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Abstract—Planning problems in the operational space are
characterized by implementation issues that do not occur in the
joint space. For example, depending on the manipulator pose,
relatively slow trajectories in the operational space could require
unfeasible joint speeds, thus causing the degeneration of the
system performances: Path tracking errors certainly increase
but, in the worst situations, the manipulator must be stopped
in order to prevent the system instability. This paper proposes a
real-time planner in the operational space that is able to generate
trajectories subject to dynamic constraints and devised according
to the path-velocity decomposition approach. The feasibility is
achieved by means of an automatic scaling system that, starting
from a possibly unfeasible trajectory, modifies its longitudinal
velocity in order to fulfill a given set of kinematic constraints,
thus preserving an accurate path tracking. The scaling system
promptly reacts to critical configurations through minimum-time
transients. The proposed approach has been tested on an actual
anthropomorphic manipulator by executing 6D trajectories.

Note to practitioners—The accurate path tracking must be
guaranteed especially when trajectories are planned in the oper-
ational space. Unfortunately, path tracking worsens every time
system limits are exceeded. The trajectory generator proposed in
this paper is specifically designed for non redundant manipula-
tors and it is equipped with a scaling system that automatically
modifies the speed of the end effector in order to guarantee
an accurate path tracking. Several Kkinematic constraints are
handled at the same time. Joint velocities are kept below the
manufacturer’s limits, while joint accelerations are bounded in
order to achieve smooth movements. The system is also able to
constrain the kinematics of the end effector. For example, in
order to reduce the mechanical stress on the payload and to
avoid the excitation of elastic modes, additional bounds on the
velocities and accelerations of the end effector are considered and
managed. The planner can also be used to generate minimum-
time constrained trajectories in real-time. To this purpose, further
constraints on the longitudinal velocities and accelerations have
been introduced. Differently from alternative approaches, the
proposed planning scheme does not require any interaction
with the controller. This is an advantage, since controllers of
industrial manipulators are typically not accessible or modifiable,
while, in turn, proprietary trajectory planners can normally be
replaced with ad-hoc implementations. The scaling system can
be easily expanded in order to handle additional constraints.
The trajectory smoothness, for example, can be improved by
managing the jerk bounds, so that the ongoing research activity
is currently focused on that target. In the same way, it could
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also be possible to handle some dynamic constraints, but this
would impose the introduction of mutual interactions between
the scaling system and the central control unit.

I. INTRODUCTION

Any industrial plant is affected by physical limits that could
negatively interfere with the control loops. As a consequence,
if high performances are desired, the existing constraints must
be handled at a control level [1] or by synthesizing proper
reference signals [2], [3]. In a robotic context, physical limits
may be the reason of serious feasibility issues, especially when
trajectories are planned in the operational space, since joint
velocities can easily reach unfeasible amplitudes even in case
of slow Cartesian motions. The problem is well known and
different solutions have been proposed in the literature.

A historical control approach was proposed in [4], where,
for a redundant manipulator, the available degrees of freedom
were used to minimize joint velocities. Nevertheless, in [5]
it was proved that such approach can not guarantee the
avoidance of singular points and, consequently, the insurgence
of kinematic problems, so that further strategies were succes-
sively proposed in order to increase the robustness of control
algorithms (see, for instance, [6], [7]).

Kinematic bounds can be alternatively managed by acting
on the trajectories. This approach is particularly useful when
the manipulator controller can not be directly accessed. In case
of redundant manipulators, the solution is typically found by
using the available degrees of freedom that derive from the
exploitation of the null space of the Jacobian matrix. For non-
redundant manipulators, known approaches can be roughly
divided in two categories. In the first, minor modifications
of the planned path are allowed in order to avoid critical
configurations, while, in the second, the trajectory is slowed
down in order to preserve the accurate path tracking. Evidently,
the choice of the most appropriate approach depends on the
manipulator task. If the execution time is mandatory, the first
strategy is preferred. For example, in [8], [9] minor orientation
errors of the end effector are accepted in order to minimize
the execution time of a constrained trajectory. Conversely, if
deviations from the nominal path are not admissible, kinematic
constraints must be handled with the second approach. The
adopted techniques are typically based on the path-velocity
decomposition paradigm [10], i.e., the trajectory is obtained
by combining a path with a Longitudinal Time Law (LTL),
and the feasibility is preserved by acting on this latter.

