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Abstract—Reference signals, that are used to drive feedback
control loops, are often evaluated on-the-fly on the basis of
the operating conditions. As a consequence, they can be too
demanding for the actuation system which outputs could saturate,
thus worsening the tracking performances of the feedback
loop. Improved answers can be obtained by smoothing rough
references by means of proper filters that are also able to impose
bounds on the signal dynamics. The paper proposes a filtering
system which output mimics at best any given input signal
compatibly with some smoothness requirements. In particular,
generated signals are continuous up to the second time derivative
and their first three time derivatives are constrained between
assigned bounds that can be asymmetric and that can also be
changed on-the-fly. The filter, that is internally characterized by
minimum time transients, is able to follow, with zero tracking
error, piecewise-continuous signals given by combinations of
steps, ramps, and parabolas.

Index Terms—Dicrete time filters, jerk constraints, minimum
time, signal generators, variable structure systems.

I. INTRODUCTION

The smoothness of the reference signals has a strong impact
on the behavior of the control systems. It is well known,
indeed, that system performances generally improve when
smooth signals are used. For this reason, reference signals
that admit bounded first, second and third time derivatives are
commonly adopted in industrial applications.

Preliminary works addressed the reference generation prob-
lem by means of offline strategies. For example, minimum-
time trajectories, that satisfy the above mentioned constraints,
were planned in [1], by means of a polyhedron search strategy.
A similar problem was studied in [2], by also considering
constraints on the actuator torques. The solution was found
by adopting a sensitivity approach.

Offline strategies return solutions that are tailored for partic-
ular configurations and applications. Conversely, in industrial
contexts, rapidly mutating scenarios, that require continuously
changing strategies, must be often considered. The online gen-
eration of minimum time trajectories, subject to constraints on
velocities, accelerations, and jerks, was first addressed in [3].
The problem was solved by means of a direct planning strategy
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based on the use of a near time-optimal solver. An alternative
online method, based on the discretization of the minimum-
time problem, has been proposed in [4]. In the same paper,
a comparison with two sequential quadratic programming
approaches is carried out. It shows that, with direct planning
methods and with the current technology, optimal trajectories
can be generated in milliseconds. If shorter evaluation times
are required because of the sampling time of the governed
system, alternative solutions must be investigated. Most of
them consider rest-to-rest transients and static constraints.
This is the case, for example, of the closed form solution
that was proposed in [5]-[7], in which asymmetric S-curves
were adopted in order to reduce the vibrations that occur
during arrest transients. Time optimality was not specifically
addressed. A totally different approach was considered in [8],
where constrained minimum-time trajectories were generated
by means of FIR filters. The Neuro-Fuzzy approach in [9]
overcomes some of the limitations that characterize previous
methods: The trajectory can start from generic initial condi-
tions and the constraints are not static.

The study has been enlarged in [10], [11] by considering
multidimensional motions. Minimum-time online trajectories
were generated for step reference signals by considering
constraints on velocities, accelerations and jerks. In [12] still
considering the same constraints, variable reference signals
were accounted for. The approaches proposed in [10]-[12]
have a common characteristic: The problem is deeply inves-
tigated offline, so that online evaluations are performed in
microseconds. The sole drawback of these approaches is repre-
sented by the complexity of the planning algorithm, that can
be reduced, still with computational times of microseconds,
by adopting indirect planning methods, i.e., by generating
trajectories through proper feedback systems. Early works on
this topic appeared in [13]-[15] and in [16], [17] respectively
for continuous and discrete-time frameworks. Given solutions
were based on second order filters that were able to impose
bounds on the velocity and on the acceleration signals. Such
kind of planning strategies have been widely employed in
actual real-time applications [18]-[23] because, if compared
with previously cited direct planning methods, they are char-
acterized by several advantages: Trajectories are not limited
to rest-to-rest movements but, conversely, generic initial and
final conditions can be handled, constraints can be changed
in real-time, and, finally, the code that is required for their
implementation is extremely compact and efficient, so that it
can be executed with industrial microcontroller boards.
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In a continuous-time context, the first proposal of a jerk-
limited feedback planner was made in [24] with a scheme
that was able to generate trajectories characterized by bounded
velocities, accelerations and jerks. The planner did not handle
generic interpolating conditions but, conversely, it was only
able to drive the system toward the rest status.

