes,
thus generating undesired vibrations. Oscillatory behaviors can thus be bet-
ter mitigated by the JC-TSS, which intrinsically bounds the variability of
the acceleration signal.

In conclusion, the JC-TSS represents the most promising strategy when
a smooth approach to singularities is required, while the AC-TSS is still the
best solution when trajectories must pass very close to singularities.

Appendix A. An efficient evaluation of J̈T (s, ṡ, s̈)

Let us draw some preliminary considerations that are instrumental for
the synthesis of the jacobian derivatives. As known, for a manipulator whose
frames are assigned according to the modified Denavit-Hartenberg procedure,
the jacobian matrix associated to tool frame T – which is located on the Nth
link and, consequently, it is rigidly connected to frame N – has the following
structure

JT =

[
JvT

JωT

]
=

[
jv1T jv2T · · · jvNT
jω1
T jω2

T · · · jωN
T

]
,

25

where (k = 1, 2, . . . , N)

jvkT =

{
ẑk prismatic joint
ẑk × [pT − pk] revolute joint

, (A.1)

jωk
T =

{
0 prismatic joint
ẑk revolute joint

, (A.2)

and where pT and pk are, respectively, the positions of the tool frame and
of the kth frame w.r.t. frame 0. ẑk is the ẑ unit vector of frame k, described
w.r.t. frame 0 and can be evaluated as follows: ẑk = 0

kR ẑ∗, where ẑ∗ =
[0 0 1]T .

Similarly, the Jacobian matrix of the generic ith link frame has the fol-
lowing structure

Ji :=

[
Jvi

Jωi

]
=

[
jv1i jv2i · · · jvii 0 · · · 0
jω1
i jω2

i · · · jωi
i 0 · · · 0

]
,

where (k = 1, 2, . . . , i)

jvki =

{
ẑk prismatic joint
ẑk × [pi − pk] revolute joint

, (A.3)

jωk
i =

{
0 prismatic joint
ẑk revolute joint

. (A.4)

Evidently, by comparing (A.2) with (A.4) it is immediately possible to con-
clude that, for any element jωk

i which is different from zero, jωk
i = jωk

T . Con-
versely, jvki = jvkT only holds, according to (A.1) and (A.3), for prismatic joints
and still considering elements jvki which are different from zero.

Similar expressions can also be proposed for the evaluation of the jacobian
derivatives. For example, J̇T has the following structure

J̇T :=

[
J̇vT

J̇ωT

]
=

[
j̇v1T j̇v2T · · · j̇vNT
j̇ω1
T j̇ω2

T · · · j̇ωN
T

]
,

where (k = 1, 2, . . . , N)

j̇vkT =

{
˙̂zk prismatic joint
˙̂zk × [pT − pk] + ẑk × [vT − vk] revolute joint

, (A.5)

26

j̇ωk
T =

{
0 prismatic joint
˙̂zk revolute joint

. (A.6)

The analogous matrix J̇i, associated to the generic ith frame, admits the
following, representation

J̇i :=

[
J̇vi

J̇ωi

]
=

[
j̇v1i j̇v2i · · · j̇vii 0 · · · 0

j̇ω1
i j̇ω2

i · · · j̇ωi
i 0 · · · 0

]
,

where (k = 1, 2, . . . , i)

j̇vki =

{
˙̂zk prismatic joint
˙̂zk × [pi − pk] + ẑk × [vi − vk] revolute joint

,

j̇ωk
i =

{
0 prismatic joint
˙̂zk revolute joint

.

