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Real-time planner in the operational space for the

automatic handling of kinematic constraints

Corrado Guarino Lo Bianco† and Fabio Ghilardelli

Abstract—Planning problems in the operational space are
characterized by implementation issues that do not occur in the
joint space. For example, depending on the manipulator pose,
relatively slow trajectories in the operational space could require
unfeasible joint speeds, thus causing the degeneration of the
system performances: Path tracking errors certainly increase
but, in the worst situations, the manipulator must be stopped
in order to prevent the system instability. This paper proposes a
real-time planner in the operational space that is able to generate
trajectories subject to dynamic constraints and devised according
to the path-velocity decomposition approach. The feasibility is
achieved by means of an automatic scaling system that, starting
from a possibly unfeasible trajectory, modifies its longitudinal
velocity in order to fulfill a given set of kinematic constraints,
thus preserving an accurate path tracking. The scaling system
promptly reacts to critical configurations through minimum-time
transients. The proposed approach has been tested on an actual
anthropomorphic manipulator by executing 6D trajectories.

Note to practitioners—The accurate path tracking must be
guaranteed especially when trajectories are planned in the oper-
ational space. Unfortunately, path tracking worsens every time
system limits are exceeded. The trajectory generator proposed in
this paper is specifically designed for non redundant manipula-
tors and it is equipped with a scaling system that automatically
modifies the speed of the end effector in order to guarantee
an accurate path tracking. Several kinematic constraints are
handled at the same time. Joint velocities are kept below the
manufacturer’s limits, while joint accelerations are bounded in
order to achieve smooth movements. The system is also able to
constrain the kinematics of the end effector. For example, in
order to reduce the mechanical stress on the payload and to
avoid the excitation of elastic modes, additional bounds on the
velocities and accelerations of the end effector are considered and
managed. The planner can also be used to generate minimum-
time constrained trajectories in real-time. To this purpose, further
constraints on the longitudinal velocities and accelerations have
been introduced. Differently from alternative approaches, the
proposed planning scheme does not require any interaction
with the controller. This is an advantage, since controllers of
industrial manipulators are typically not accessible or modifiable,
while, in turn, proprietary trajectory planners can normally be
replaced with ad-hoc implementations. The scaling system can
be easily expanded in order to handle additional constraints.
The trajectory smoothness, for example, can be improved by
managing the jerk bounds, so that the ongoing research activity
is currently focused on that target. In the same way, it could
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also be possible to handle some dynamic constraints, but this
would impose the introduction of mutual interactions between
the scaling system and the central control unit.

I. INTRODUCTION

Any industrial plant is affected by physical limits that could

negatively interfere with the control loops. As a consequence,

if high performances are desired, the existing constraints must

be handled at a control level [1] or by synthesizing proper

reference signals [2], [3]. In a robotic context, physical limits

may be the reason of serious feasibility issues, especially when

trajectories are planned in the operational space, since joint

velocities can easily reach unfeasible amplitudes even in case

of slow Cartesian motions. The problem is well known and

different solutions have been proposed in the literature.

A historical control approach was proposed in [4], where,

for a redundant manipulator, the available degrees of freedom

were used to minimize joint velocities. Nevertheless, in [5]

it was proved that such approach can not guarantee the

avoidance of singular points and, consequently, the insurgence

of kinematic problems, so that further strategies were succes-

sively proposed in order to increase the robustness of control

algorithms (see, for instance, [6], [7]).

Kinematic bounds can be alternatively managed by acting

on the trajectories. This approach is particularly useful when

the manipulator controller can not be directly accessed. In case

of redundant manipulators, the solution is typically found by

using the available degrees of freedom that derive from the

exploitation of the null space of the Jacobian matrix. For non-

redundant manipulators, known approaches can be roughly

divided in two categories. In the first, minor modifications

of the planned path are allowed in order to avoid critical

configurations, while, in the second, the trajectory is slowed

down in order to preserve the accurate path tracking. Evidently,

the choice of the most appropriate approach depends on the

manipulator task. If the execution time is mandatory, the first

strategy is preferred. For example, in [8], [9] minor orientation

errors of the end effector are accepted in order to minimize

the execution time of a constrained trajectory. Conversely, if

deviations from the nominal path are not admissible, kinematic

constraints must be handled with the second approach. The

adopted techniques are typically based on the path-velocity

decomposition paradigm [10], i.e., the trajectory is obtained

by combining a path with a Longitudinal Time Law (LTL),

and the feasibility is preserved by acting on this latter.

The robotics literature proposes many scaling approaches

for the synthesis of optimal constrained trajectories. Several
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performance indexes could be potentially considered. In [11],

for example, the LTL is chosen by minimizing the energy

consumption of a robotic system. More commonly, the scaling

approach is used for the generation of time optimal trajectories

[12]–[20]. Sometimes, the LTL is devised offline [21], while,

in alternative approaches, it is generated online by means

of Trajectory Scaling Systems (TSS). The robotics literature

mainly focuses on planning problems in the configuration

space, while a limited number of works concerns trajectories

in the operational space. The offline approach proposed in [22]

can be considered a precursor of the trajectory scaling methods

in the Cartesian space: The proposed TSS was able to manage

the motor torque limits by modulating the longitudinal speed

of the end effector.