The first third-order continuous-time solution, that was able
to manage generic interpolating conditions, was proposed
in [25]. Its discrete-time implementation was affected by jerk
chattering and transient overshoots (see [26]). The dicrete-
time scheme, that was later proposed in [27] in order to
deal with these problems, was only able to account for the
jerk bounds. Such solution has been improved in [28] with a
strategy that simultaneously handles velocity, acceleration and
jerk limits: The jerk chattering problem was eliminated but, for
particular interpolating conditions, the overshoot issue, caused
by suboptimal transients, is still present.

The nonlinear variable-structure filter proposed in this paper
solves the following challenging problem: Given a piecewise
continuous input signal, it generates a smooth output reference
that represents its best possible approximation compatibly with
some assigned bounds on velocities, accelerations and jerks.
The admissible bounds can be asymmetric and can be changed
online. The bounds asymmetry is a novelty with respect to
any other solution proposed in the literature and it is essential
in order to handle applications like those described, e.g., in
[29]. Furthermore, the new filter always guarantees minimum-
time transients and eliminates the overshoot problem that was
affecting the analogous filter proposed in [28].

The characteristics of the new filter can be summarized as
follows: Generic initial and final conditions can be assumed
on position, velocity, and acceleration; the output signal is
continuous up to the second time derivative; the output tra-
jectory fulfills any given asymmetric constraint on velocity,
acceleration and jerk; constraints can be freely changed, also
during transients; transients are always minimum-time; the
reference input signal is reached without overshoot compatibly
with the given constraints; the jerk signal is not affected by
the chattering phenomenon. The filter is stabilized by means
of an Algebraic Variable Structure Controller (AVSC) based
on sliding mode techniques. As known, such kind of control
techniques are very often used in industrial contexts [30]—[33]
because of their robustness and because of the compactness
of the code that is required for their implementation.

The paper is organized as follows. In §II the problem is
formulated and the novel third-order discrete-time filter is
proposed. Convergence properties of the filter are analyzed
in §III, in §IV, and in §V. The performances of the new filter
are compared in §VI with those of the filter proposed in [28].
In the same section a new test case is discussed, while §VII
reports some final conclusions.

II. THE OPTIMAL TRAJECTORY SCALING PROBLEM AND
THE DISCRETE-TIME FILTER

Let us consider the following definition
Definition 1: A function

f:[O,tf] — R
t = fa:=f(1)

is feasible, and we write f € F, if it is continuous together
with its first and second time derivatives and if it fulfills the
following constraints

R™ < f(t) <R*,  Vtelo,t],
S™<f@)y<st,  vtelo ],
U-<fty<ut, vteloty]

where R7,S~, U~ € R~ and R™,S*,U" € R* are freely
assignable bounds.

The nonlinear discrete-time filter proposed in this paper
solves the following problem:

Problem 1: Given a piecewise reference signal r(¢) made of
steps, ramps or parabolas, evaluate an optimal output signal
z(t), which is continuous together with its first and second
time derivatives, by solving one of the following optimality
problems, selected on the basis of the feasibility of z(0) and
r(t):

a) z(0) ¢ F

I’n(ltl)l ty subject to z(ty) € F.

t; evidently indicates the instant in which z(t)
becomes feasible.
b) r(t) ¢ F and z(0) € F

mir)l /|r(7) — z(7)| d7 subject to x(t) € F.
z(t

c) r(t) € F and z(0) € F
(ir)l ty subject to r(ty) — z(ty) =
x(t
J?(t) eF, Vte [O,tf].

ts is evidently the instant in which z(¢) hangs r(¢).
The tracking condition must be obtained, compatibly
with the given bounds, without overshoot.

0 and to

Roughly speaking, if x(0) ¢ F, then feasibility must be
gained in minimum time, otherwise two different situations
could occur: If r(t) ¢ F, then x(t) must be its best feasible
approximation, while, r(¢) must be hanged in minimum time
if r(t) € F. Evidently, feasibility represents the prior target
of the system. The bounds could be time-varying and can
also be changed during transients. Analogously, r(¢) could be
modified at any time, so that the solution of Problem 1 must
be evaluated at each sample time. Since control systems are
mainly governed by means of digital controllers, a discrete
time solution of Problem 1 is proposed. In the following,
subscript ¢ € N indicates sampled variables that are acquired
at time ¢ = ¢7', where T is the system sampling time.

