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Abstract—Reference signals, that are used to drive feedback
control loops, are often evaluated on-the-fly on the basis of
the operating conditions. As a consequence, they can be too
demanding for the actuation system which outputs could saturate,
thus worsening the tracking performances of the feedback
loop. Improved answers can be obtained by smoothing rough
references by means of proper filters that are also able to impose
bounds on the signal dynamics. The paper proposes a filtering
system which output mimics at best any given input signal
compatibly with some smoothness requirements. In particular,
generated signals are continuous up to the second time derivative
and their first three time derivatives are constrained between
assigned bounds that can be asymmetric and that can also be
changed on-the-fly. The filter, that is internally characterized by
minimum time transients, is able to follow, with zero tracking
error, piecewise-continuous signals given by combinations of
steps, ramps, and parabolas.

Index Terms—Dicrete time filters, jerk constraints, minimum
time, signal generators, variable structure systems.

I. INTRODUCTION

The smoothness of the reference signals has a strong impact

on the behavior of the control systems. It is well known,

indeed, that system performances generally improve when

smooth signals are used. For this reason, reference signals

that admit bounded first, second and third time derivatives are

commonly adopted in industrial applications.

Preliminary works addressed the reference generation prob-

lem by means of offline strategies. For example, minimum-

time trajectories, that satisfy the above mentioned constraints,

were planned in [1], by means of a polyhedron search strategy.

A similar problem was studied in [2], by also considering

constraints on the actuator torques. The solution was found

by adopting a sensitivity approach.

Offline strategies return solutions that are tailored for partic-

ular configurations and applications. Conversely, in industrial

contexts, rapidly mutating scenarios, that require continuously

changing strategies, must be often considered. The online gen-

eration of minimum time trajectories, subject to constraints on

velocities, accelerations, and jerks, was first addressed in [3].

The problem was solved by means of a direct planning strategy
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based on the use of a near time-optimal solver. An alternative

online method, based on the discretization of the minimum-

time problem, has been proposed in [4]. In the same paper,

a comparison with two sequential quadratic programming

approaches is carried out. It shows that, with direct planning

methods and with the current technology, optimal trajectories

can be generated in milliseconds. If shorter evaluation times

are required because of the sampling time of the governed

system, alternative solutions must be investigated. Most of

them consider rest-to-rest transients and static constraints.

This is the case, for example, of the closed form solution

that was proposed in [5]–[7], in which asymmetric S-curves

were adopted in order to reduce the vibrations that occur

during arrest transients. Time optimality was not specifically

addressed. A totally different approach was considered in [8],

where constrained minimum-time trajectories were generated

by means of FIR filters. The Neuro-Fuzzy approach in [9]

overcomes some of the limitations that characterize previous

methods: The trajectory can start from generic initial condi-

tions and the constraints are not static.

The study has been enlarged in [10], [11] by considering

multidimensional motions. Minimum-time online trajectories

were generated for step reference signals by considering

constraints on velocities, accelerations and jerks. In [12] still

considering the same constraints, variable reference signals

were accounted for. The approaches proposed in [10]–[12]

have a common characteristic: The problem is deeply inves-

tigated offline, so that online evaluations are performed in

microseconds. The sole drawback of these approaches is repre-

sented by the complexity of the planning algorithm, that can

be reduced, still with computational times of microseconds,

by adopting indirect planning methods, i.e., by generating

trajectories through proper feedback systems. Early works on

this topic appeared in [13]–[15] and in [16], [17] respectively

for continuous and discrete-time frameworks. Given solutions

were based on second order filters that were able to impose

bounds on the velocity and on the acceleration signals. Such

kind of planning strategies have been widely employed in

actual real-time applications [18]–[23] because, if compared

with previously cited direct planning methods, they are char-

acterized by several advantages: Trajectories are not limited

to rest-to-rest movements but, conversely, generic initial and

final conditions can be handled, constraints can be changed

in real-time, and, finally, the code that is required for their

implementation is extremely compact and efficient, so that it

can be executed with industrial microcontroller boards.
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In a continuous-time context, the first proposal of a jerk-

limited feedback planner was made in [24] with a scheme

that was able to generate trajectories characterized by bounded

velocities, accelerations and jerks. The planner did not handle

generic interpolating conditions but, conversely, it was only

able to drive the system toward the rest status.

The first third-order continuous-time solution, that was able

to manage generic interpolating conditions, was proposed

in [25]. Its discrete-time implementation was affected by jerk

chattering and transient overshoots (see [26]). The dicrete-

time scheme, that was later proposed in [27] in order to

deal with these problems, was only able to account for the

jerk bounds. Such solution has been improved in [28] with a

strategy that simultaneously handles velocity, acceleration and

jerk limits: The jerk chattering problem was eliminated but, for

particular interpolating conditions, the overshoot issue, caused

by suboptimal transients, is still present.

The nonlinear variable-structure filter proposed in this paper

solves the following challenging problem: Given a piecewise

continuous input signal, it generates a smooth output reference

that represents its best possible approximation compatibly with

some assigned bounds on velocities, accelerations and jerks.

The admissible bounds can be asymmetric and can be changed

online. The bounds asymmetry is a novelty with respect to

any other solution proposed in the literature and it is essential

in order to handle applications like those described, e.g., in

[29]. Furthermore, the new filter always guarantees minimum-

time transients and eliminates the overshoot problem that was

affecting the analogous filter proposed in [28].