In many industrial applications, offline solutions do not

represent an appropriate choice, since the path needs to be

frequently changed. This aspect stimulated researches to study

alternative algorithms, specifically designed to be executed

online. Paper [23] proposes an interesting example of real-

time strategy, where the scaling system is directly built inside

the controller. More frequently, control and scaling systems

are kept disjoint. That is what happens, e.g., in the “path

governor” that was proposed in [24], where an optimal strategy

was cyclically evaluated in order to guarantee the path tracking

with a prescribed accuracy and bounded motor feeding volt-

ages. The online solution was obtained by solving a complex

optimization problem, so that the LTL was only updated 2-3

times per second.

In more recent approaches, the LTL is updated at frequen-

cies that are close or even equal to those of the controller

in order to respond more promptly to possible environmental

changes. In case of problems in the operational space, it

is still possible to distinguish solutions that are based on

the path modification from those that act on the LTL. In

the former, kinematic bounds are not explicitly defined, but

joint velocities are generically kept limited by maintaining a

proper distance from singular points. This result is achieved,

in real time, in [25], on the basis of a measure of the system

manipulability. Similarly, in [26] singular points are avoided

by adding a correcting vector to the task velocity. Conversely,

systems acting on the LTL are designed to explicitly fulfill a

set of assigned kinematic bounds. For example, the real-time

planning strategy proposed in [27] keeps joint velocities and

accelerations below some given limits by means of a hybrid

approach that is based on concepts which derive from both the

path modification and the LTL scaling strategies. Primarily, a

lightweight optimization, that is executed in real time, tries to

slow down the LTL in order to follow the assigned path with

the prescribed accuracy. If no feasible solution is found, then

minor path violations are accepted in order to maintain joint

speeds and accelerations within the assigned bounds.

The alternative strategy introduced in [28] scales the LTL

in order to bound joint velocities. The scaling system returns

time-optimal solutions, so that the delays that are introduced

have marginal effects on the system productivity: At any time,

at least one joint works at the maximum speed. This result is

obtained by means of a sliding mode feedback scheme that

modifies the nominal trajectory in real time.

The novel planner proposed in this paper is devised for non-

redundant manipulators. The basic scheme, originally con-

ceived in [19] and in [20] for planning problems in the config-

uration space, is here modified in order to handle trajectories in

the operational space. To this purpose, the scaling mechanism

has been redesigned. Its complexity is increased, since the

relationships between the operational and the configuration

space must now be taken into account. However, due to the

proposed algorithmic formulation, computational burdens are

still compatible with real-time implementations.

The new generator, if compared with alternative planners in

the operational space, handles a larger number of constraints.

In particular, the novel TSS simultaneously manages bounds

on

• joint velocities and accelerations,

• linear velocities and accelerations of the tool frame,

• angular velocities and accelerations of the tool frame,

• longitudinal velocities and accelerations, i.e., velocities

and accelerations along the path.

Each constraint is motivated by a different reason. Joint

velocity bounds are due to the motors’ speed limits, while

joint accelerations are bounded in order to achieve smooth

movements. The constraints on the tool frame are used to

reduce the solicitations acting on the payload and to avoid

the excitation of elastic modes. The limits on the longitudinal

velocities and accelerations make it possible to convert the

proposed trajectory generator, that is normally used to produce

fixed-time trajectories, into a minimum-time planner.

The proposed TSS modifies the LTL by means of feasible

minimum-time transients in order to promptly react to critical

situations. This important characteristic has been tested with

an actual 6D industrial manipulator, by generating and tracking

trajectories that pass close to singular configurations. Indeed,

in the neighborhood of singular points joint velocities increase

very quickly, so that feasibility can be maintained only if the

TSS is highly reactive.

The paper is organized as follows. The planning problem is

formulated in Section II. Section III shows how the assigned

constraints can be converted into bounds for the LTL. The

experimental results acquired with a 6 degrees of freedom

industrial manipulator are commented in Section IV. Conclu-

sions are drawn in Section V.

II. PROBLEM FORMULATION

Given a trajectory in the operational space and a set of kine-

matic constraints, the TSS proposed in this paper appropriately

modifies the longitudinal speed in order to preserve the path

tracking. To this aim, trajectories are planned according to

the path-velocity decomposition paradigm [10], an approach

that is suited for planning scenarios in the operational space.