The considerations that were made for the Jacobian matrix also apply to its
first derivative, so that for the elements of J̇i that are different from 0, it is
always possible to assume j̇ωk

i = j̇ωk
T , while j̇vki = j̇vkT is only true for prismatic

joints.
Finally, J̈T can be written as follows

J̈T :=

[
J̈vT

J̈ωT

]
=

[
j̈v1T j̈v2T · · · j̈vNT
j̈ω1
T j̈ω2

T · · · j̈ωN
T

]
,

where (k = 1, 2, . . . , N)

j̈vkT =


˙̂zk prismatic joint
¨̂zk × [pT − pk] + 2 ˙̂zk × [vT − vk]

+ẑk × [aT − ak] revolute joint

,

j̈ωk
T =

{
0 prismatic joint
¨̂zk revolute joint

,

and, analogously, J̈i has the following representation

J̈i :=

[
J̈vi

J̈ωi

]
=

[
j̈v1i j̈v2i · · · j̈vii 0 · · · 0

j̈ω1
i j̈ω2

i · · · j̈ωi
i 0 · · · 0

]
,

27

where (k = 1, 2, . . . , i)

j̈vki =


˙̂zk prismatic joint
¨̂zk × [pi − pk] + 2 ˙̂zk × [vi − vk] + ẑk × [ai − ak]

revolute joint

(A.7)

j̈ωk
i =

{
0 prismatic joint
¨̂zk revolute joint

. (A.8)

Again, for any element of J̈i which is different from zero we have j̈ωk
i = j̈ωk

T ,
while j̈vki = j̈vkT only applies for prismatic joints.

The expressions that have been proposed for the evaluation of the Jaco-
bians and of their derivatives can be used every time trajectories are defined
in the time domain. The planning scheme that is used in this paper assumes
that trajectories are assigned according to the path-velocity decomposition.
Consequently, alternative computational methods must be developed and,
since Jacobians must be evaluated in real time, they must be efficient. The
solution originally proposed in [35] for the evaluation of JT (s) and J̇T (s, ṡ)
is briefly summarized in the following and it is then extended in order to
efficiently compute J̈T (s, ṡ, s̈).

The terms of JT (s) can be immediately derived from (A.1) and (A.2), so
that for prismatic joints it is possible to assume

jωk
T (s) := 0 , (A.9)

jvkT (s) := ẑk(s) , (A.10)

while for revolute joints we have

jωk
T (s) := ẑk(s) , (A.11)

jvkT (s) := jωk
T (s)×∆k(s) , (A.12)

where ẑk(s) := 0
kR(s) ẑ∗ and

∆k(s) := pT (s)− pk(s) . (A.13)

Evidently, all the terms that are required for the evaluation of JT (s) can be
directly obtained from the path definition, i.e., from the knowledge of pT (s)
and 0

TR(s).

28

The synthesis of the terms which compose J̇T requires some more steps
(details have been omitted for conciseness, but can be found in [35]). In par-
ticular, it is possible to prove that the following equation applies for revolute
joints

˙̂zk(s, ṡ) = ṡ j′T
ωk(s) = ṡ[Jωk

(s) a(s)× jωk
T (s)] , (A.14)

while for prismatic joints we have

˙̂zk(s, ṡ) = ṡ j′T
vk(s) = ṡ[Jωk

(s) a(s)× jvkT (s)] . (A.15)

Moreover, it descends from (10) that the tool velocity can be obtained from

vT (s, ṡ) := JvT (s) q̇(s, ṡ) , (A.16)

and that, analogously, joint velocities are given by

vk(s, ṡ) := Jvk(s) q̇(s, ṡ) . (A.17)

Closed form equations for j̇ωk
T (s, ṡ) and j̇vkT (s, ṡ) can be obtained from (A.5)

and (A.6) by considering (21), (A.11), and (A.13)–(A.17). In particular, after
a few algebraic manipulations, it is possible to write

j̇ωk
T (s, ṡ) := ṡ j′T

ωk(s) , (A.18)

j̇vkT (s, ṡ) := ṡ j′T
vk(s) , (A.19)

where, for prismatic joints,

j′T
ωk(s) := 0 , (A.20)

j′T
vk(s) := Jωk

(s) a(s)× jvkT (s) , (A.21)

while, for revolute joints,

j′T
ωk(s) := Jωk

(s) a(s)× jωk
T (s) , (A.22)

j′T
vk(s) := j′T

ωk(s)×∆k(s)

+ jωk
T (s)× [JvT (s)− Jvk(s)]a(s) . (A.23)

It is important to mention that, because of the structure of (A.18) and
(A.19), the derivative of the jacobian matrix can always be posed in the
following form

J̇T (s, ṡ) = J′T (s) ṡ ,

29

with

J′T (s) :=

[
J′vT (s)
J′ωT

(s)

]
=

[
j′T
v1(s) j′T

v2(s) · · · j′T
vN (s)

j′T
ω1(s) j′T

ω2(s) · · · j′T
ωN (s)

]
.