The characteristics of the new filter can be summarized as

follows: Generic initial and final conditions can be assumed

on position, velocity, and acceleration; the output signal is

continuous up to the second time derivative; the output tra-

jectory fulfills any given asymmetric constraint on velocity,

acceleration and jerk; constraints can be freely changed, also

during transients; transients are always minimum-time; the

reference input signal is reached without overshoot compatibly

with the given constraints; the jerk signal is not affected by

the chattering phenomenon. The filter is stabilized by means

of an Algebraic Variable Structure Controller (AVSC) based

on sliding mode techniques. As known, such kind of control

techniques are very often used in industrial contexts [30]–[33]

because of their robustness and because of the compactness

of the code that is required for their implementation.

The paper is organized as follows. In §II the problem is

formulated and the novel third-order discrete-time filter is

proposed. Convergence properties of the filter are analyzed

in §III, in §IV, and in §V. The performances of the new filter

are compared in §VI with those of the filter proposed in [28].

In the same section a new test case is discussed, while §VII

reports some final conclusions.

II. THE OPTIMAL TRAJECTORY SCALING PROBLEM AND

THE DISCRETE-TIME FILTER

Let us consider the following definition

Definition 1: A function

f : [0, tf ] → R

t → fd := f(t)

is feasible, and we write f ∈ F , if it is continuous together

with its first and second time derivatives and if it fulfills the

following constraints

R− ≤ ḟ(t) ≤ R+, ∀t ∈ [0, tf ],

S− ≤ f̈(t) ≤ S+, ∀t ∈ [0, tf ],

U− ≤
...
f (t) ≤ U+, ∀t ∈ [0, tf ].

where R−, S−, U− ∈ R
− and R+, S+, U+ ∈ R

+ are freely

assignable bounds.

The nonlinear discrete-time filter proposed in this paper

solves the following problem:

Problem 1: Given a piecewise reference signal r(t) made of

steps, ramps or parabolas, evaluate an optimal output signal

x(t), which is continuous together with its first and second

time derivatives, by solving one of the following optimality

problems, selected on the basis of the feasibility of x(0) and

r(t):

a) x(0) /∈ F
min
x(t)

tf subject to x(tf ) ∈ F .

tf evidently indicates the instant in which x(t)
becomes feasible.

b) r(t) /∈ F and x(0) ∈ F

min
x(t)

∫

|r(τ)− x(τ)| dτ subject to x(t) ∈ F .

c) r(t) ∈ F and x(0) ∈ F
min
x(t)

tf subject to r(tf ) − x(tf ) = 0 and to

x(t) ∈ F , ∀t ∈ [0, tf ].
tf is evidently the instant in which x(t) hangs r(t).
The tracking condition must be obtained, compatibly

with the given bounds, without overshoot.

Roughly speaking, if x(0) /∈ F , then feasibility must be

gained in minimum time, otherwise two different situations

could occur: If r(t) /∈ F , then x(t) must be its best feasible

approximation, while, r(t) must be hanged in minimum time

if r(t) ∈ F . Evidently, feasibility represents the prior target

of the system. The bounds could be time-varying and can

also be changed during transients. Analogously, r(t) could be

modified at any time, so that the solution of Problem 1 must

be evaluated at each sample time. Since control systems are

mainly governed by means of digital controllers, a discrete

time solution of Problem 1 is proposed. In the following,

subscript i ∈ N indicates sampled variables that are acquired

at time t = iT , where T is the system sampling time.

The problem is clearly similar to the one that was considered

in [28], but, as a novelty, asymmetric jerk constraints are han-

dled. Moreover, in [28], under particular operating conditions,

some transients toward r were suboptimal and characterized

by overshoot issues: The new solution totally eliminates both

problems. These improvements, that are essential to manage

problems like the one, e.g., that was proposed in [29], have

required a complete redefinition of the filter control laws.

Practically, while the structure of the discrete-time filter, that

is shown in Fig. 1, is the same that was proposed in [28], i.e.,

it is made of a chain of three integrators, the AVSC has been

completely rewritten in order to fulfill the new requirements.

The AVSC is based on sliding mode techniques [34], and
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Fig. 1. The discrete-time system that solves Problem 1. The system is
composed by a dynamic chain based on three integrators and an algebraic
variable-structure controller.

uses a combination of appropriate Sliding Surfaces (SS) to

robustly stabilize the system and to solve Problem 1. The

system dynamics is only due to the integrators chain and can

be represented as follows

xi+1 = A xi + b ui , (1)

where xi := [xi ẋi ẍi]
T is the system state and

A =





1 T T 2

2
0 1 T
0 0 1



 , b =





T 3

6
T 2

2
T



 . (2)

Reference signal ri is evaluated as follows

ri+1 := Ari , (3)

where ri := [ri ṙi r̈i]
T . A step, a ramp, or a parabola can be

generated depending on the initial values that are chosen for

ṙi and r̈i. According to the hypothesis,
...
r i = 0.

In order to formulate the control law for the AVSC, let us

first consider the following change of coordinates yi := xi−ri,
ẏi := ẋi − ṙi, ÿi := ẍi − r̈i, that places the system origin on

the trajectory to be tracked. Due to (3), system (1) becomes

yi+1 = A yi + b ui , (4)

where A and b coincide with (2), while yi := [yi ẏi ÿi]
T .

A further change of coordinates yi = Wzi, where

W :=





T 3 −T 3 T 3

6

0 T 2 −T 2

2
0 0 T



 , (5)

is required to eliminate sampling time T from matrices A and

b. System (4) becomes

zi+1 = Ad zi + bd ui , (6)

where zi := [z1,i z2,i z3,i]
T and

Ad =





1 1 1
0 1 1
0 0 1



 , bd =





1
1
1



 . (7)

Matrix W is non singular, so that inverse transformation zi =
W−1 yi exists with certainty.