Practically, trajectories are obtained as a combination of a

path in the operational space and a LTL. By defining s as the

Euclidean distance from the beginning of the path, measured

along the path itself, the LTL is specified by assigning the

following function

s : [0, tf ] → R
+

t → s := s(t)
, (1)
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Fig. 1. The overall manipulator control scheme. The dashed box surrounds
the trajectory scaling system.

where tf is the total traveling time. Along the paper, term

“path” will indicate the combination of the positions and the

orientations that are assumed by the tool frame or by the wrist

frame during the motion. Positions are specified through a

function pT (s) that is defined as follows

pT : [0, sf ] → R
3

s → pT := pT (s)
, (2)

where sf = s(tf ) is the path length. Orientations can be

specified in two different ways, depending on the planning

strategy. They can be expressed, e.g., by the following function

ΦT : [0, sf ] → R
3

s → ΦT := ΦT (s)
, (3)

where ΦT indicates an orientation that is expressed through

any minimal representation. Alternatively, orientations could

also be described by means of a rotation matrix

0
TR : [0, sf ] → R

9

s → 0
TR := 0

TR(s)
. (4)

Depending on the selected planning scheme, the trajectory

is thus given by functions pT (t) = pT [s(t)] and ΦT (t) =
ΦT [s(t)] or, alternatively, by pT (t) = pT [s(t)] and 0

TR(t) =
0
TR[s(t)]. Position and orientations are measured with respect

to an inertial frame. Without any loss of generality, it will

coincide with the manipulator 0 frame.

From the knowledge of the path in the operational space,

it is possible to obtain an analogous path qT (t) in the joint

space by solving an inverse kinematic problem. qT (t) is the

reference signal for the manipulator controller.

The TSS shown in Fig. 1 is a dynamic system that is inserted

between the LTL generator and the path generator: It prevents

constraint violations by properly reducing longitudinal speeds

and accelerations. An advantage of this scaling technique is

immediately evident: The TSS does not require data from the

manipulator controller, which internal structure can even be

unknown.

The scheme of the TSS is similar to those that have been

proposed in [19], [20] for problems in the configuration space.

It is made of a general purpose, nonlinear scaling filter and

a bounds estimator. The first modifies the nominal LTL, that

is expressed through function sd(t), in order to keep its first

and second time derivatives within given bounds, i.e., the filter

output is a signal s(t) that fulfills the following inequalities

S− ≤ ṡ(t) ≤ S+ , (5)

U− ≤ s̈(t) ≤ U+ , (6)

where S+, S−, U+, and U− are freely assignable limits. The

scaling filter has been widely described in [19] and in [29], so

that the interested reader can refer to those papers for details. It

is worth to mention its main characteristics: Output signal s(t)
tracks sd(t) if this latter is feasible, otherwise s(t) becomes the

best possible feasible approximation of sd(t). Moreover, s(t)
always hangs in minimum time, compatibly with the imposed

constraints, any feasible sd(t). This property can be used, as

shown in Section IV, to generate minimum-time trajectories.

The second block of the TSS is the bounds estimator, that

converts the kinematic constraints, which affect the manipula-

tor, into equivalent limits for the LTL. It is totally different

from analogous implementations that have been proposed

in [19], [20], [29], since it must handle problems that are

defined in the operational space. Its computational complexity

is necessarily higher, because the required conversions involve

the existing relationships between the configuration and the

operational spaces. Nevertheless, the proposed formulation,

as shown in Section IV, is perfectly compatible with a real-

time implementation. The bounds estimator handles several

different constraints. For example, velocities and accelerations

of the end effector must be kept within some given limits.

Thus, by defining the desired generalized velocity of the tool

frame as

vT :=

[
vT

ωT

]
= [vT1

vT2
vT3

vT4
vT5

vT6
]T ∈ R

6 (7)

where vT and ωT respectively represent the desired linear and

angular velocities in the operational space, and by indicating

with

aT :=

[
aT
αT

]
= [aT1

aT2
aT3

aT4
aT5

aT6
]T ∈ R

6 (8)

the desired generalized acceleration, where aT and αT respec-

tively indicate the desired linear and angular accelerations,

the following constraints must be simultaneously satisfied

(i = 1, 2, . . . , 6)

v−i ≤ vTi
≤ v+i , (9)

a−i ≤ aTi
≤ a+i . (10)

Constraint vectors v− := [v−1 v−2 v−3 v−4 v−5 v−6 ]
T , v+ :=

[v+1 v+2 v+3 v+4 v+5 v+6 ]
T , a− := [a−1 a−2 a−3 a−4 a−5 a−6 ]

T , and

a+ := [a+1 a+2 a+3 a+4 a+5 a+6 ]
T are assigned by the users

depending on the desired motion smoothness.

Bounds on joint velocities, i.e., q̇k, and accelerations, i.e.,

q̈k, must also be taken into account. It has been previously

pointed out that trajectories in the operational space could

produce joint velocities and accelerations that are beyond

the actuators capabilities. In order to prevent path tracking

problems the following limits must be fulfilled

q̇−k ≤ q̇k ≤ q̇+k , (11)

q̈−k ≤ q̈k ≤ q̈+k , (12)

where k = 1, 2, . . . , N , while N is equal to the number

of independent joints. Bounds q̇− := [q̇−1 q̇−2 . . . q̇−N ]T and

q̇+ := [q̇+1 q̇+2 . . . q̇+N ]T typically coincide with the motor

speed limits, while q̈− := [q̈−1 q̈−2 . . . q̈−N ]T and q̈+ :=
[q̈+1 q̈+2 . . . q̈+N ]T are used to reduce the mechanical stress:
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Limited accelerations make it possible to drastically reduce

the excitation of oscillatory modes.