The problem is clearly similar to the one that was considered
in [28], but, as a novelty, asymmetric jerk constraints are han-
dled. Moreover, in [28], under particular operating conditions,
some transients toward r were suboptimal and characterized
by overshoot issues: The new solution totally eliminates both
problems. These improvements, that are essential to manage
problems like the one, e.g., that was proposed in [29], have
required a complete redefinition of the filter control laws.
Practically, while the structure of the discrete-time filter, that
is shown in Fig. 1, is the same that was proposed in [28], i.e.,
it is made of a chain of three integrators, the AVSC has been
completely rewritten in order to fulfill the new requirements.
The AVSC is based on sliding mode techniques [34], and
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Fig. 1.  The discrete-time system that solves Problem 1. The system is
composed by a dynamic chain based on three integrators and an algebraic
variable-structure controller.

uses a combination of appropriate Sliding Surfaces (SS) to
robustly stabilize the system and to solve Problem 1. The
system dynamics is only due to the integrators chain and can
be represented as follows

Xi+1:AXi+bUi, (1)
where x; := [z; @; #;]7 is the system state and
2 T3
1 7 L G
A=|(0 1 T , b= TT . 2)
0O 0 1 T

Reference signal r; is evaluated as follows
ri+1 = AI‘Z' s (3)

where r; := [r; 7; rl]T A step, a ramp, or a parabola can be
generated depending on the initial values that are chosen for
7; and #;. According to the hypothesis, 7; = 0.

In order to formulate the control law for the AVSC, let us
first consider the following change of coordinates y; := x;—7;,
Ui = X; — T4, Yi = T; — T4, that places the system origin on
the trajectory to be tracked. Due to (3), system (1) becomes

Yi+1 =Ayi+bu, (€]

where A and b coincide with (2), while y; := [y; 7; ]
A further change of coordinates y; = W z;, where

TS _TS LS

62
W=1]o0 12 -L |, ®)
0 0 T

is required to eliminate sampling time 7" from matrices A and
b. System (4) becomes

Ziv1 =Aqz; +bgu;, (6)
where z; := [21; 22, 23,]7 and
1 1 1 1
Ad — 0 1 1 R bd = 1 . (7)
00 1 1

Matrix W is non singular, so that inverse transformation z; =
W1y, exists with certainty.

The proposed controller is designed to force state z toward
the origin in minimum time by means of transients which
fulfill the given constraints on velocity, acceleration, and jerk.
If this result is achieved, then, y = W z = 0 and, in turn, z,
as desired, hangs reference 7.

The AVSC, that is used to control system (6), depends on
system state z and on the input reference signal, i.e., on r, 7", 7.
In particular, the following sliding mode control law has been

Fig. 2.  Partitions of the (zl,zg)—plane that are used to select the most
appropriate sliding surface. Curve §J’.71 is given by the intersection between
o4 and o5, while Cg/',—l is given by the intersection between o4 and oe.
Curve ¢r  represent the borderlines between the areas where n = 1 and
n=-—1

explicitly designed to solve Problem 1 (sampling time ¢ has
been omitted in the following for conciseness, so that, e.g.,
command signal u; is simply indicated as u)

—U-sat ﬁ;ﬁ if 23—0>0

u = 9 (8)

zZ3 — O .
_J7t+ _
UTsat i if 2z3—0<0

where o is a SS that depends on z; and 2o, while sat(-)
represents a function that saturates its argument to £1. Ev-
idently, due to (8), the jerk constraint is certainly satisfied
since w € [U~,U™"]. Equation (8) also defines a Boundary
Layer (BL) around the SS. Its upper bound is equal to 0 — U,
while its lower bound is equal to 0 — U™.