The same property evidently applies for the Jacobians of the intermediate
frames, so that it is licit to assume for any generic frame i that

J̇vi(s, ṡ) = J′vi(s) ṡ , (A.24)

J̇ωi
(s, ṡ) = J′ωi

(s) ṡ . (A.25)

The trajectory scaling method proposed in Section 2 is based on the
knowledge of J̈T (s, ṡ, s̈), which terms can by obtained from (A.7) and (A.8).
According to (A.8), for prismatic joints j̈ωk

T = 0, while for revolute joints

j̈ωk
T = ¨̂zk. Let us focus our attention on the evaluation of ¨̂zk. In [35] it has

been shown that
˙̂zk = ωk × ẑk .

Its time derivative is evidently given by

¨̂zk = αk × ẑk + ωk × ˙̂zk = αk × ẑk + ωk × (ωk × ẑk) . (A.26)

From (10) it is possible to evince that

ωk = Jωk
q̇ . (A.27)

The differentiation of (A.27) leads to the following expression

αk = J̇ωk
q̇ + Jωk

q̈ . (A.28)

By substituting (A.27) and (A.28) into (A.26) it is possible to write

¨̂zk = (J̇ωk
q̇ + Jωk

q̈)× ẑk + Jωk
q̇× (Jωk

q̇× ẑk) . (A.29)

Equation (A.29) needs to be posed in function of s and of its time derivatives.
Closed form expressions for q̇(s, ṡ) and q̈(s, ṡ, s̈) are given by (21) and (22),
while J̇ωk

(s, ṡ) is given by (A.25), and Jωk
(s) is a matrix composed by terms

ẑk(s) that, in turn, are given by (A.11). By considering such substitutions,
(A.29) can be rewritten as follows

¨̂zk(s, ṡ, s̈) =
{

[J′ωk
(s) a(s) + Jωk

(s) b(s)]× jωk
T (s)

+ Jωk
(s) a(s)× [Jωk

(s) a(s)× jωk
T (s)]

}
ṡ2

+ Jωk
(s) a(s)× jωk

T (s) s̈ ,

30

and, consequently, for revolute joints generic term j̈ωk
T = ¨̂zk is given by

j̈ωk
T (s, ṡ, s̈) := j′′T

ωk(s) ṡ2 + j′T
ωk(s) s̈ , (A.30)

where j′T
ωk(s) is defined according to (A.18), while

j′′T
ωk(s) := [J′ωk

(s) a(s) + Jωk
(s) b(s)]× jωk

T (s)

+ Jωk
(s) a(s)× j′T

ωk(s) . (A.31)

The evaluation of terms j̈vkT (s, ṡ, s̈) requires a similar procedure. For pris-

matic joints, because of (A.7), term j̈vkT (s, ṡ, s̈) still coincides with ¨̂zk, so that
it can be derived from (A.29) by applying the same substitutions. The sole
difference is represented by term ẑk that, according to (A.10), now coincides
with jvkT . Consequently, it is possible to assert that

j̈vkT (s, ṡ, s̈) = j′′T
vk(s) ṡ2 + j′T

vk(s) s̈ ,

where j′T
vk(s) is given by (A.21), while

j′′T
vk(s) := [J′ωk

(s) a(s) + Jωk
(s) b(s)]× jvkT (s)

+ Jωk
(s) a(s)× j′T

vk(s) . (A.32)