The robotics literature proposes many scaling approaches
for the synthesis of optimal constrained trajectories. Several



performance indexes could be potentially considered. In [11],
for example, the LTL is chosen by minimizing the energy
consumption of a robotic system. More commonly, the scaling
approach is used for the generation of time optimal trajectories
[12]-[20]. Sometimes, the LTL is devised offline [21], while,
in alternative approaches, it is generated online by means
of Trajectory Scaling Systems (TSS). The robotics literature
mainly focuses on planning problems in the configuration
space, while a limited number of works concerns trajectories
in the operational space. The offline approach proposed in [22]
can be considered a precursor of the trajectory scaling methods
in the Cartesian space: The proposed TSS was able to manage
the motor torque limits by modulating the longitudinal speed
of the end effector.

In many industrial applications, offline solutions do not
represent an appropriate choice, since the path needs to be
frequently changed. This aspect stimulated researches to study
alternative algorithms, specifically designed to be executed
online. Paper [23] proposes an interesting example of real-
time strategy, where the scaling system is directly built inside
the controller. More frequently, control and scaling systems
are kept disjoint. That is what happens, e.g., in the “path
governor’” that was proposed in [24], where an optimal strategy
was cyclically evaluated in order to guarantee the path tracking
with a prescribed accuracy and bounded motor feeding volt-
ages. The online solution was obtained by solving a complex
optimization problem, so that the LTL was only updated 2-3
times per second.

In more recent approaches, the LTL is updated at frequen-
cies that are close or even equal to those of the controller
in order to respond more promptly to possible environmental
changes. In case of problems in the operational space, it
is still possible to distinguish solutions that are based on
the path modification from those that act on the LTL. In
the former, kinematic bounds are not explicitly defined, but
joint velocities are generically kept limited by maintaining a
proper distance from singular points. This result is achieved,
in real time, in [25], on the basis of a measure of the system
manipulability. Similarly, in [26] singular points are avoided
by adding a correcting vector to the task velocity. Conversely,
systems acting on the LTL are designed to explicitly fulfill a
set of assigned kinematic bounds. For example, the real-time
planning strategy proposed in [27] keeps joint velocities and
accelerations below some given limits by means of a hybrid
approach that is based on concepts which derive from both the
path modification and the LTL scaling strategies. Primarily, a
lightweight optimization, that is executed in real time, tries to
slow down the LTL in order to follow the assigned path with
the prescribed accuracy. If no feasible solution is found, then
minor path violations are accepted in order to maintain joint
speeds and accelerations within the assigned bounds.

The alternative strategy introduced in [28] scales the LTL
in order to bound joint velocities. The scaling system returns
time-optimal solutions, so that the delays that are introduced
have marginal effects on the system productivity: At any time,
at least one joint works at the maximum speed. This result is
obtained by means of a sliding mode feedback scheme that
modifies the nominal trajectory in real time.

The novel planner proposed in this paper is devised for non-
redundant manipulators. The basic scheme, originally con-
ceived in [19] and in [20] for planning problems in the config-
uration space, is here modified in order to handle trajectories in
the operational space. To this purpose, the scaling mechanism
has been redesigned. Its complexity is increased, since the
relationships between the operational and the configuration
space must now be taken into account. However, due to the
proposed algorithmic formulation, computational burdens are
still compatible with real-time implementations.

The new generator, if compared with alternative planners in
the operational space, handles a larger number of constraints.
In particular, the novel TSS simultaneously manages bounds
on

« joint velocities and accelerations,

o linear velocities and accelerations of the tool frame,

« angular velocities and accelerations of the tool frame,

« longitudinal velocities and accelerations, i.e., velocities
and accelerations along the path.

Each constraint is motivated by a different reason. Joint
velocity bounds are due to the motors’ speed limits, while
joint accelerations are bounded in order to achieve smooth
movements. The constraints on the tool frame are used to
reduce the solicitations acting on the payload and to avoid
the excitation of elastic modes. The limits on the longitudinal
velocities and accelerations make it possible to convert the
proposed trajectory generator, that is normally used to produce
fixed-time trajectories, into a minimum-time planner.

The proposed TSS modifies the LTL by means of feasible
minimum-time transients in order to promptly react to critical
situations. This important characteristic has been tested with
an actual 6D industrial manipulator, by generating and tracking
trajectories that pass close to singular configurations. Indeed,
in the neighborhood of singular points joint velocities increase
very quickly, so that feasibility can be maintained only if the
TSS is highly reactive.

The paper is organized as follows. The planning problem is
formulated in Section II. Section III shows how the assigned
constraints can be converted into bounds for the LTL. The
experimental results acquired with a 6 degrees of freedom
industrial manipulator are commented in Section IV. Conclu-
sions are drawn in Section V.