The proposed controller is designed to force state z toward

the origin in minimum time by means of transients which

fulfill the given constraints on velocity, acceleration, and jerk.

If this result is achieved, then, y = Wz = 0 and, in turn, x,

as desired, hangs reference r.

The AVSC, that is used to control system (6), depends on

system state z and on the input reference signal, i.e., on r, ṙ, r̈.

In particular, the following sliding mode control law has been

t,1

t,-1

c= 1

c= -1

c= 0
x = 1

h = -1

c= 0
x = -1
h = -1

c= 0
x = -1
h = 1
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h = 1

z2

s=s3
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s= s6
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-

-

-

-

-

(r)V

(r)V

'Vj,-1

'Vj,1

z1

Fig. 2. Partitions of the (z1, z2)-plane that are used to select the most
appropriate sliding surface. Curve ς

′

j,1 is given by the intersection between

σ4 and σ5, while ς
′

j,−1 is given by the intersection between σ4 and σ6.

Curve ςτ,η represent the borderlines between the areas where η = 1 and
η = −1.

explicitly designed to solve Problem 1 (sampling time i has

been omitted in the following for conciseness, so that, e.g.,

command signal ui is simply indicated as u)

u :=















−U−sat

(

z3 − σ

U−

)

if z3 − σ ≥ 0

−U+sat

(

z3 − σ

U+

)

if z3 − σ < 0
, (8)

where σ is a SS that depends on z1 and z2, while sat(·)
represents a function that saturates its argument to ±1. Ev-

idently, due to (8), the jerk constraint is certainly satisfied

since u ∈ [U−, U+]. Equation (8) also defines a Boundary

Layer (BL) around the SS. Its upper bound is equal to σ−U−,

while its lower bound is equal to σ − U+.

The SS has a variable structure that depends on z. It is

obtained by switching among several SSs according to the

following rule

σ :=







σ1 if σ1 < σ
σ if σ2 ≤ σ ≤ σ1

σ2 if σ < σ2

. (9)

The equations of σ1 and σ2 will soon be given, while σ is

composed itself by several SSs. More precisely, the (z1, z2)-
space, i.e., the space in which the first two components of the

state span, is partitioned into the macro-areas that are shown

in Fig. 2 and each of them is unambiguously identified by

means of three parameters χ = −1, 0, 1, η = ±1, and ξ = ±1.

Depending on the state location, the most appropriate SS is

chosen according to the following rules

σ :=















σ3 if χ = 0 & ξ = −1
σ4 if χ = 0 & ξ = 1
σ5 if χ = 1
σ6 if χ = −1

. (10)

Surface σ, that is obtained by composing σ3, σ4, σ5, and σ6,

is continuous and covers the whole (z1, z2)-space. All SSs are

defined in the following:

1) Surfaces σ1 and σ2 (in the following n = 1, 2)

σn := −
γn
mn

−
mn − 1

2
κn + z+3 , (11)
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where γn, κn, and mn are evaluated as follows

z−3 := S−

−r̈
T

, z+3 := S+
−r̈
T

, (12)

z+ := [z+2 z+3 ]
T :=

[(

R+
−ṙ

T 2 − r̈
2T

)

− r̈
T

]T

, (13)

z− := [z−2 z−3 ]
T :=

[(

R−

−ṙ
T 2 − r̈

2T

)

− r̈
T

]T

, (14)

ẑ+3 := z+3 − z+3 , ẑ−3 := z−3 − z−3 ,

ẑ+2 := −
⌈

−
ẑ
+

3

U−

⌉ [

ẑ+3 + U−

2

(⌈

−
ẑ
+

3

U−

⌉

− 1
)]

,

ẑ−2 := −
⌈

−
ẑ
−

3

U+

⌉ [

ẑ−3 + U+

2

(⌈

−
ẑ
−

3

U+

⌉

− 1
)]

,

d1 := z2 − z+2 , d2 := z2 − z−2 ,

γn :=







ẑ+2 if dn < ẑ+2
dn if ẑ+2 ≤ dn ≤ ẑ−2
ẑ−2 if dn > ẑ−2

,

κn :=

{

U− if γn ≤ 0
U+ if γn > 0

,

mn :=

⌊

1
2 +

√

1
4 + 2

∣

∣

∣

γn

κn

∣

∣

∣

⌋

.

and where ⌈·⌉ and ⌊·⌋ respectively return the ceil and the floor

of their arguments.

2) Surface σ3

σ3 := − 2
h(h+τ)z1 −

2h+τ−1
h(h+τ) z2 −

τ(1−τ2)
6h(h+τ)α

− 2h3
−3h2+h+3h2τ−3hτ

6h(h+τ) β , (15)

where

[α β] :=

{

[U− U+] if η = 1
[U+ U−] if η = −1

, (16)

while h, τ ∈ N
+ and η = ±1 are parameters that depend on z1

and z2. The role and the meaning of such parameters will be

discussed in Section III. The procedure that is used to devise

σ3 is proposed in the same section.