Longitudinal velocities and accelerations along the path can

be bounded, by imposing

ξ− ≤ ṡ(t) ≤ ξ+ , (13)

ζ− ≤ s̈(t) ≤ ζ+ , (14)

where ξ−, ξ+, ζ−, and ζ+ are user defined limits.

In next Section III, it will be shown how constraints (9)–

(12) can be converted into equivalent bounds S−, S+, U−,

and U+ for the LTL. No adaptation is required for constraints

(13) and (14), that can be immediately applied to (5) and (6).

III. EVALUATION OF THE EQUIVALENT LONGITUDINAL

BOUNDS

As known, velocities and accelerations of the end effector

can be evaluated as follows

vT = JT q̇ , (15)

aT = J̇T q̇+ JT q̈ , (16)

where JT = JT (q) is the system geometric Jacobian, while

J̇T = J̇T (q) is its first time derivative.

If JT is not singular, from (15) it immediately descends that

q̇ = J−1
T vT , (17)

while, by manipulating (16), it is possible to write

q̈ = J−1
T (aT − J̇T q̇) = J−1

T (aT − J̇T J−1
T vT ) . (18)

Equations (17) and (18) are expressed in function of variables

of the configuration space and are instrumental for the evalua-

tion of the equivalent longitudinal bounds, provided that they

could be posed in function of s.

To this purpose, path [pT (s),
0
TR(s)] is first converted into

an equivalent path qT (s) in the configuration space, which is

subsequently used to evaluate

JT (s) = J[q(s)]

and

J−1
T (s) = J−1[q(s)] .

Linear velocity vT can be obtained from pT (s) by means

of the chain differentiation rule, i.e.,

vT (s, ṡ) =
dpT (s)

ds

ds

dt
=

dpT (s)

ds
ṡ := vT (s) ṡ . (19)

A similar result can also be obtained for ωT :=
[ωx ωy ωz]

T . The differentiation rule of rotational matrices,

i.e., 0
T Ṙ = S(ωT )

0
TR, where S(ωT ) is a skew symmetric

matrix that is defined as follows

S(ωT ) =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 ,

makes it possible to write

S[ωT (s, ṡ)] =
0
T Ṙ

0
TR

T =
d
[
0
TR(s)

]

ds
0
TR

T (s) ṡ . (20)

Owing to (20), ωT (s, ṡ) can evidently be written as follows

ωT (s, ṡ) = ωT (s) ṡ . (21)

Bearing in mind (19) and (21), (7) can be posed into the

following form

vT (s, ṡ) = ṽT (s) ṡ , (22)

so that its first derivative with respect to time is given by

aT (s, ṡ) = ṽ′

T (s) ṡ
2 + ṽT (s) s̈ (23)

where ṽ′

T (s) := [dṽT (s)]/(ds).
By means of (22), (17) can be written as follows

q̇(s, ṡ) = a(s) ṡ , (24)

where

a(s) := J−1
T (s) ṽT (s) . (25)

As shown in [30], ṽT (s) can be obtained from the knowledge

of the path equations, so that, given s, it is certainly possible to

evaluate a(s). Consequently, in the following, a(s) is supposed

to be known.

A procedure for the evaluation of J̇T is proposed in

Appendix A, where it is also shown that J̇T assumes the

following structure

J̇T (s, ṡ) = J′

T (s) ṡ .

Thus, bearing also in mind (22) and (23), (18) can be written

as follows

q̈(s, ṡ, s̈) = a(s) s̈+ b(s) ṡ2 , (26)

where a(s) is given by (25), while

b(s) := J−1
T (s) [ṽ′

T (s)− J′

T (s)J
−1
T (s) ṽT (s)] . (27)

Since ṽ′

T (s) can be analytically obtained from the path

equations, all terms that are required for the evaluation of b(s)
are known.

Constraint equations (11) and (12) can be written, due to

(24) and (26), in the following form (k = 1, 2, . . . , N )

q̇−k ≤ ak(s) ṡ ≤ q̇+k , (28)

q̈−k ≤ bk(s) ṡ
2 + ak(s) s̈ ≤ q̈+k , (29)

where ak(s) and bk(s) respectively indicate the components

of vectors a(s) := [a1(s) a2(s) . . . aN (s)]T and b(s) :=
[b1(s) b2(s) . . . bN (s)]T . Inequalities (28) and (29) can, then,

be converted into equivalent bounds for ṡ and s̈. In partic-

ular, (28) is fulfilled if ṡ satisfies the following expression

ṡ ∈
N⋂

k=1

[0 , ηk], where

ηk =





q̇
+

k

ak(s)
, if ak(s) > 0

q̇
−

k

ak(s)
, if ak(s) < 0

∞, if ak(s) = 0

. (30)