II. PROBLEM FORMULATION

Given a trajectory in the operational space and a set of kine-
matic constraints, the TSS proposed in this paper appropriately
modifies the longitudinal speed in order to preserve the path
tracking. To this aim, trajectories are planned according to
the path-velocity decomposition paradigm [10], an approach
that is suited for planning scenarios in the operational space.
Practically, trajectories are obtained as a combination of a
path in the operational space and a LTL. By defining s as the
Euclidean distance from the beginning of the path, measured
along the path itself, the LTL is specified by assigning the
following function

S [O,ﬁf] —
t —
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Fig. 1. The overall manipulator control scheme. The dashed box surrounds

the trajectory scaling system.

where t; is the total traveling time. Along the paper, term
“path” will indicate the combination of the positions and the
orientations that are assumed by the tool frame or by the wrist
frame during the motion. Positions are specified through a
function pr(s) that is defined as follows

pr:[0,sf] — R3
s — pr:=pr(s)

; 2)

where sy = s(ty) is the path length. Orientations can be
specified in two different ways, depending on the planning
strategy. They can be expressed, e.g., by the following function

b [O,Sf] — R3 3)
S — (I)T = @T(S) ’

where ® indicates an orientation that is expressed through
any minimal representation. Alternatively, orientations could
also be described by means of a rotation matrix

R - 9
TR : [O, Sf] — o R() . 4)
s — 7R :=7R(s)

Depending on the selected planning scheme, the trajectory
is thus given by functions pr(t) = pr[s(t)] and &1 (t) =
®1[s(t)] or, alternatively, by pr(t) = pr[s(t)] and $R(t) =
9R[s(t)]. Position and orientations are measured with respect
to an inertial frame. Without any loss of generality, it will
coincide with the manipulator O frame.

From the knowledge of the path in the operational space,
it is possible to obtain an analogous path qr(t) in the joint
space by solving an inverse kinematic problem. qr(t) is the
reference signal for the manipulator controller.

The TSS shown in Fig. 1 is a dynamic system that is inserted
between the LTL generator and the path generator: It prevents
constraint violations by properly reducing longitudinal speeds
and accelerations. An advantage of this scaling technique is
immediately evident: The TSS does not require data from the
manipulator controller, which internal structure can even be
unknown.

The scheme of the TSS is similar to those that have been
proposed in [19], [20] for problems in the configuration space.
It is made of a general purpose, nonlinear scaling filter and
a bounds estimator. The first modifies the nominal LTL, that
is expressed through function s4(t), in order to keep its first
and second time derivatives within given bounds, i.e., the filter
output is a signal s(¢) that fulfills the following inequalities

ST < s(t) <8t )]
U- <3t <UT, (6)

where ST, 8=, U*, and U~ are freely assignable limits. The
scaling filter has been widely described in [19] and in [29], so
that the interested reader can refer to those papers for details. It
is worth to mention its main characteristics: Output signal s(t)
tracks s4(t) if this latter is feasible, otherwise s(¢) becomes the
best possible feasible approximation of s4(t). Moreover, s(t)
always hangs in minimum time, compatibly with the imposed
constraints, any feasible s4(¢). This property can be used, as
shown in Section IV, to generate minimum-time trajectories.

The second block of the TSS is the bounds estimator, that
converts the kinematic constraints, which affect the manipula-
tor, into equivalent limits for the LTL. It is totally different
from analogous implementations that have been proposed
in [19], [20], [29], since it must handle problems that are
defined in the operational space. Its computational complexity
is necessarily higher, because the required conversions involve
the existing relationships between the configuration and the
operational spaces. Nevertheless, the proposed formulation,
as shown in Section IV, is perfectly compatible with a real-
time implementation. The bounds estimator handles several
different constraints. For example, velocities and accelerations
of the end effector must be kept within some given limits.
Thus, by defining the desired generalized velocity of the tool
frame as

— v
V=

} = [0, 1, U1, U1, U1y U1)T €RE(7)
wr

where v and wr respectively represent the desired linear and
angular velocities in the operational space, and by indicating
with

— ar
ar =
ar

:| = [ETl ar, ary, G, ATy ETG]T S RS (8)

the desired generalized acceleration, where ar and ap respec-
tively indicate the desired linear and angular accelerations,
the following constraints must be simultaneously satisfied
(i=12,...,6)
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Constraint vectors V-~ = [0] Dy U3 U; U5 Ug |1, VT =
o) vy o3 vy o3 vg )T, a- = [aj @, a; a, a5 ag )7, and
at = [af af aj af @i aj]T are assigned by the users
depending on the desired motion smoothness.