The SS has a variable structure that depends on z. It is
obtained by switching among several SSs according to the
following rule

o1 if o1<7@
c=<¢ 0 if o09<7c<07 . 9)
oo if T<og

The equations of o7 and o5 will soon be given, while & is
composed itself by several SSs. More precisely, the (21, 22)-
space, i.e., the space in which the first two components of the
state span, is partitioned into the macro-areas that are shown
in Fig. 2 and each of them is unambiguously identified by
means of three parameters y = —1,0,1, 7 = +1, and £ = £1.
Depending on the state location, the most appropriate SS is
chosen according to the following rules

o3 if Y=0&¢&=-1

_ ooy if x=0&é=1

T o if x=1 (10)
06 if X=—1

Surface @, that is obtained by composing o3, 04, 05, and g,
is continuous and covers the whole (z1, z2)-space. All SSs are
defined in the following:
1) Surfaces o1 and o2 (in the following n = 1,2)
Tn my — 1

Op 1= —— —

Kn +Z4
My, 2

Y
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where v,,, kn, and m,, are evaluated as follows

+ . St—§¢

23 1= 2, 25 1= (12)
7+ + 1T Rt i r
2= = (S - 5) — ] 03
= — 1T R- i r
z :=[z;, z3] = [( T;r_%) _%} (14
2 =2 75, 25 =25 — 75,
2+ N _
g me sy

My F4— 142
and where [-] and |- | respectively return the ceil and the floor
of their arguments.

2) Surface o3

L 2 2h+71—1 T(1—=72)
03 = T Rthtn) ?l — h(ﬁf) 22 7 Bhthrn @
2h3 —3h%+h+3h%r—3hT
- 6;(;;7) g, (15)
where v U*] " )
— B un=
[ B] := { Utuv-] ifp=-1 " (16)

while h,7 € NT and 7 = &1 are parameters that depend on z;
and 2. The role and the meaning of such parameters will be
discussed in Section III. The procedure that is used to devise
o3 is proposed in the same section.

3) Surface o4

nya+ns B+n3 z+ng 2o

Oy 1= 6 dr , 17
where
mo= 677 - 1)+ (27 —1)5] 57
+27p [65° + 95(F — 1) +27° + 1 — 97]
+6 [ + (7 — 2)j] 72 + #* — 677 + 577,
ny = 6h(1—h)(jp+ p7 +j%) — 2ph(2 — 3h + h?)

—h# (7 — 9h + 2h?) + 372h(1 — h) ,
ny = —12(7+p),
—12(h + j)(7 4 p) + 12p(1 — 7) + 67(3 — 7) ,
h(7(T —24+h+2j)+p(2j —1+h+27)],

ng =
d1 =

and where « and (3 are defined according to (16), while 7 and
p are evaluated by means of the following expressions

+ .
.| oz ifn=1
z '_{ zg fp=-1" (18)
Fi= |- (19)
pi=—i — % (20)

Fig. 3. Comparison between transients that are achived by using o3 (solid
lines), o3, o5, and o (dashed lines), o3, 04, 05, and og (dotted lines), all
the SSs (dash-dotted lines).

Parameters h,j € N, and = £1 only depend on z; and
z5. Their role and meaning will be discussed in §IV, together
with the method that is used to devise oy4. It is worth to point
out that, because of (18)—(20), p € [0, 1), while 7 € N*.

4) Surfaces o5 and og

21
(22)

Let us explain the role of each SS by means of the simple rest-
to-rest transient that is shown in Fig. 3. The following limits

have been assumed: U~ = —10 m s~3, Ut = 20 m s~ 2,
S~ =-39ms 2 St=19ms 2 R = —-095m s !,
and R* = 1.4 m s~ !. Surface o3 drives the system, in

minimum time, compatibly with the jerk constraint, toward
the origin. It does not account for the velocity and the
acceleration limits, so that such bounds could be violated, as
shown by the solid curves in Fig. 3. The fulfillment of the
acceleration constraint can potentially be achieved by using
o5 and og in any area of the (z1,22)-space in which o is
unfeasible. Indeed, z;j and z; , that are defined according to
(12), represent the equivalent bounds, in the z-space, of ST
and S™. The dashed transients in Fig. 3 highlight that this
solution, that is similar to the one that was used in [28], has
a drawback: An overshoot can appear. The filter will be used
to generate reference signals for industrial machines, so that
such overshoot is clearly undesired. Moreover, the transient
is not minimum-time. Surface o4, when used in conjunction
with o3, as shown by the dotted lines in Fig. 3, eliminates
both issues. The last two surfaces, i.e., o1 and o9, are used
to guarantee the fulfillment of the velocity limits: The dash-
dotted lines in Fig. 3 correspond to the system response that
is obtained when all the surfaces are simultaneously used.