Equation (A.7) is also the starting point for the evaluation of terms j̈vkT (s, ṡ, s̈)
for revolute joints. The linear velocity and acceleration of any frame k,
including tool frame T , are given by

vk = Jvk q̇ ,

ak = J̇vk q̇ + Jvk q̈ ,

so that the second equation of (A.7) can be rewritten as follows

j̈vkT = ¨̂zk × [pT − pk] + 2 ˙̂zk × [JvT − Jvk] q̇

+ ẑk × [(J̇vT − J̇vk) q̇ + (JvT − Jvk) q̈]

The analytic expression of j̈vkT (s, ṡ, s̈) is obtained by applying the following

substitutions: ¨̂zk(s, ṡ, s̈) is given by (A.30), pT (s) − pk(s) coincides with
(A.13), ˙̂zk(s, ṡ) is given by (A.14), q̇(s, ṡ) is given by (21), q̈(s, ṡ, s̈) is given
by (22), and, finally, J̇vk and J̇vT can be evaluated by means of (A.24). As a
consequence, j̈vkT (s, ṡ, s̈) assumes the following expression

j̈vkT (s, ṡ, s̈) = j′′T
vk(s) ṡ2 + j′T

vk(s)s̈ . (A.33)

31

Table A.4: Equations that are required for the evaluation of the second time derivative of
the jacobian matrix.

j′′T
vk(s) j′T

vk(s) j′′T
ωk(s) j′T

ωk(s)
prismatic (A.32) (A.21) 0 0
revolute (A.34) (A.23) (A.31) (A.22)

where j′T
vk(s) is given by (A.23), while

j′′T
vk(s) = j′′T

ωk(s)×∆k(s)

+ 2 j′T
ωk(s)× [JvT (s)− Jvk(s)] a(s)

+ jωk
T (s)×

{
[J′vT (s)− J′vk(s)] a(s)

+ [JvT (s)− Jvk(s)] b(s)
}
. (A.34)

It is thus clear that, independently from the type of joint, terms j̈vkT (s, ṡ, s̈)
and j̈ωk

T (s, ṡ, s̈) always admit the following structures

j̈vkT (s, ṡ, s̈) = j′′T
vk(s) ṡ2 + j′T

vk(s) s̈ , (A.35)

j̈ωk
T (s, ṡ, s̈) = j′′T

ωk(s) ṡ2 + j′T
ωk(s) s̈ , (A.36)

whose terms are defined according to Table A.4. Consequently, the second
time derivative of the Jacobian matrix can always be written as in (20).

It is important to highlight that many terms of J̈T (s, ṡ, s̈) coincide with
analogous terms of J̇T (s, ṡ), so that they need to be computed only once.
For example, many terms of (A.33) also appear in (A.23), so that the addi-
tional computational burden that is required for the evaluation of j̈vkT (s, ṡ, s̈)
is quite limited. This is a relevant property, since J̈T (s, ṡ, s̈) is evaluated at
each sample time: its efficient evaluation has represented a key-point for the
synthesis of the TSS.

References

[1] O. Wigstrom, B. Lennartson, A. Vergnano, and C. Breitholtz, “High-
Level Scheduling of Energy Optimal Trajectories,” IEEE Trans. on Au-
tom. Sci. and Eng., vol. 10, no. 1, pp. 57–64, 2013.

[2] Y. Wang, Y. Zhao, S. Bortoff, and K. Ueda, “A Real-Time Energy-
Optimal Trajectory Generation Method for a Servomotor System,”
IEEE Trans. on Ind. Electr., 2014, in press.

32

[3] A. Piazzi and A. Visioli, “Global minimum-jerk trajectory planning of
robot manipulators,” IEEE Trans. on Ind. Electr., vol. 47, no. 1, pp.
140–149, feb 2000.

[4] P. Boscariol and A. Gasparetto, “Model-based trajectory planning for
flexible-link mechanisms with bounded jerk,” Rob. and Comp.-Integ.
Manuf., vol. 29, no. 4, pp. 90–99, 2013.