Bounds on joint velocities, i.e., g, and accelerations, i.e.,
G, must also be taken into account. It has been previously
pointed out that trajectories in the operational space could
produce joint velocities and accelerations that are beyond
the actuators capabilities. In order to prevent path tracking
problems the following limits must be fulfilled

G <dr <4, (11

G, <k <q, (12)
where £ = 1,2,..., N, while N is equal to the number
of independent joints. Bounds ¢~ := [¢; ¢5 ... dy]? and
q* = [ 4 ... ¢4]7 typically coincide with the motor
speed limits, while ¢~ > ... dy|T and gt =
[ Gy ... Gf;]T are used to reduce the mechanical stress:



Limited accelerations make it possible to drastically reduce
the excitation of oscillatory modes.

Longitudinal velocities and accelerations along the path can
be bounded, by imposing

£ (t) <&,

- < (13)
(T <) < ¢,

(14)

where £, ¢+, ¢, and ¢t are user defined limits.

In next Section III, it will be shown how constraints (9)—
(12) can be converted into equivalent bounds S—, S*, U™,
and U™ for the LTL. No adaptation is required for constraints
(13) and (14), that can be immediately applied to (5) and (6).

III. EVALUATION OF THE EQUIVALENT LONGITUDINAL
BOUNDS

As known, velocities and accelerations of the end effector
can be evaluated as follows

vr :JTq y (15)

ar=Jra+Jdrd, (16)

where J7 = Jr(q) is the system geometric Jacobian, while
Jr =Jr(q) is its first time derivative.
If Jr is not singular, from (15) it immediately descends that

q=1J7'9r, a7
while, by manipulating (16), it is possible to write
q=J7'(ar —Jra) =Jz'(@r - JrJz'vr) . (8)

Equations (17) and (18) are expressed in function of variables
of the configuration space and are instrumental for the evalua-
tion of the equivalent longitudinal bounds, provided that they
could be posed in function of s.

To this purpose, path [pr(s), %R(s)] is first converted into
an equivalent path qr(s) in the configuration space, which is
subsequently used to evaluate

Jr(s) = Ja(s)]

and
Izt (s) = I a(s)] -

Linear velocity vy can be obtained from pr(s) by means
of the chain differentiation rule, i.e.,
_dpr(s) ds

vr(s8) = =0T W T ds

A similar result can also be obtained for wp =
[wy wy w;]T. The differentiation rule of rotational matrices,
ie, 3R = S(wr)%R, where S(wr) is a skew symmetric
matrix that is defined as follows

dpr(s) $:=vp(s)$.

19)

0 —Ww, Wy
S(wT) = Wy 0 —Wg )
—Wy Wy 0
makes it possible to write
d [TR(s)]

Slwr(s, )] = SRIRT = IRT(s)5. (20

ds

Owing to (20), wr(s, $) can evidently be written as follows

wr(s,$) = wr(s) s . (21)

Bearing in mind (19) and (21), (7) can be posed into the
following form

VT(S, S) = GT(S) S, (22)

so that its first derivative with respect to time is given by

ar(s,5) = vip(s)§* +vr(s) s (23)
where V/.(s) := [dvr(s)]/(ds).
By means of (22), (17) can be written as follows
als, ) =a(s) s, (24)
where
a(s) =I5 (s) Vr(s) . (25)

As shown in [30], v (s) can be obtained from the knowledge
of the path equations, so that, given s, it is certainly possible to
evaluate a(s). Consequently, in the following, a(s) is supposed
to be known.

A procedure for the evaluation of Jr s proposed in
Appendix A, where it is also shown that Jr assumes the
following structure

Jr(s,5) =Jp(s) 5.

Thus, bearing also in mind (22) and (23), (18) can be written
as follows

Q(s,5,5) = a(s) 5+ b(s) 52, (26)
where a(s) is given by (25), while

b(s) := I3 (s) [Vip(s) = I () I (5) Vo (s)] -

Since v/ .(s) can be analytically obtained from the path
equations, all terms that are required for the evaluation of b(s)
are known.

Constraint equations (11) and (12) can be written, due to
(24) and (26), in the following form (k =1,2,..., N)

27

Gy <ar(s)s < g,
Gy < bi(s) 82 +ar(s)§ < g,

(28)
(29)

where ay(s) and by(s) respectively indicate the components

of vectors a(s) = [a1(s)az(s) ... an(s)]T and b(s) =

[b1(8) ba(s) ... bn(s)]T. Inequalities (28) and (29) can, then,

be converted into equivalent bounds for § and s. In partic-

ular, (28) is fulfilled if s satisfies the following expression
N

5€ n [0, k], where
k=1

ar .
—k<ifag(s) >0

ag(s)?
if ak(s) <0

N, = ay (30)
oo, ifag(s)=0

ak(s)’

Notice that the lower bound on $ has been posed equal to zero
in order to avoid backward movements.