3) Surface σ4

σ4 :=
n1 α+ n2 β + n3 z1 + n4 z2

6 d1
, (17)

where

n1 := 6
[

j2 + τ̂(τ̂ − 1) + (2τ̂ − 1)j
]

ρ̂2

+2τ̂ ρ̂
[

6j2 + 9j(τ̂ − 1) + 2τ̂2 + 1− 9τ̂
]

+6
[

j2 + (τ̂ − 2)j
]

τ̂2 + τ̂4 − 6τ̂3 + 5τ̂2 ,

n2 := 6h(1− h)(jρ̂+ ρ̂τ̂ + jτ̂)− 2ρ̂h(2− 3h+ h2)

−hτ̂(7− 9h+ 2h2) + 3τ̂2h(1− h) ,

n3 := −12(τ̂ + ρ̂) ,

n4 := −12(h+ j)(τ̂ + ρ̂) + 12ρ̂(1− τ̂) + 6τ̂(3− τ̂) ,

d1 := h [τ̂(τ̂ − 2 + h+ 2j) + ρ̂(2j − 1 + h+ 2τ̂)] ,

and where α and β are defined according to (16), while τ̂ and

ρ̂ are evaluated by means of the following expressions

z∗ :=

{

z+3 if η = 1
z−3 if η = −1

, (18)

τ̂ :=
⌊

− z∗

α

⌋

, (19)

ρ̂ := − z∗

α
− τ̂ . (20)

4

8

12

0
-2

2
4

6

0

6

-6

0

-10

10

20

0 2 4 6 8
t (s)

x
 (

m
)

x
 (

m
 s

-1
)

.

x
 (

m
 s

-2
)

..
u
 (

m
 s

-3
)

r

R
+

R
-

S
+

S
-

U
+

U
-

Fig. 3. Comparison between transients that are achived by using σ3 (solid
lines), σ3, σ5, and σ6 (dashed lines), σ3, σ4, σ5, and σ6 (dotted lines), all
the SSs (dash-dotted lines).

Parameters h, j ∈ N
+, and η = ±1 only depend on z1 and

z2. Their role and meaning will be discussed in §IV, together

with the method that is used to devise σ4. It is worth to point

out that, because of (18)–(20), ρ̂ ∈ [0, 1), while τ̂ ∈ N
+.

4) Surfaces σ5 and σ6

σ5 := z+3 , (21)

σ6 := z−3 . (22)

Let us explain the role of each SS by means of the simple rest-

to-rest transient that is shown in Fig. 3. The following limits

have been assumed: U− = −10 m s−3, U+ = 20 m s−3,

S− = −3.9 m s−2, S+ = 1.9 m s−2, R− = −0.95 m s−1,

and R+ = 1.4 m s−1. Surface σ3 drives the system, in

minimum time, compatibly with the jerk constraint, toward

the origin. It does not account for the velocity and the

acceleration limits, so that such bounds could be violated, as

shown by the solid curves in Fig. 3. The fulfillment of the

acceleration constraint can potentially be achieved by using

σ5 and σ6 in any area of the (z1, z2)-space in which σ3 is

unfeasible. Indeed, z+3 and z−3 , that are defined according to

(12), represent the equivalent bounds, in the z-space, of S+

and S−. The dashed transients in Fig. 3 highlight that this

solution, that is similar to the one that was used in [28], has

a drawback: An overshoot can appear. The filter will be used

to generate reference signals for industrial machines, so that

such overshoot is clearly undesired. Moreover, the transient

is not minimum-time. Surface σ4, when used in conjunction

with σ3, as shown by the dotted lines in Fig. 3, eliminates

both issues. The last two surfaces, i.e., σ1 and σ2, are used

to guarantee the fulfillment of the velocity limits: The dash-

dotted lines in Fig. 3 correspond to the system response that

is obtained when all the surfaces are simultaneously used.

The role and the convergence properties of all the surfaces

will be deeper analyzed in the next sections.
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III. DESIGN AND CONVERGENCE PROPERTIES OF σ3

Surface σ3 is designed to drive the system state toward the

origin in minimum time by fulfilling, at the same time, the jerk

constraint. Differently from the SS that was proposed in [27],

it is able to handle asymmetric jerk bounds. Let us consider

a command law that only uses σ3, i.e., let us control (6) by

means of (8), (15), (16), and by assuming

σ = σ3 . (23)

Equations (15) and (16) determine the shape of σ3, while (8)

wraps the SS within an appropriate BL.

The optimality of the transients from any generic state z can

be exploited with the aid of Fig. 4, that schematically shows

two typical trajectories toward the origin. If the initial state is

located below σ3 (see Transient 1 in Fig. 4), the control law

returns u = U+, so that the z3 component of z, owing to (6)

and (7), increases: σ3 covers the whole (z1, z2)-space, so that

the BL is certainly reached in minimum time. Once the state

is inside the BL, command signal becomes, as it will soon

be shown, u = U− and the state reaches curve ςτ,η(ρ) where

a new switch occurs. The origin is finally approached with

u = U+. According to the Pontryagin’s maximum principle,

the transient is minimum-time, since u is bang-bang and two

switches have occurred. Similar transients are obtained for

initial states located above σ3 (see Transient 2 in Fig. 4).

Let us describe the design of σ3 and prove the optimality

of the transients from any generic state z within the BL to

the origin. First of all, it is possible to prove that all points

ph,τ,η , from which the origin can be reached in minimum time

by means of a bang-bang command signal and with a single

switch, have equation

ph,τ,η =












−
[

τ(τ−1)(τ−2)
6 + hτ(h+τ−2)

2

]

α− h(h−1)(h−2)
6 β

[

τ(τ−1)
2 + h τ

]

α+ h(h−1)
2 β

−τ α− hβ













(24)

where α and β, according to (16), depend on η. To this

purpose, a first set of points, indicated in the following by

pτ,η , has been individuated by integrating backward system

(6) from the origin. Two situations have been considered, each

of them is denoted by a different value of η: If η = 1, then the

system is driven with command signal u = U−, while u = U+

z
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Fig. 5. Projection of σ3 on the (z1, z2)-plane. Curve ςτ,η(ρ) separates the
two zones that admit different values of η.

if η = −1. By means of this procedure, the following points

have been obtained

pτ,η =
[

−
τ

6

(

τ2 − 3τ + 2
)

α
τ

2
(τ − 1)α − τ α

]T

,

where α depends on η because of (16), while τ ∈ N
+

indicates the number of back integrations that have occurred.