Notice that the lower bound on ṡ has been posed equal to zero

in order to avoid backward movements.
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In the same way, joints accelerations fulfill (29) if s̈ belongs

to interval s̈ ∈
N⋂

k=1

[µk , λk], with

λk =





q̈
+

k
−bk(s) ṡ

2

ak(s)
, if ak(s) > 0

q̈
−

k
−bk(s) ṡ

2

ak(s)
, if ak(s) < 0

∞, if ak(s) = 0

, (31)

and

µk =





q̈
−

k
−bk(s) ṡ

2

ak(s)
, if ak(s) > 0

q̈
+

k
−bk(s) ṡ

2

ak(s)
, if ak(s) < 0

−∞, if ak(s) = 0

. (32)

Constraints (9) and (10) can be similarly handled. Due to

(22) and (23), it is possible to rewrite (9) and (10) as follows

(i = 1, 2, . . . , 6)

v−i ≤ ṽTi
(s) ṡ ≤ v+i , (33)

a−i ≤ ṽ′Ti
(s) ṡ2 + ṽTi

(s) s̈ ≤ a+i , (34)

where ṽTi
(s) and ṽ′Ti

(s) respectively indicate the components

of vectors vT (s) := [ṽT1
(s) ṽT2

(s) . . . ṽT6
(s)]T and v′

T (s) :=
[ṽ′T1

(s) ṽ′T2
(s) . . . ṽ′T6

(s)]T . Consequently, the constraints in

the operational space are fulfilled if ṡ ∈

6⋂

i=1

[0 , ρi], where

ρi =





v
+

i

ṽTi
(s) , if ṽTi

(s) > 0

v
−

i

ṽTi
(s) , if ṽTi

(s) < 0

∞, if ṽTi
(s) = 0

, (35)

and if s̈ ∈

6⋂

i=1

[γi , δi], where

δi =





a
+

i
−ṽ′

Ti
(s) ṡ2

ṽTi
(s) , if ṽTi

(s) > 0

a
−

i
−ṽ′

Ti
(s) ṡ2

ṽTi
(s) , if ṽTi

(s) < 0

∞, if ṽTi
(s) = 0

, (36)

and

γi =





a
−

i
−ṽ′

Ti
(s) ṡ2

ṽTi
(s) , if ṽTi

(s) > 0

a
+

i
−ṽ′

Ti
(s) ṡ2

ṽTi
(s) , if ṽTi

(s) < 0

−∞, if ṽTi
(s) = 0

. (37)

Bearing in mind all previously mentioned conditions, it is

finally possible to assert that constraints (9)–(14) are certainly

fulfilled, if inequalities (5) and (6) are satisfied, with (k =
1, 2, . . . , N, i = 1, 2, . . . , 6)

S− := 0 , S+ := min
k,i

{ηk, ρi, ξ
+} , (38)

U− := max
k,i

{µk, γi, ζ
−} , U+ := min

k,i
{λk, δi, ζ

+} . (39)

As formerly asserted, the fulfillment of conditions (5) and

(6) is delegated to the scaling filter that online modifies the

LTL. It is important to point out the mutual correlations

existing between the scaling filter and the bounds estimator.

The first online modifies the LTL, in order to fulfill the

given longitudinal bounds. The second, in turn, continuously

changes the longitudinal constraints by means of (30)–(37),

thus influencing the filter behavior. This practically implies

that the equivalents bounds on the longitudinal velocities and

accelerations are not known a priori but, conversely, they are

evaluated in real time, depending on the action of the scaling

filter.

Another relevant aspect that is important to highlight is

that the planning problem admits solutions only if the feasible

region is not empty, i.e., only if S− ≤ S+ and U− ≤ U+.

Condition S− ≤ S+ is banally satisfied because of (30) and

(35), but, conversely, (31), (32), (36), and (37) do not give any

certainty concerning the fulfillment of condition U− ≤ U+.

Fortunately, in many practical cases, the onset of problems is

avoided due to the action of the filter. Let us consider, for

example, a situation in which the trajectory passes close to a

singular point. In that point, the interval between U− and U+

critically tends to zero. In the same point also S+ suddenly

decreases and, consequently, the filter scales down ṡ. This, in

turn, causes an increment of the distance between U− and U+

through of (31), (32), (36), and (37): Condition U− ≤ U+ is

preserved if such expansion dominates the collapsing effect.

Far from singular points, a similar result can be achieved by

means of strategies like those proposed in [29], [31].

For the sake of completeness, it is worth to mention that the

same scaling approach can also be adopted if the orientation

of the end effector is alternatively specified by means of a

minimal representation and, consequently, if the points in the

operational space are expressed by vector xT := [pT
T ΦT

T ]
T . In

that case, the desired tool velocity can be described as follows

ẋT :=

[
vT

Φ̇T

]
,

where Φ̇T is the time derivative of ΦT .

Equations

ẋT = JT q̇ , (40)

ẍT = J̇T q̇+ JT q̈ , (41)

where JT = JT (q) is the analytic Jacobian of the system, have

the same structure of (15) and (16), so that the scaling method

that has been previously proposed can also be adopted in

situations where the path in the operational space is specified

by means of xT (s): In such alternative scenario, the analytic

Jacobian takes the place of the geometric Jacobian.