In the same way, joints accelerations fulfill (29) if s belongs
N

to interval § € ﬂ [k s k], with

k=1
i — 2.
s aik(S) , ifag(s) >0
Ae=q BOE g <o o GD
00, ifax(s) =0
and - Y
dpe —ROI2 ;ik(g;) * ifag(s) >0
Gt —bi(s) 2 .
o= EBE <o o G
—00, ifap(s) =0

Constraints (9) and (10) can be similarly handled. Due to
(22) and (23), it is possible to rewrite (9) and (10) as follows
(i=1,2...,6)
<or(s)s <o (33)

( (34)
where vr, (s) and v7. (s) respectively indicate the components
of vectors v (s) := [0r, (8) U1, (8) ... U1, (5)]T and v/ (s) :==
[0, (s) 0, (s) ... 0, ()] Consequently, the constraints in

6

the operational space are fulfilled if $ € ﬂ [0, p;], where

i=1
T o~
e U (s)>0
Pi= Sl ifTn(s) <0 (35)
o,  if i (s) =0
6
and if § € ﬂ[% ,0:], where
i=1
al —vh (s)s? ~
- T ET,.TES) , ifor(s) >0
= a7k (5) 42 ~
0i = %, ifor,(s) <0 (36)
00, ifor,(s) =0
and o, s
LT it (s) > 0
— E*—U'L s) &2 -~
T %, if or,(s) <0 (37
—00, if or,(s) =0

Bearing in mind all previously mentioned conditions, it is
finally possible to assert that constraints (9)—(14) are certainly
fulfilled, if inequalities (5) and (6) are satisfied, with (k =
1,2,...,N,i=1,2,...,6)

S = O, S+ = ngiirl{ﬁk>f7i,§+}a (38)

U™ = r%ax{uk, Vi, C_} ’ U+ = Hknn{)\ka 67,'7 C+} . (39)

As formerly asserted, the fulfillment of conditions (5) and
(6) is delegated to the scaling filter that online modifies the
LTL. It is important to point out the mutual correlations
existing between the scaling filter and the bounds estimator.
The first online modifies the LTL, in order to fulfill the
given longitudinal bounds. The second, in turn, continuously

changes the longitudinal constraints by means of (30)-(37),
thus influencing the filter behavior. This practically implies
that the equivalents bounds on the longitudinal velocities and
accelerations are not known a priori but, conversely, they are
evaluated in real time, depending on the action of the scaling
filter.

Another relevant aspect that is important to highlight is
that the planning problem admits solutions only if the feasible
region is not empty, i.e., only if S~ < ST and U~ < U™.
Condition S~ < ST is banally satisfied because of (30) and
(35), but, conversely, (31), (32), (36), and (37) do not give any
certainty concerning the fulfillment of condition U~ < U™,
Fortunately, in many practical cases, the onset of problems is
avoided due to the action of the filter. Let us consider, for
example, a situation in which the trajectory passes close to a
singular point. In that point, the interval between U~ and U™
critically tends to zero. In the same point also ST suddenly
decreases and, consequently, the filter scales down s. This, in
turn, causes an increment of the distance between U~ and U™t
through of (31), (32), (36), and (37): Condition U~ < U™ is
preserved if such expansion dominates the collapsing effect.
Far from singular points, a similar result can be achieved by
means of strategies like those proposed in [29], [31].

For the sake of completeness, it is worth to mention that the
same scaling approach can also be adopted if the orientation
of the end effector is alternatively specified by means of a
minimal representation and, consequently, if the points in the
operational space are expressed by vector X7 := [p&. ®1]7. In
that case, the desired tool velocity can be described as follows

vr
ET = . B
iy
where 'iJT is the time derivative of ®.
Equations _ B
xr=Jrq, (40)
xr=Jrq+Jrd, 41

where J1 = jT(q) is the analytic Jacobian of the system, have
the same structure of (15) and (16), so that the scaling method
that has been previously proposed can also be adopted in
situations where the path in the operational space is specified
by means of X7 (s): In such alternative scenario, the analytic
Jacobian takes the place of the geometric Jacobian.

IV. EXPERIMENTAL RESULTS

The TSS has been tested on a Comau Smart Six 6-1.4
manipulator controlled by means of a C4GOpen operating
system, that can bypass, totally or partially, the commercial
control unit. In particular, the here proposed tests have been
executed by disabling the internal trajectory generator, that has
been replaced by the novel planner, while the original control
loops have been maintained. Trajectories have been generated
by means of an external PC, operated with an RTAI real time
system running at 2e-3 s. The effectiveness and the promptness
of the TSS have been tested by executing trajectories that
pass very close to singular points and that strongly solicit
joints 4 and 6: Emergency stops, issued by the manipulator



controller, can only be avoided by keeping the joint speeds
within 412 rads~!. Critical situations arise very quickly, so
that feasibility is maintained only if the TSS is sufficiently
reactive.