[5] I. Pietsch, M. Krefft, O. Becker, C. Bier, and J. Hesselbach, “How to
reach the dynamic limits of parallel robots? An autonomous control
approach,” IEEE Trans. on Autom. Science and Eng., vol. 2, no. 4, pp.
369–380, Oct. 2005.

[6] X. Zhang, Y. Fang, and N. Sun, “Minimum-Time Trajectory Planning
for Underactuated Overhead Crane Systems With State and Control
Constraints,” IEEE Trans. on Ind. Electr., vol. 61, no. 12, pp. 6915–
6925, Dec 2014.

[7] A. Gasparetto and V. Zanotto, “A technique of time-jerk optimal plan-
ning of robot trajectories,” Rob. and Comp.-Integ. Manuf., vol. 24, pp.
415–426, 2008.

[8] A. Gasparetto, A. Lanzutti, R. Vidoni, and V. Zanotto, “Experimental
validation and comparative analysis of optimal time-jerk algorithms for
trajectory planning,” Rob. and Comp.-Int. Manuf., vol. 28, no. 2, pp.
164–181, 2012.

[9] H. Liu, X. Lai, and W. Wu, “Time-optimal and jerk-continuous trajec-
tory planning for robot manipulators with kinematic constraints,” Rob.
and Comp.-Int. Manuf., vol. 29, no. 2, pp. 309–317, 2013.

[10] X. Broquère, D. Sidobre, and I. Herrera-Aguilar, “Soft motion trajectory
planner for service manipulator robot,” in IEEE/RSJ Int. Conf. on Int.
Rob. and Sys., IROS 08, 2008, pp. 2808–2813.

[11] R. Haschke, E. Weitnauer, and H. Ritter, “On-line planning of timeop-
timal, jerk-limited trajectories,” in IEEE/RSJ Int. Conf. on Int. Rob.
and Sys., IROS 08, 2008, pp. 3248–3253.

33

[12] T. Kröger and F. M. Wahl, “On-line trajectory generation: basic con-
cepts for instantaneous reactions to unforeseen events,” IEEE Trans. on
Rob., vol. 26, no. 1, pp. 94–111, Feb. 2010.

[13] B. Ezair, T. Tassa, and Z. Shiller, “Planning high order trajectories with
general initial and final conditions and asymmetric bounds,” Int. J. of
Rob. Res., vol. 33, no. 6, pp. 898–916, May 2014.

[14] K. Kant and S. Zucker, “Toward efficient trajectory planning: The path-
velocity decomposition,” Int. J. Robot. Res., vol. 5, no. 3, pp. 72–89,
1986.

[15] J. M. Hollerbach, “Dynamic scaling of manipulator trajectories,” J Dyn
Sys Meas Control, vol. 106, no. 1, pp. 102–106, 1984.

[16] K. G. Shin and N. D. McKay, “Minimum-time control of robotic manip-
ulators with geometric path constraints,” IEEE Transactions on Auto-
matic Control, vol. 30, no. 6, pp. 531–541, Jun. 1985.

[17] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control of
robotics manipulators along specified paths,” Int. J. Robot. Res., vol. 4,
no. 3, pp. 3–17, 1985.

[18] J.-J. Slotine and H. Yang, “Improving the efficiency of time-optimal
path-following algorithms,” IEEE Trans. on Rob. and Autom., vol. 5,
no. 1, pp. 118–124, Feb 1989.

[19] M. Tarkiainen and Z. Shiller, “Time optimal motions of manipulators
with actuator dynamics,” in IEEE Int. Conf. on Rob. and Autom.,
ICRA93, May 1993, pp. 725–730 vol.2.

[20] D. Constantinescu and E. A. Croft, “Smooth and time-optimal tra-
jectory planning for industrial manipulators along specified paths,” J.
Robot. Syst., vol. 17, no. 5, pp. 233–249, 2000.