The role and the convergence properties of all the surfaces
will be deeper analyzed in the next sections.
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upper BL

Fig. 4. Schematic representation of some transients toward the origin. Surface
o3 is shown together with its BL.

III. DESIGN AND CONVERGENCE PROPERTIES OF o3

Surface o3 is designed to drive the system state toward the
origin in minimum time by fulfilling, at the same time, the jerk
constraint. Differently from the SS that was proposed in [27],
it is able to handle asymmetric jerk bounds. Let us consider
a command law that only uses o3, i.e., let us control (6) by
means of (8), (15), (16), and by assuming

o =03 . 23)

Equations (15) and (16) determine the shape of o3, while (8)
wraps the SS within an appropriate BL.

The optimality of the transients from any generic state z can
be exploited with the aid of Fig. 4, that schematically shows
two typical trajectories toward the origin. If the initial state is
located below o3 (see Transient 1 in Fig. 4), the control law
returns u = U™, so that the z3 component of z, owing to (6)
and (7), increases: o3 covers the whole (z1, z2)-space, so that
the BL is certainly reached in minimum time. Once the state
is inside the BL, command signal becomes, as it will soon
be shown, v = U~ and the state reaches curve ¢, ,(p) where
a new switch occurs. The origin is finally approached with
u = U™. According to the Pontryagin’s maximum principle,
the transient is minimum-time, since v is bang-bang and two
switches have occurred. Similar transients are obtained for
initial states located above o3 (see Transient 2 in Fig. 4).

Let us describe the design of o3 and prove the optimality
of the transients from any generic state z within the BL to
the origin. First of all, it is possible to prove that all points
Ph,r,n» from which the origin can be reached in minimum time
by means of a bang-bang command signal and with a single
switch, have equation

Prrn =
T(r—1)(1—2) ht(h+1—2) h(h—1)(h—2)
- { 6 + = L2 } o= Lfﬁ

{7(751) 4 hq-} ot h(h;l) 3 (24)

—Ta—hp

where « and S, according to (16), depend on 7. To this
purpose, a first set of points, indicated in the following by
P, has been individuated by integrating backward system
(6) from the origin. Two situations have been considered, each
of them is denoted by a different value of n: If = 1, then the
system is driven with command signal w = U~, whileu = U™

100 -
By
w.l
s0f By N D
PSS
83,3:1 | Lt = 3"/
\@ \

Zp -50 k
-100 |

-150

20960 150 -100 50

Fig. 5. Projection of o3 on the (21, z2)-plane. Curve g, ,(p) separates the
two zones that admit different values of 7).

if n = —1. By means of this procedure, the following points
have been obtained

T 5 T T
p'r,n:[—g(’r —37+2)« 5(7—1)04 —Tal

where « depends on 7 because of (16), while 7 € NV
indicates the number of back integrations that have occurred.
Evidently, from any point p.,, the origin can be reached
in minimum time with 7 steps by applying the maximum
admissible command signal, i.e., u = U~ ifp=1loru=U"T
if n=-1.

From any point p,, a new stage of backward integrations
returns points py, -, as defined by (24). They are obtained by
switching the command signal, so that from points p, _; com-
mand signal u = U~ is assumed while, viceversa, u = U™
from points p, ;. Evidently, bearing in mind the definitions
of o and 8 given by (16), from any point py, ;, the origin
is reached, by construction, by first applying command signal
u = (3, for h € NT steps and, then, by assuming v = «
for 7 € N steps. The control is clearly bang-bang, a single
switch occurs, so that it is possible to assert that the transient
toward the origin is, according to the Pontryagin’s maximum
principle, minimum-time.

Points py, -5, as shown in Fig. 5, completely cover the
(21, z2)-space, that is partitioned into two sectors depending
on 7. The borderline between the two sectors is given by curve
S-n(p). The vertexes of o3 are obtained by adding vector
[00 BT to points pp, . 03 is a composite SS that is made of
flat quadrangles and that, evidently, covers the whole (21, 22)-
plane. Each quadrangle is indexed by h, 7, 7. Given any point
in the (21, 22)-plane, the corresponding value of o3 is found by
first individuating the quadrangle &, 7,7 in which it is located
— to this purpose, techniques similar to those proposed in [35]
can be adopted — and, then, by using (15) and (16).