Evidently, from any point pτ,η , the origin can be reached

in minimum time with τ steps by applying the maximum

admissible command signal, i.e., u = U− if η = 1 or u = U+

if η = −1.

From any point pτ,η a new stage of backward integrations

returns points ph,τ,η as defined by (24). They are obtained by

switching the command signal, so that from points pτ,−1 com-

mand signal u = U− is assumed while, viceversa, u = U+

from points pτ,1. Evidently, bearing in mind the definitions

of α and β given by (16), from any point ph,τ,η the origin

is reached, by construction, by first applying command signal

u = β, for h ∈ N
+ steps and, then, by assuming u = α

for τ ∈ N
+ steps. The control is clearly bang-bang, a single

switch occurs, so that it is possible to assert that the transient

toward the origin is, according to the Pontryagin’s maximum

principle, minimum-time.

Points ph,τ,η , as shown in Fig. 5, completely cover the

(z1, z2)-space, that is partitioned into two sectors depending

on η. The borderline between the two sectors is given by curve

ςτ,η(ρ). The vertexes of σ3 are obtained by adding vector

[0 0 β]T to points ph,τ,η . σ3 is a composite SS that is made of

flat quadrangles and that, evidently, covers the whole (z1, z2)-
plane. Each quadrangle is indexed by h, τ, η. Given any point

in the (z1, z2)-plane, the corresponding value of σ3 is found by

first individuating the quadrangle h, τ, η in which it is located

– to this purpose, techniques similar to those proposed in [35]

can be adopted – and, then, by using (15) and (16).

Equations (8), (15), (16), and (23) associate to each point

ph,τ,η a planar sliding surface σ3 and its BL. In particular, as

shown in Fig. 6, a box Bh,τ,η , which upper/lower surfaces are

given by the borders of the BL, is associated to each point
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ph,τ,η . Bh,τ,η can be formally defined as follows

Bh,τ,η := {z : z = ph,τ,η + λ ēh,τ,η + µ ẽh,τ,η + ν êh,τ,η;

λ, µ, ν ∈ [0, 1)} (25)

where ph,τ,η is given by (24), while vectors ēh,τ,η, ẽh,τ,η , and

êh,τ,η are defined as follows

ēh,τ,η :=

α
[

− 1
2 [τ(τ − 1) + h(h− 1) + 2hτ ] h+ τ − 1

]T
, (26)

ẽh,τ,η := (α− β)
[

1
2 h(h− 1) − h 1

]T
, (27)

êh,τ,η := [0 0 β − α]
T
. (28)

The vectors placement is shown in Fig. 6 for η = 1. Practically,

vectors (26)–(28) represent a non-orthogonal reference frame

that can be used to describe any point z ∈ Bh,τ,η . More

precisely, any point z ∈ Bh,τ,η can be alternatively represented

by means of a vector of six elements z̄ := [h τ η λ µ ν]T :

The first three coordinates individuate the box, the last three

define the position inside the box. In this representation, the

origin assumes coordinates z̄ := [1 1 η 0 −α
β−α

β
β−α

]T .

Bearing in mind these premises, it is possible to prove the

optimality of the transients from any point that is located inside

the BL. In particular, from any initial state z0 ∈ Bh,τ,η or,

equivalently, from z̄0 = [h τ η λ µ ν]T , with h, τ ∈ N
+,

the origin is certainly reached, if system (6) is controlled by

means of (8), (15), (16), and (23), according to the following

sequence of steps:

i z̄i ui+1

0 [h τ η λ µ ν]T να+ (1− ν)β
1 [(h− 1) τ η λ µ 0]T β
2 [(h− 2) τ η λ µ 0]T β
... β

h− 1 [1 τ η λ µ 0]T β
h [1 (τ − 1) η λ 0 (1− µ)]T µβ + (1− µ)α

h+ 1 [1 (τ − 2) η λ 0 1]T α
... α

h+ τ − 2 [1 1 η λ 0 1]T α

h+ τ − 1 [1 1 η 0 α(λ−1)
β−α

1]T α

h+ τ [1 1 η 0 −α
β−α

β−λα
β−α

]T λα

h+ τ + 1 [1 1 η 0 −α
β−α

β
β−α

]T

Evidently, h+τ+1 steps are required, i.e., only one more step

with respect to the optimal transient from ph,τ,η . According

to the Pontryagin’s maximum principle, a single switch occurs

and the command signal, apart from switching instants, is

always equal to β or to α, i.e., by virtue of (16), it is equal to

U+ or to U−. It is worth to point out that, at the switching

instants, the command signal cannot be exactly equal to β or α
because the switching times of discrete-time systems are fixed

and cannot be freely selected. If the initial state is equal to

ph,τ,η , i.e., z̄0 = [h τ η 0 0 0]T , the sequence converges to the

origin in h+ τ steps and u is, as desired, exactly bang-bang.