Two different path primitives have been considered: a
linear segment and a circular segment. The linear path joins
pa = [0.650 0.830 1.120]7 to pp = [-0.200 0.830 1.120]%
and it is generated by assuming ®4 = &5 = [7/2 0 7/2]7.
The circular path goes from pa = [0.650 0.830 0.810]%
to pp = [-0.144 0.830 0.879]7 and it is centered in
pc = [0.250 0.830 0.810]7. Evidently, the motion does
not admit Cartesian components along the Y direction. The
initial tool orientation, that is expressed through the Roll-Pitch-
Yaw (RPY) notation, is ®4 = [7/2 m/2 7/2]T, while the
final orientation is ®5 = [r/2 137/9 7/2]T. The required
functions pr(s), vr(s), and v/(s) are generated according
to the procedure that is proposed in [30].

In order to highlight an interesting feature of the TSS
reference, signal st has been assumed constant and equal to
the path lengths (0.850 m and 1.1868 m respectively): The
TSS automatically generates, due to the capabilities of the
adopted nonlinear filter [29], a minimum-time trajectory which
fulfills the given longitudinal constraints on the velocity and
the acceleration. The crucial point is that this result is achieved
by means of a planning algorithm that is totally executed in
real time.

In the first test experiments, that have been indicated in the
attached video as Experiments 1 and 3, the sole bounds £,
¢~, and (T have been activated, i.e.,

S™:=0, StT:=¢t,
U :=¢, Ut:=(",
where (f = 25 ms™2, (- = -25 ms7 2 ¢F =

0.4239 ms~!. Limits £, ¢*, and ¢~ have been selected such
to guarantee smooth transients. Since the given trajectories
pass very close to singular configurations, the velocity limits of
joints 4 and 6, which have not been taken into account for the
evaluation of the equivalent longitudinal bounds, are violated,
so that the manipulator controller, as shown in the video,
executes an emergency stop by activating the joint brakes.

In the second set of experiments, the constraints on the joint
velocities and accelerations have been taken into account, i.e.,

S7:=0, S :=min{n, 7},
U™ = m]ilx{,u'kv (7} , Ut = mkin{/\k’ C+} .

Bounds 7y, pg, and Ap are obtained from (30), (31) and
(32) by assuming g~ = [-8 -8 -8 —12 —12 —12]7,
q" = g 8 8 12 12 12/, g =
[-100 —100 —100 —100 —100 —100]7, and
g* := [100 100 100 100 100 100]%.

Figures 2b and 2c, which refer to the generation of the cir-
cular segment, compare signals s and §, that are generated by
the filter, with S™, S=, U™, and U~: Equivalent longitudinal
bounds are fulfilled and, as it is expected in case of optimal
solutions, there is always one active constraint. Dash-dotted

1% S

0.8r

s (m)

§(ms?)

Fig. 2. Time law used for the generation of a circular paths. Dash-dotted
lines highlight the action of the scaling system. a) rough reference st (dashed
line) compared with s (solid line); b) Signal $ (solid line) compared with the
equivalent longitudinal bounds (dotted lines); c) Signal § (solid line) compared
with the equivalent longitudinal bounds (dotted lines).

lines surround the zones in which the TSS modifies the nom-
inal time law. According to the theory, the fulfillment of the
equivalent longitudinal constraints guarantees that velocities
and accelerations of critical joints 4 and 6, as proved in Fig. 3,
are kept within the assigned bounds, so that the trajectory is
correctly executed.

Similar performances have been verified for the linear
segment: Fig. 4 shows the trends of s, s, and 5, while Fig. 5
reports velocities and accelerations for joints 4 and 6.