Equations (8), (15), (16), and (23) associate to each point
Ph,r,n a planar sliding surface o3 and its BL. In particular, as
shown in Fig. 6, a box Bj, -, which upper/lower surfaces are
given by the borders of the BL, is associated to each point
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Ph,rn- Bn,ry can be formally defined as follows

{2:2=Phrn+Aehrn+ ey +Venry
A p,v€[0,1)} (25)

Bhry =

where py, - is given by (24), while vectors €y, 5, €p 7, and
€7, are defined as follows

€hry =
al[-Lir(r=1)+h(h=1)+2h7] h+7 —1]", 26)
Ghrni=(@—pB)[La(h—1) —h 1]", @)
énrm =100 B—0a] . (28)

The vectors placement is shown in Fig. 6 for n = 1. Practically,
vectors (26)—(28) represent a non-orthogonal reference frame
that can be used to describe any point z € By ;,. More
precisely, any point z € B}, ;,, can be alternatively represented
by means of a vector of six elements z := [h 7 n A u v]T:
The first three coordinates individuate the box, the last three
define the position inside the box. In this representation, the
origin assumes coordinates z :=[1 170 5= 5EQ}T

Bearing in mind these premises, it is possible to prove the
optimality of the transients from any point that is located inside
the BL. In particular, from any initial state zy € By -, or,
equivalently, from zg = [h 7 n A p v]T, with h,7 € NT,
the origin is certainly reached, if system (6) is controlled by
means of (8), (15), (16), and (23), according to the following

sequence of steps:

{ Z; Uit1
0 hrnApv]T va+ (1 —v)p
1 [(h=1)7nApo0T 8
2 [(h—2) 70 Ap0]" B
: B
h—1 17y Ap0T B
h L(r=DnA0Q-w" ph+(1-pa
h+1 1(r=2)npAr017" e
f oY
h+71-2 [11npAr01)T !
h+r—-1  [11n022=lq)” a
h+T 11970 5% Z22]7 Ao
h+71+1 11907 )7

Evidently, h+ 741 steps are required, i.e., only one more step
with respect to the optimal transient from py, ;5. According
to the Pontryagin’s maximum principle, a single switch occurs
and the command signal, apart from switching instants, is
always equal to (8 or to a, i.e., by virtue of (16), it is equal to
UY or to U™. It is worth to point out that, at the switching
instants, the command signal cannot be exactly equal to 5 or «
because the switching times of discrete-time systems are fixed
and cannot be freely selected. If the initial state is equal to
Phyrm,1e.,Zo =[hT7n00 0]7, the sequence converges to the
origin in h + 7 steps and w is, as desired, exactly bang-bang.

IV. DESIGN AND CONVERGENCE PROPERTIES OF o4

Surface o3 manages neither the velocity nor the acceler-
ation constraints that, consequently, could be violated. The

6
upper BL
7777777777777777777777 €.
oy L= e fE
Bi-ir11 /e @ini]
z, 2 /P
» = = 1 S e
=@ - - S
- r /,_//,” Bh-l,'r,l h-1,7,1
- .l . /P
/(/ éh h,lT,l ph,‘l'—l,l
________________________ LT,
U* Bhri lower BL
Pt Pt

Fig. 7.
q2,4,1 (solid line) and from a generic point inside the BL (dash-dotted line).
Point ¢; 1(p) is reached in 5 steps, then the origin is gained by means of o3.
The same number of steps is required for the second transient. Upper bound
z;' is never violated.

3D view of a transient toward the origin for » = 1 starting from

acceleration constraint could potentially be satisfied by simply
bounding the third component of z within interval [z, 23 ].
It was early anticipated that this result can be achieved
by adopting o3 only in the areas of the (z1,z22)-space in
which it is feasible, and by using o5 and og in the other
zones. As shown in Section II, this rough approach can cause
overshoots and suboptimal transients. For this reason, in any
zone of the (21, z3)-plane in which o3 would lead to unfeasible
accelerations, an alternative surface o4 is used.