[21] F. Debrouwere, W. Van Loock, G. Pipeleers, Q. Dinh, M. Diehl, J. De
Schutter, and J. Swevers, “Time-Optimal Path Following for Robots
With Convex-Concave Constraints Using Sequential Convex Program-
ming,” IEEE Trans. on Rob., vol. 29, no. 6, pp. 1485–1495, Dec 2013.

34

[22] Q.-C. Pham, “A General, Fast, and Robust Implementation of the Time-
Optimal Path Parameterization Algorithm,” IEEE Trans. on Rob.,
vol. 30, no. 6, pp. 1533–1540, Dec 2014.

[23] O. Dahl and L. Nielsen, “Torque-limited path following by online tra-
jectory time scaling,” IEEE Trans Robot Automat, vol. 6, no. 5, pp.
554–561, 1990.

[24] O. Dahl, “Path-constrained robot control with limited torques-
experimental evaluation,” IEEE Trans Robot Automat, vol. 10, no. 5,
pp. 658–669, 1994.

[25] J. Moreno-Valenzuela and E. Oronzco-Manŕıquez, “A new approach to
motion control of torque-constrained manipulators by using time-scaling
of reference trajectories,” J Mech Sci Technol, vol. 23, no. 12, pp. 3221–
3231, Dec. 2009.

[26] O. Gerelli and C. Guarino Lo Bianco, “Nonlinear variable structure filter
for the online trajectory scaling,” IEEE Trans. on Ind. Electr., vol. 56,
no. 10, pp. 3921–3930, Oct. 2009.

[27] S. Macfarlane and E. A. Croft, “Jerk-bounded manipulator trajectory
planning: design for real-time applications,” IEEE Trans. on Rob. and
Autom., vol. 19, no. 1, pp. 42–52, 2003.

[28] C. Guarino Lo Bianco and O. Gerelli, “Online trajectory scaling for
manipulators subject to high-order kinematic and dynamic constraints,”
IEEE Trans. on Rob., vol. 27, no. 6, pp. 1144–1152, Dec. 2011.

[29] C. Guarino Lo Bianco and F. Ghilardelli, “Techniques to preserve the
stability of a trajectory scaling algorithm,” in IEEE Int. Conf. on Rob.
and Autom. (ICRA2013), 2013, pp. 870–876.

[30] F. Lange and M. Suppa, “Predictive path-accurate scaling of a sensor-
based defined trajectory,” in IEEE Int. Conf. on Rob. and Autom,
ICRA’14, May 2014, pp. 754–759.

[31] ——, “Trajectory generation for immediate path-accurate jerk-limited
stopping of industrial robots,” in IEEE Int. Conf. on Rob. and Autom.,
ICRA 2015, May 2015, pp. 2021–2026.

35

[32] G. Schreiber, M. Otter, and G. Hirzinger, “Solving the singularity
problem of non-redundant manipulators by constraint optimization,”
in IEEE/RSJ Int. Conf. on Intel. Rob. and Sys., IROS’99, vol. 3, 1999,
pp. 1482–1488.

[33] R. Zhao, D. Sidobre, and W. He, “Online via-points trajectory gener-
ation for reactive manipulations,” in IEEE/ASME Int. Conf. on Adv.
Intell. Mech., AIM’14, July 2014, pp. 1243–1248.

[34] C. Guarino Lo Bianco and F. Ghilardelli, “A Discrete-Time Filter for
the Generation of Signals With Asymmetric and Variable Bounds on
Velocity, Acceleration, and Jerk,” IEEE Trans. on Ind. Electr., vol. 61,
no. 8, pp. 4115–4125, Aug 2014.

[35] ——, “Real-Time Planner in the Operational Space for the Automatic
Handling of Kinematic Constraints,” IEEE Trans. on Autom. Sci. and
Eng., vol. 11, no. 3, pp. 730–739, 2014.

36

	Introduction
	Problem formulation
	Evaluation of the equivalent bounds for the longitudinal time-law
	Experimental results
	Final discussion and conclusions.
	An efficient evaluation of T(s, ,)