The last experiments, that are indicated as Experiment 2 and
Experiment 4 in the attached video, have been executed by
activating all the constraints, i.e., ST, S=, U, and U~ have
been evaluated by means of (38) and (39). Additional bounds
pi» Vi» and &; have been obtained from (35), (36) and (37)
by imposing v~ := [-0.4 —0.4 —0.4 —1 —1 1], ¥* :=
0404041117, a :=[-2-2-2-10 —10 —10]T,
at = [2 2 2 10 10 10]T. Fig. 6 shows the results for
the circular segment. Because of the additional constraints,
bounds are different with respect to those shown in Fig. 2.
Joint velocity and acceleration constraints are still satisfied,
but now the fulfillment of the longitudinal constraints also
implies that the assigned Cartesian limits are fulfilled. This
is proved by Fig. 7, in which the velocity and acceleration
components along the ZX-plane are shown. The Y component
has been neglected because it is always equal to zero. A similar
response has been obtained for the linear trajectory, but the
corresponding results have been omitted for the sake of brevity.
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Fig. 3. a) Velocities and b) accelerations of joints 4 and 6 that are obtained
during the generation of a circular path, compared with the assigned bounds
(dotted lines).
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Fig. 4. Time law used for the generation of a linear path. Dash-dotted lines
highlight the action of the scaling system. a) rough reference s (dashed
line) compared with s (solid line); b) Signal $ (solid line) compared with the
equivalent longitudinal bounds (dotted lines); ¢) Signal s (solid line) compared
with the equivalent longitudinal bounds (dotted lines)
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Fig. 5. a) Velocities and b) accelerations of joints 4 and 6 that are obtained
during the generation of a linear path, compared with the assigned bounds
(dotted lines).

Fig. 6. Time law used for the generation of a circular path when constraints
on the joint speeds and on the operational speeds are simultaneously activated.
a) Signal $ (solid line) compared with the equivalent longitudinal bounds (dot-
ted lines); b) Signal § (solid line) compared with the equivalent longitudinal
bounds (dotted lines)

The performances of the TSS can also be appreciated by
means of Figure 8, which reports the path tracking errors
for all the experiments of the attached video. Results rela-
tive to Experiment 1 and Experiment 3 respectively end for
s = 0.8998 m and for s = 0.6318 m, due to the activation of
the brakes. Path tracking errors of Experiments 1 and 2 are
quite similar until the trajectory is far from the singular point,
but they suddenly differ in its neighborhood: the tracking
error of Experiment 1 is clearly diverging when brakes are
activated. Maximum errors of Experiment 2 only depend
on the performances of the manipulator controller, which
accuracy is inversely proportional to the joint speeds. The TSS
can evidently be tuned such to guarantee higher precisions



Fig. 7. Generation of a circular path: Components of a) linear velocities
and b) accelerations along the X and the Z axes compared with the respective
bounds (dotted lines).
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Fig. 8. Path tracking errors: a) circular path; b) linear path.

in the vicinity of the singularity by simply imposing more
stringent limits on the joint speeds. Similar considerations hold
for Experiments 3 and 4.

The slow motion videos highlight the tracking performances
in the neighborhood of the singularity: Despite the LTL
scaling, vibrations are avoided due to the smoothness of the
involved transients.

Evaluation times are compatible with the real-time require-
ment. Indeed, the scaling filter, the nonlinear bounds estimator,
and the path generator are executed in 30e-6 s on a PC Intel
Core 2 Duo E8400 @3.00GHz, i.e., the computational burden
is evidently marginal and compatible with the evaluation
capabilities of modern controllers.

V. CONCLUSIONS

The proposed trajectory planner is able to handle some
critical situations that could arise when trajectories are defined
in the operational space. In particular, it uses a TSS that
modifies, by means of minimum time transients, the nominal
LTL in order to fulfill a given set of kinematic limits and to
guarantee the accurate path tracking.

The new generator, owing to its moderate computational
burden and due to the lack of interactions with the manipulator
controller, can be easily implemented on currently available
commercial units. It can generate any kind of path primitive
that can be parametrized in function of the curvilinear coor-
dinate.

The evaluation of the equivalent longitudinal bounds re-
quires the knowledge of the inverse Jacobian matrix, so that
the TSS is not suited to manage trajectories that directly cross
singular points. Such trajectories can be handled by admitting
minor path violations: Possible approaches to the problem are
currently under investigation.

Another advantage of the novel TSS is represented by its
flexibility. The number and the type of constraints that can
be simultaneously handled is not limited to those that have
been analyzed in the paper. Conversely, it can manage any
constraint that can be converted into equivalent bounds for
the LTL. This possibility will be used in the future, e.g., to
improve the motion smoothness by also constraining jerks or,
if the manipulator controller is accessible and modifiable, joint
torques. However, the experimental evidence has proved that
the proposed trajectory generator can guarantee sufficiently
smooth motions, so that the additional complexity, that is
required to handle further constraints, is justified only in case
of specific applications.
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APPENDIX

The estimation of the equivalent bounds for the scaling filter
requires the online evaluation of the derivative of the Jacobian
matrix expressed in function of curvilinear coordinate s. An
efficient approach is proposed in the following.