IV. EXPERIMENTAL RESULTS

The TSS has been tested on a Comau Smart Six 6-1.4

manipulator controlled by means of a C4GOpen operating

system, that can bypass, totally or partially, the commercial

control unit. In particular, the here proposed tests have been

executed by disabling the internal trajectory generator, that has

been replaced by the novel planner, while the original control

loops have been maintained. Trajectories have been generated

by means of an external PC, operated with an RTAI real time

system running at 2e-3 s. The effectiveness and the promptness

of the TSS have been tested by executing trajectories that

pass very close to singular points and that strongly solicit

joints 4 and 6: Emergency stops, issued by the manipulator
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controller, can only be avoided by keeping the joint speeds

within ±12 rad s−1. Critical situations arise very quickly, so

that feasibility is maintained only if the TSS is sufficiently

reactive.

Two different path primitives have been considered: a

linear segment and a circular segment. The linear path joins

pA = [0.650 0.830 1.120]T to pB = [−0.200 0.830 1.120]T

and it is generated by assuming ΦA = ΦB = [π/2 0 π/2]T .

The circular path goes from pA = [0.650 0.830 0.810]T

to pB = [−0.144 0.830 0.879]T and it is centered in

pC = [0.250 0.830 0.810]T . Evidently, the motion does

not admit Cartesian components along the Y direction. The

initial tool orientation, that is expressed through the Roll-Pitch-

Yaw (RPY) notation, is ΦA = [π/2 π/2 π/2]T , while the

final orientation is ΦB = [π/2 13π/9 π/2]T . The required

functions pT (s), ṽT (s), and ṽ′

T (s) are generated according

to the procedure that is proposed in [30].

In order to highlight an interesting feature of the TSS

reference, signal sT has been assumed constant and equal to

the path lengths (0.850 m and 1.1868 m respectively): The

TSS automatically generates, due to the capabilities of the

adopted nonlinear filter [29], a minimum-time trajectory which

fulfills the given longitudinal constraints on the velocity and

the acceleration. The crucial point is that this result is achieved

by means of a planning algorithm that is totally executed in

real time.

In the first test experiments, that have been indicated in the

attached video as Experiments 1 and 3, the sole bounds ξ+,

ζ−, and ζ+ have been activated, i.e.,

S− := 0 , S+ := ξ+ ,

U− := ζ− , U+ := ζ+ ,

where ζ+ = 2.5 m s−2, ζ− = −2.5 m s−2, ξ+ =
0.4239 m s−1. Limits ξ+, ζ+, and ζ− have been selected such

to guarantee smooth transients. Since the given trajectories

pass very close to singular configurations, the velocity limits of

joints 4 and 6, which have not been taken into account for the

evaluation of the equivalent longitudinal bounds, are violated,

so that the manipulator controller, as shown in the video,

executes an emergency stop by activating the joint brakes.

In the second set of experiments, the constraints on the joint

velocities and accelerations have been taken into account, i.e.,

S− := 0 , S+ := min
k

{ηk, ξ
+} ,

U− := max
k

{µk, ζ
−} , U+ := min

k
{λk, ζ

+} .

Bounds ηk, µk, and λk are obtained from (30), (31) and

(32) by assuming q̇− := [−8 −8 −8 −12 −12 −12]T ,

q̇+ := [8 8 8 12 12 12]T , q̈− :=
[−100 −100 −100 −100 −100 −100]T , and

q̈+ := [100 100 100 100 100 100]T .

Figures 2b and 2c, which refer to the generation of the cir-

cular segment, compare signals ṡ and s̈, that are generated by

the filter, with S+, S−, U+, and U−: Equivalent longitudinal

bounds are fulfilled and, as it is expected in case of optimal

solutions, there is always one active constraint. Dash-dotted
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Fig. 2. Time law used for the generation of a circular paths. Dash-dotted
lines highlight the action of the scaling system. a) rough reference sT (dashed
line) compared with s (solid line); b) Signal ṡ (solid line) compared with the
equivalent longitudinal bounds (dotted lines); c) Signal s̈ (solid line) compared
with the equivalent longitudinal bounds (dotted lines).

lines surround the zones in which the TSS modifies the nom-

inal time law. According to the theory, the fulfillment of the

equivalent longitudinal constraints guarantees that velocities

and accelerations of critical joints 4 and 6, as proved in Fig. 3,

are kept within the assigned bounds, so that the trajectory is

correctly executed.

Similar performances have been verified for the linear

segment: Fig. 4 shows the trends of s, ṡ, and s̈, while Fig. 5

reports velocities and accelerations for joints 4 and 6.