IV. DESIGN AND CONVERGENCE PROPERTIES OF σ4

Surface σ3 manages neither the velocity nor the acceler-

ation constraints that, consequently, could be violated. The

p
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Fig. 6. Single-step evolution starting from box Bh,τ,1.
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Point ςτ̂ ,1(ρ̂) is reached in 5 steps, then the origin is gained by means of σ3.
The same number of steps is required for the second transient. Upper bound

z+3 is never violated.

acceleration constraint could potentially be satisfied by simply

bounding the third component of z within interval [z+3 , z
−

3 ].
It was early anticipated that this result can be achieved

by adopting σ3 only in the areas of the (z1, z2)-space in

which it is feasible, and by using σ5 and σ6 in the other

zones. As shown in Section II, this rough approach can cause

overshoots and suboptimal transients. For this reason, in any

zone of the (z1, z2)-plane in which σ3 would lead to unfeasible

accelerations, an alternative surface σ4 is used.

Surface σ4, similarly to σ3, has been planned by first

individuating a set of points qh,j,η from which the origin

can be reached in minimum time by means of a trajectory

that fulfills both the jerk and the acceleration constraints. The

positions of such points are given by (29). The Pontryagin’s

maximum principle suggests that, because of the additional

constraint, optimal transients must be bang-zero-bang. Fig. 7,

which shows a situation in which η = 1, can be used to explain

the synthesis of σ4. By integrating backward from the origin

system (6), with u = U−, a monotonically increasing curve

is obtained. An indefinite execution of the back integration

process would clearly lead to the violation of upper bound

z+3 . In order preserve feasibility, in proximity of z+3 the

command signal is switched to u = 0, and a set of points

rj,1 is obtained. They are characterized by a third component

equal to z+3 , i.e., they are all strictly feasible with respect to

the acceleration bound. Points qh,j,1 are finally obtained by

means of a new stage of back integrations from rj,1, which
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qh,j,η =













α

{

− τ̂3

6
−

(h+j+ρ̂−2)τ̂2

2
+

[6(h+j)(2−ρ̂)−3(h+j)2+9ρ̂−11]τ̂
6

+
[(3−2h)j−j2−(h−1)(h−2)]ρ̂

2

}

− βh
6
(h− 1)(h− 2)

α
[

1
2
τ̂(τ̂ − 3) + (j + τ̂ + h− 1)ρ̂+ τ̂(h+ j)

]

+ 1
2
βh(h− 1)

−α(τ̂ + ρ̂)− βh













, (29)

is made by assuming u = U+. An analogous sequence of

backward integrations is used for η = −1 in order to devise

points qh,j,−1, but in this second case the command sequence

becomes u = U+ ⇒ u = 0 ⇒ u = U−.

Fig. 7 also shows a typical approach to the origin from q4,2,1

(h = 4, j = 2, η = 1). If system (6) is driven with u = U+,

point r2,1 is reached after h steps (in the example h = 4).

The transient is clearly minimum-time because the maximum

available jerk has been used. As previously mentioned, points

rj,1 are characterized, by construction, by a third component,

equal to z+3 , i.e., equal to the maximum allowable acceleration.

Evidently, all points along curve ς
′

j,1, which passes through

points rj,1, possess the same property. In r2,1, command

signal switches to u = 0 in order to avoid the violation

of the acceleration bound, and the state slides along ς
′

j,1

toward ςτ̂ ,1(ρ̂) that is reached with further j − 1 steps (in the

example j = 2, thus a single step is required). The transient is

again minimum-time, since u = 0 is the maximum allowable

command signal which guarantees the feasibility.

From ςτ̂ ,1(ρ̂), the origin is finally gained in τ̂+2 steps (τ̂+1
if ρ̂ = 0) with u = U−. It is possible to prove that this final

transient exactly coincides with the final transient that can be

obtained by means of σ3, so that the actual implementation of

the control law uses σ3 for the final convergence to the origin.

In conclusion, from any point qh,j,η , the origin is reached after

h+ j + τ̂ +1 steps (h+ j + τ̂ if ρ̂ = 0) by means of a bang-

zero-bang command signal and by fulfilling the acceleration

constraint. The transient is clearly time-optimal.

Vertexes of surface σ4 are obtained by adding [0 0 β]T to

points qh,j,η . By construction, for η = 1, σ4 monotonically

decreases in function of h and, moreover, σ4 ≤ z+3 , i.e., it

is feasible with respect to the upper acceleration constraint.

On the contrary, for η = −1, σ4 monotonically increases in

function of h and σ4 ≥ z−3 .

By assuming a command law given by (8), (16), (17), and

σ = σ4 , (30)

a BL is created around σ4. In the following it is shown that, by

means of such control law, the origin is reached in minimum

time from any generic state z that is located inside the BL.

Similarly to σ3, surface σ4 attracts the system state with a

command signal that is equal to U+ or U−, i.e., in minimum

time. The transient toward the origin starts after the BL of σ4

has been reached. Let us prove its optimality and feasibility.

Command law (8), (16), (17), and (30) associates, to each point

qh,j,η , a box Wh,j,η which upper and lower surfaces coincide

with the BL limits and that is formally defined as follows

Wh,j,η :=
{

z : z = qh,j,η + λē′h,j,η + µẽ′h,j,η + νê′h,j,η;

λ, µ, ν ∈ [0, 1)} (31)

where

ē′h,j,η :=








(−h− τ̂ − j + 1)ρ̂− τ̂( 12 τ̂ + h+ j − 3
2 )

τ̂ + ρ̂

0









α, (32)

ẽ′h,j,η :=
[

− 1
2 h (h− 1)β hβ − β

]T
, (33)

ê′h,j,η := [0 0 β − α]
T
. (34)

Bearing in mind (29)–(34), any point z ∈ Wh,j,η can be

alternative represented as ẑ := [h j η λ µ ν]T .