As known, the Jacobian matrix associated to the end effec-
tor of any robotic manipulator which reference frames have
been selected according to the modified Denavit-Hartenberg
procedure can be expressed as follows

i@ i) | -
Ir(@ = | e Tiz@ [

where (k=1,2,...,N)

N , 42
59 (a) 42)

zi(q) prismatic joint
ir*(a) = Axla) 7
zr(q) x [pr(q) — px(q)] revolute joint
(43)
sw 0 prismatic joint
k —
ir*(a) = { zr(q) rtevolute joint  ’ (44)

and where N is the number of independent joints, Zx(q) =
9R(q)z* (with 2* := [0 0 1]7) is the Z unit vector of the kth
reference frame, pi(q) indicates the origin of the kth frame,
and, finally, pr(q) is the origin of the frame that must follow
the assigned trajectory, i.e., frame N or the tool frame. All
vectors are described with respect to an inertial system that is
typically located on the manipulator base.

If the manipulator is moving along an assigned path that is
parametrized through a curvilinear coordinate s, it is possible
to compute, for any given s, the corresponding position q(s)
in the joint space by solving an inverse kinematic problem,
then, by means of (42), it is also possible to evaluate J(s) =
Jr[a(s)]. Thus, in the following, j;*(s), j;"(s), Ar(s) :=
prla(s)] — prla(s)], and, consequently J7(s), are supposed
to be known.

The derivative of the Jacobian matrix is derived by dif-
ferentiating (43) and (44). It can be represented as follows
(dependency on q has been dropped for conciseness)

: 3y, B Il R I
o= J - swi | twa ‘ FWN ’ @3)
wT .]T JT ‘]T
where

ve _ ) Zk prismatic joint
Ir Zr X [P — Pk] + 2k X [vr — vi] revolute joint

(46)
. 0  prismatic joint
Sk =4 47
ir*(a@) { Zy revolute joint @7
Term ﬁk can be obtained as follows

A d ~ % d ~ % ~ % ~
Zp — % (2RZ ) = a (2R) z = S(wk)ng = Wi X Zg ,
(48)
where wy, is the angular velocity of the kth reference frame.
It is known that any generic w;, ¢ = 1,2,...,N can be

evaluated by means of an appositely devised Jacobian matrix
[30] according to the following equation

i
wi=d ia= 3 [ i o] 0]
k=1

1.,

Wi

where terms j;* coincide with terms j7* of Jr(q).



In the same way, the linear velocity of the ¢th reference
frame can be expressed as follows

i
vi= > i ae=[ 3 15  [i o]0 4.
k=1
Ju,
(50)
Terms j;* of J,, coincide with terms j;* of J7 only in case

of prismatic joints. In general, they can be evaluated by means
of the following expression

i (q) = { zi(q) prismatic joint
! zi(q) x [pi(a) — px(q)] revolute joint s
Equations (46) and (47), with the aid of (48), (49), and (50),
can be rewritten in the following form

' Jo, 4 % 2 prismatic joint
i@ = (o @x i) x [pr — pel + 26 x [Tup — Ju] 4
revolute joint
(52)
. 0 prismatic joint
Wi —
Jr (@) = { Ju, 4 X 2, revolute joint (53)

Equations (52) and (53) can finally be posed in function of
the longitudinal coordinate s. The resulting expressions must
be computationally efficient, since the algorithm is executed
in real time. Fortunately, many terms in (52) and in (53) are
common to other expressions of the TSS, so that they need to
be computed only once. For example, according to (24), we
can write ¢(s) = a(s) $, where a(s) is a term that appears in
many part of the algorithm. Analogously, z; is also a terms
of J7(s): For revolute joints z;(s) = j7*(s), while zx(s) =
j7¥(s) for prismatic joints. The same happens for Aj(s) =
pr(s) — pr(s), while the columns of J, (s) are common to
Jur(8).

After a few algebraic manipulations it is thus possible to
rewrite (52) and (53) as follows

Jo,.(s)a(s) x j7¥(s) prismatic joint

§2(s,8) = 84 Fun(9)als) X 354 (5)] x Ax(s)
HT (8) X [Jur(5) = Ju, ()] als)
revolute joint
(54)
P . .J 0 prismatic joint
it (s,8) =# { Jo,.(s)a(s) x j7¥(s) revolute joint
(535
The sole term J,, (s) actually needs to be evaluated from
scratch. Consequently, it is possible to conclude that a minor
additional burden is required for the evaluation of Jr (s, 3).
Equations (54) and (55) also reveal that the derivative of
the Jacobian matrix can always be expressed as follows

Jr(s,5) == Jp(s)s.