The last experiments, that are indicated as Experiment 2 and

Experiment 4 in the attached video, have been executed by

activating all the constraints, i.e., S+, S−, U+, and U− have

been evaluated by means of (38) and (39). Additional bounds

ρi, γi, and δi have been obtained from (35), (36) and (37)

by imposing v− := [−0.4 −0.4 −0.4 −1 −1 −1]T , v+ :=
[0.4 0.4 0.4 1 1 1]T , a− := [−2 −2 −2 −10 −10 −10]T ,

a+ := [2 2 2 10 10 10]T . Fig. 6 shows the results for

the circular segment. Because of the additional constraints,

bounds are different with respect to those shown in Fig. 2.

Joint velocity and acceleration constraints are still satisfied,

but now the fulfillment of the longitudinal constraints also

implies that the assigned Cartesian limits are fulfilled. This

is proved by Fig. 7, in which the velocity and acceleration

components along the ZX-plane are shown. The Y component

has been neglected because it is always equal to zero. A similar

response has been obtained for the linear trajectory, but the

corresponding results have been omitted for the sake of brevity.
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Fig. 3. a) Velocities and b) accelerations of joints 4 and 6 that are obtained
during the generation of a circular path, compared with the assigned bounds
(dotted lines).
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Fig. 5. a) Velocities and b) accelerations of joints 4 and 6 that are obtained
during the generation of a linear path, compared with the assigned bounds
(dotted lines).
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on the joint speeds and on the operational speeds are simultaneously activated.
a) Signal ṡ (solid line) compared with the equivalent longitudinal bounds (dot-
ted lines); b) Signal s̈ (solid line) compared with the equivalent longitudinal
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The performances of the TSS can also be appreciated by

means of Figure 8, which reports the path tracking errors

for all the experiments of the attached video. Results rela-

tive to Experiment 1 and Experiment 3 respectively end for

s = 0.8998 m and for s = 0.6318 m, due to the activation of

the brakes. Path tracking errors of Experiments 1 and 2 are

quite similar until the trajectory is far from the singular point,

but they suddenly differ in its neighborhood: the tracking

error of Experiment 1 is clearly diverging when brakes are

activated. Maximum errors of Experiment 2 only depend

on the performances of the manipulator controller, which

accuracy is inversely proportional to the joint speeds. The TSS

can evidently be tuned such to guarantee higher precisions
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Fig. 8. Path tracking errors: a) circular path; b) linear path.

in the vicinity of the singularity by simply imposing more

stringent limits on the joint speeds. Similar considerations hold

for Experiments 3 and 4.

The slow motion videos highlight the tracking performances

in the neighborhood of the singularity: Despite the LTL

scaling, vibrations are avoided due to the smoothness of the

involved transients.

Evaluation times are compatible with the real-time require-

ment. Indeed, the scaling filter, the nonlinear bounds estimator,

and the path generator are executed in 30e-6 s on a PC Intel

Core 2 Duo E8400 @3.00GHz, i.e., the computational burden

is evidently marginal and compatible with the evaluation

capabilities of modern controllers.

V. CONCLUSIONS

The proposed trajectory planner is able to handle some

critical situations that could arise when trajectories are defined

in the operational space. In particular, it uses a TSS that

modifies, by means of minimum time transients, the nominal

LTL in order to fulfill a given set of kinematic limits and to

guarantee the accurate path tracking.

The new generator, owing to its moderate computational

burden and due to the lack of interactions with the manipulator

controller, can be easily implemented on currently available

commercial units. It can generate any kind of path primitive

that can be parametrized in function of the curvilinear coor-

dinate.

The evaluation of the equivalent longitudinal bounds re-

quires the knowledge of the inverse Jacobian matrix, so that

the TSS is not suited to manage trajectories that directly cross

singular points. Such trajectories can be handled by admitting

minor path violations: Possible approaches to the problem are

currently under investigation.

Another advantage of the novel TSS is represented by its

flexibility. The number and the type of constraints that can

be simultaneously handled is not limited to those that have

been analyzed in the paper. Conversely, it can manage any

constraint that can be converted into equivalent bounds for

the LTL. This possibility will be used in the future, e.g., to

improve the motion smoothness by also constraining jerks or,

if the manipulator controller is accessible and modifiable, joint

torques. However, the experimental evidence has proved that

the proposed trajectory generator can guarantee sufficiently

smooth motions, so that the additional complexity, that is

required to handle further constraints, is justified only in case

of specific applications.
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APPENDIX

The estimation of the equivalent bounds for the scaling filter

requires the online evaluation of the derivative of the Jacobian

matrix expressed in function of curvilinear coordinate s. An

efficient approach is proposed in the following.

As known, the Jacobian matrix associated to the end effec-

tor of any robotic manipulator which reference frames have

been selected according to the modified Denavit-Hartenberg

procedure can be expressed as follows

JT (q) :=

[
j v1

T (q) j v2T (q) · · · j vNT (q)
jω1

T (q) jω2

T (q) · · · jωN

T (q)

]
, (42)

where (k = 1, 2, . . . , N )

j
vk
T (q) =





ẑk(q) prismatic joint

ẑk(q)×

∆k(q)︷ ︸︸ ︷
[pT (q)− pk(q)] revolute joint

,

(43)

j
ωk

T (q) =

{
0 prismatic joint
ẑk(q) revolute joint

, (44)

and where N is the number of independent joints, ẑk(q) =
0
kR(q) ẑ∗ (with ẑ∗ := [0 0 1]T ) is the ẑ unit vector of the kth

reference frame, pk(q) indicates the origin of the kth frame,

and, finally, pT (q) is the origin of the frame that must follow

the assigned trajectory, i.e., frame N or the tool frame. All

vectors are described with respect to an inertial system that is

typically located on the manipulator base.