The optimality of the transients that are obtained by means

of σ4 is proved by verifying that, from any state z ∈ Wh,j,η ,

the origin is reached in h+j+τ̂+1 steps, i.e., the same number

of steps that are required from qh,j,η with the minimum-

time control, and that u is bang-zero-bang. In particular, by

adopting command law (8), (16), (17), and (30), system (6)

evolves, from any initial state z0 ∈ Wh,j,η , with h, j ∈ N
+

or, equivalently, from ẑ0 = [h j η λ µ ν]T , as follows:

i ẑi ui+1

0 [h j η λ µ ν]T να+ (1− ν)β
1 [(h− 1) j η λ µ 0]T β
2 [(h− 2) j η λ µ 0]T β
... β

h− 1 [1 j η λ µ 0]T β

h [1 (j − 1) η λ 0 (1−µ)β
β−α

]T µβ

h+ 1 [1 (j − 2) η λ 0 β
β−α

]T 0
... 0

h+ j − 2 [1 1 η λ 0 β
β−α

]T

The transient is also shown by the dash-dotted line of Fig. 7,

for η = 1. Practically, with a single step the state is projected

on the lower surface of the BL. At step h− 1, z reaches box

W1,j,η , then, with a single step, it moves on the lateral surface

S ′

j−1,η of W1,j−1,η . It is possible to verify that points lying

on ς
′

j,η have equation [1 j η λ 0 β
β−α

]T , so that zh is clearly

located below ς
′

j−1,η when η = 1 (or above ς
′

j−1,η if η = −1),

while the subsequent state, i.e., zh+1, exactly lies on ς
′

j−2,η .

Box W1,1,η is reached, after h+ j − 2 steps with u = 0 and

with an acceleration that is equal to z∗, i.e., to z+3 or to z−3
depending on η: The whole transient is feasible with respect

to the acceleration constraint.

The subsequent step is the most critical. It was early

anticipated that the final transient toward the origin is achieved

by means of σ3: The state, with a single transient, enters in

the area that is handled by such SS. As shown in Fig. 8,

two alternative situations can arise depending on ρ̂, both

characterized by u = 0:
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and σ3 (η = 1). Starting from W1,1,1 the state always reaches, with a single
step, B1,τ̂ ,1 (dashed line) or B1,τ̂−1,1 (dash-dotted line).

a) ρ̂ ≥ [(1− λ)(τ̂ − 1)]/[τ̂ + 2λ− 1]. The state evolves to

z̄h+j−1 = [1 τ̂ η a1 a2 a3]
T where a1 = [(λ − 1)(τ̂ − 1) +

ρ̂(τ̂ +2λ− 1)]/(τ̂ +1), a2 = [(1− ρ̂)(λ− 1)α]/(β −α), and

a3 = {β(τ̂+1)+α[τ̂(λ−1)(2−ρ̂)+ρ̂(λ−1)]}/[(τ̂+1)(β−α)].
It is easy to verify that coefficients a1, a2, a3 ∈ [0, 1), so that

zh+j−1 ∈ B1,τ̂ ,η;

b) ρ̂ < [(1− λ)(τ̂ − 1)]/[τ̂ + 2λ− 1]. The state evolves to

z̄h+j−1 = [1 (τ̂ − 1) η a1 a2 a3]
T where a1 = [ρ̂(τ̂ − 1) +

λ(τ̂ +2ρ̂−1)]/(τ̂ −1), a2 = −[αλρ̂(τ̂ +1)]/[(τ̂ −1)(β−α)],
and a3 = [β−α(1−λ+λρ̂)]/(β−α). Coefficients a1, a2, a3 ∈
[0, 1), so that zh+j−1 ∈ B1,τ̂−1,η .

Once inside B1,τ̂ ,η , the origin is reached with σ3 according

to the following steps (one less step is required from B1,τ̂−1,η):

i z̄i ui+1

h+ j − 1 [1 τ̂ η a1 a2 a3]
T a3α+ (1− a3)β

h+ j [1 (τ̂ − 1) η a1 0 (1− a2)]
T a2β + (1− a2)α

h+ j + 1 [1 (τ̂ − 2) η a1 0 1]T α
... α

h+ j + τ̂ − 2 [1 1 η a1 0 1]T α

h+ j + τ̂ − 1 [1 1 η 0 α(a1−1)
β−α

1]T α

h+ j + τ̂ [1 1 η 0 −α
β−α

β−a1α
β−α

]T a1α

h+ j + τ̂ + 1 [1 1 η 0 −α
β−α

β
β−α

]T

Thus, starting from any state z0 ∈ Wj,h,η , the origin is

reached, in the worst case, in h+j+ τ̂+1 steps, i.e., the same

number of steps of the transients that are required from qj,h,η .

The transient optimality is also proved by the bang-zero-bang

behavior of the command signal, that admits u = 0 only when

the acceleration is equal to the maximum admissible value.

V. CONVERGENCE PROPERTIES OF σ1 AND σ2

Surfaces σ1 and σ2 are used to fulfill the velocity limits. To

this aim, they force z inside the quadrangle that is shown in

Fig. 9 and that has been obtained by converting the feasible

domain of the (ẋ, ẍ)-space – that is represented by a rectangle

that is bounded by the following four straight lines: ẍ = S+,

ẍ = S−, ẋ = R+, and ẋ = R− – into an equivalent feasible

domain in the (z2, z3)-space.