If the manipulator is moving along an assigned path that is

parametrized through a curvilinear coordinate s, it is possible

to compute, for any given s, the corresponding position q(s)
in the joint space by solving an inverse kinematic problem,

then, by means of (42), it is also possible to evaluate JT (s) =
JT [q(s)]. Thus, in the following, j vkT (s), jωk

T (s), ∆k(s) :=
pT [q(s)] − pk[q(s)], and, consequently JT (s), are supposed

to be known.

The derivative of the Jacobian matrix is derived by dif-

ferentiating (43) and (44). It can be represented as follows

(dependency on q has been dropped for conciseness)

J̇T :=

[
J̇vT

J̇ωT

]
=

[
j̇ v1T j̇ v2

T · · · j̇ vN

T

j̇ω1

T j̇ω2

T · · · j̇ωN

T

]
, (45)

where

j̇
vk
T =

{
˙̂zk prismatic joint
˙̂zk × [pT − pk] + ẑk × [vT − vk] revolute joint

(46)

j̇
ωk

T (q) =

{
0 prismatic joint
˙̂zk revolute joint

. (47)

Term ˙̂zk can be obtained as follows

˙̂zk =
d

dt

(
0
kRẑ∗

)
=

d

dt

(
0
kR

)
ẑ∗ = S(ωk)

0
kRẑ∗ = ωk × ẑk ,

(48)

where ωk is the angular velocity of the kth reference frame.

It is known that any generic ωi, i = 1, 2, . . . , N can be

evaluated by means of an appositely devised Jacobian matrix

[30] according to the following equation

ωi =

i∑

k=1

j
ωk

i q̇k =
[
jω1

i jω2

i · · · jωi

i 0 · · · 0
]

︸ ︷︷ ︸
Jωi

q̇

(49)

where terms j
ωk

i coincide with terms j
ωk

T of JT (q).
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In the same way, the linear velocity of the ith reference

frame can be expressed as follows

vi =

i∑

k=1

j
vk

i q̇k =
[
jv1i jv2i · · · jvii 0 · · · 0

]
︸ ︷︷ ︸

Jvi

q̇ .

(50)

Terms j
vk
i of Jvk coincide with terms j

vk
T of JT only in case

of prismatic joints. In general, they can be evaluated by means

of the following expression

j
vk
i (q) =

{
ẑk(q) prismatic joint
ẑk(q)× [pi(q)− pk(q)] revolute joint

.

(51)

Equations (46) and (47), with the aid of (48), (49), and (50),

can be rewritten in the following form

j̇
vk
T (q) =





Jωk
q̇× ẑk prismatic joint

(Jωk
q̇× ẑk)× [pT − pk] + ẑk × [JvT − Jvk ] q̇

revolute joint
(52)

j̇
ωk

T (q) =

{
0 prismatic joint
Jωk

q̇× ẑk revolute joint
. (53)

Equations (52) and (53) can finally be posed in function of

the longitudinal coordinate s. The resulting expressions must

be computationally efficient, since the algorithm is executed

in real time. Fortunately, many terms in (52) and in (53) are

common to other expressions of the TSS, so that they need to

be computed only once. For example, according to (24), we

can write q̇(s) = a(s) ṡ, where a(s) is a term that appears in

many part of the algorithm. Analogously, ẑk is also a terms

of JT (s): For revolute joints ẑk(s) = j
ωk

T (s), while ẑk(s) =
j
vk
T (s) for prismatic joints. The same happens for ∆k(s) =
pT (s)− pk(s), while the columns of Jωk

(s) are common to

JωT
(s).

After a few algebraic manipulations it is thus possible to

rewrite (52) and (53) as follows

j̇
vk

T (s, ṡ) = ṡ





Jωk
(s)a(s)× j

vk
T (s) prismatic joint

[Jωk
(s)a(s)× j

ωk

T (s)]×∆k(s)
+j

ωk

T (s)× [JvT (s)− Jvk(s)]a(s)
revolute joint

,

(54)

j̇
ωk

T (s, ṡ) = ṡ

{
0 prismatic joint
Jωk

(s)a(s)× j
ωk

T (s) revolute joint
.

(55)

The sole term Jvk(s) actually needs to be evaluated from

scratch. Consequently, it is possible to conclude that a minor

additional burden is required for the evaluation of J̇T (s, ṡ).
Equations (54) and (55) also reveal that the derivative of

the Jacobian matrix can always be expressed as follows

J̇T (s, ṡ) := J′

T (s) ṡ .