Surfaces σ1 and σ2 are derived from an analogous surface

that was originally proposed in [36]. This is possible because
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Fig. 9. System trajectories in the (z2, z3)-space obtained by assuming: a)
σ = σ1 and b) σ = σ2. SSs σ1 and σ2 are indicated by means of dashed lines
and are surrounded by their BLs (dash dotted lines). The dotted quadrangle

contours the feasible area. z+3 and z−3 are defined according to (12).

the evolution of system (6) in the (z2, z3)-space does not

depend on the z1 component of the state and it is given by
[

z2,i+1

z3,i+1

]

=

[

1 1
0 1

] [

z2,i
z3,i

]

+

[

1
1

]

ui ,

i.e., system equations coincide with those that were considered

in [36], but the role of the pair z1 and z2 is now played by

z2 and z3. Thus, by adopting the same command law that

was proposed in [36], the same convergence properties are

obtained. However, minor changes have been introduced in

σ1 and σ2 in order to modify the convergence points: σ1

guarantees the convergence toward z+, while σ2 guarantees

the convergence toward z−. Due to the lack of space, the

convergence properties of σ1 and σ2 are here not analyzed,

but they can be studied with the same methods that were

considered in [36]. Conversely, it is interesting to analyze the

state transients that are obtained when they are used. Fig. 9

shows the two SSs together with the corresponding BLs, the

feasible area, and some system trajectories. All trajectories

enter, independently from the selected SS, inside the feasible

area. This result is achieved in minimum time because outside

the BLs the command signal always assumes its maximum

value, i.e., u = U+ or u = U−. Inside the BL, the state slides

toward z+ or z−, that are respectively defined by (13) and

(14): Such two points are the projections, in the (z2, z3)-space,

of the homologous points (R+, 0) and (R−, 0) of the (ẋ, ẍ)-
space, i.e., of the two state configurations in which the system

assumes the maximum feasible speed with zero acceleration.

The role of such two points can be understood by analyzing

a generic transient from a totally unfeasible state. According

to Problem 1, feasibility must be achieved before any transient

toward the origin could start. The jerk constraint is fulfilled

with a single step due to (8), then the state is driven toward σ
by applying the maximum command signal: Since σ1, σ2, and

σ are all feasible with respect to the acceleration constraint,

such constraint is fulfilled in minimum time independently
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Fig. 10. Comparison between the outputs of the novel filter (solid lines)
and those of the filter proposed in [28] (dash-dotted lines): Reference signal
(dashed lines) is reached in minimum-time and by fulfilling the imposed
bounds (dotted lines). Circles highlight the configurations for which the new
filter returns shorter transients.

from the choice that is made in (9). Subsequently, if σ should

drive the system to violate the velocity bounds, σ1 or σ2 are

used to “park” the state, in minimum time, in z− or z+, i.e., in

the two points corresponding to states (R−, 0) and (R+, 0) of

the (ẋ, ẍ)-space: It is possible to demonstrate that, in those two

points, the state moves at the maximum velocity, i.e., ẋ = R+

or ẋ = R−, toward σ, to finally converge to the origin in

minimum time with a feasible trajectory. The demonstration is

similar to that proposed in [28] and is omitted for conciseness.

VI. A TEST CASE

In the first test case here proposed, the performances of

the new filter are compared with those an analogous filter

devised in [28]. As claimed in the Introduction, the new filter

eliminates a suboptimal behavior that was affecting the version

proposed in [28]: Depending on the reference signal and on

the bounds, transients of [28] could be non-minimum-time

and undesired overshoots could appear. The circles of Fig. 10

show two cases in which the new filter returns better solutions.

Improvements are especially evident for the second of the two

transients, which has been shortened by 0.3 s and its hanging

overshoot has been eliminated. It is interesting to note that the

transient toward the parabolic reference admits an overshoot in

both approaches. This implies that the solution found in [28]

was already minimum-time compatibly with the constraints:

The overshoot can only be eliminated by loosening the bounds.

The second example tests the filter performances in case

of asymmetric constraints, by using an input signal that is

appositely devised in order to highlight the system capabilities.

The test has been executed on a real-time system, based

on RTAI [37]. As shown in Fig. 11, the reference signal is

discontinuous and it is given by a combination of steps, ramps
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Fig. 11. Results of the second test case. The reference signal (dashed line)
is tracked at the best by the filter output (solid lines). Given constraints are
always satisfied (dotted lines).

and parabolas. Assigned constraints are online changed. The

filter, as expected, mimics the input signal by means of an

output that fulfills the given velocity, acceleration, and jerk

constraints. The reference signal is always reached without

overshoot even when, at times t = 7.2 s and t = 12.5 s, the

bounds are changed in the middle of a transient. Transients

are always minimum time compatibly with the constraints.

The jerk has a bang-zero-bang behavior and the chattering

phenomenon is totally avoided. The filter has been executed

with a sampling time T = 1e-3 s. An average evaluation time

of 5.24e-6 s has been measured on a PC equipped with an Intel

Core2 Duo processor @3GHz: Even considering less efficient

processors, the computational burden would still be compatible

with the sampling times of many industrial applications.

VII. CONCLUSIONS

The proposed filter is able to generate smooth reference

signals starting from piecewise continuous inputs. Candidate

applications of the novel system coincide with those that were

proposed in [18]–[23]: With a moderate increment of the

computational burden, the smoothness of the reference signals

can be significantly improved.

Among the other properties of the algorithm, it is worth to

mention its compactness and efficiency, which permit imple-

mentations based on commercial control-boards.
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