Surface o4, similarly to o3, has been planned by first
individuating a set of points q ;, from which the origin
can be reached in minimum time by means of a trajectory
that fulfills both the jerk and the acceleration constraints. The
positions of such points are given by (29). The Pontryagin’s
maximum principle suggests that, because of the additional
constraint, optimal transients must be bang-zero-bang. Fig. 7,
which shows a situation in which = 1, can be used to explain
the synthesis of o4. By integrating backward from the origin
system (6), with «w = U™, a monotonically increasing curve
is obtained. An indefinite execution of the back integration
process would clearly lead to the violation of upper bound
z3. In order preserve feasibility, in proximity of 23 the
command signal is switched to v = 0, and a set of points
r; 1 is obtained. They are characterized by a third component
equal to z;' , 1.e., they are all strictly feasible with respect to
the acceleration bound. Points qy ;1 are finally obtained by
means of a new stage of back integrations from r;;, which
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is made by assuming v = U™. An analogous sequence of
backward integrations is used for = —1 in order to devise
points qp, j,—1, but in this second case the command sequence
becomes u=U" = u=0 = u=U".

Fig. 7 also shows a typical approach to the origin from q4 2 1
(h =4, j =2, n=1). If system (6) is driven with u = U™,
point ro; is reached after h steps (in the example h = 4).
The transient is clearly minimum-time because the maximum
available jerk has been used. As previously mentioned, points
r; 1 are characterized, by construction, by a third component,
equal to z;’ , 1.e., equal to the maximum allowable acceleration.
Evidently, all points along curve §§71, which passes through
points r;;, possess the same property. In ry;, command
signal switches to v = 0 in order to avoid the violation
of the acceleration bound, and the state slides along ¢,
toward <7 1(p) that is reached with further j — 1 steps (in the
example j = 2, thus a single step is required). The transient is
again minimum-time, since v = 0 is the maximum allowable
command signal which guarantees the feasibility.

From g 1(p), the origin is finally gained in 742 steps (7+1
if p =0) with w = U~. It is possible to prove that this final
transient exactly coincides with the final transient that can be
obtained by means of o3, so that the actual implementation of
the control law uses o3 for the final convergence to the origin.
In conclusion, from any point qy, j,,,, the origin is reached after
h+j+7+1steps (h+j+ 7 if p = 0) by means of a bang-
zero-bang command signal and by fulfilling the acceleration
constraint. The transient is clearly time-optimal.

Vertexes of surface o4 are obtained by adding [0 0 5] to
points qy, ;. By construction, for = 1, o4 monotonically
decreases in function of A and, moreover, o4 < z;’ , le., it
is feasible with respect to the upper acceleration constraint.
On the contrary, for » = —1, o4 monotonically increases in
function of h and o4 > 23 .

By assuming a command law given by (8), (16), (17), and

oc=o0y4, (30)

a BL is created around oy4. In the following it is shown that, by
means of such control law, the origin is reached in minimum
time from any generic state z that is located inside the BL.
Similarly to o3, surface o4 attracts the system state with a
command signal that is equal to U™ or U™, i.e., in minimum
time. The transient toward the origin starts after the BL of o4
has been reached. Let us prove its optimality and feasibility.
Command law (8), (16), (17), and (30) associates, to each point
dh,j,n» @ box W ; ,, which upper and lower surfaces coincide
with the BL limits and that is formally defined as follows

Whijnm = {Z YZ=Qqpjn T )‘é;ujm + /‘é;w}n + ’/é/h,jyn;
A\ p,ve[0,1)} (31

—#(3F+h+ji-3)
a, (32)

X

P+
0
& iw=[—sh(—1) nB —p]"

&, i, =100 p3-a.

; (33)
(34)

Bearing in mind (29)-(34), any point z € W, ;, can be
alternative represented as z := [h j n A p v]T.

The optimality of the transients that are obtained by means
of o4 is proved by verifying that, from any state z € W}, ; ,,
the origin is reached in h+j+7+1 steps, i.e., the same number
of steps that are required from qp j, with the minimum-
time control, and that u is bang-zero-bang. In particular, by
adopting command law (8), (16), (17), and (30), system (6)
evolves, from any initial state zg € Wj, ;,,, with h,j € NT
or, equivalently, from 2o = [h j 7 A p v]T, as follows:

i Z; Uiyl

0 hjnApv]T va+ (1—v)3

1 [(h—1)jnApo]" 8

2 [(h—2) jnAp0]" B

: B
h—1 [LjnApo]” 5

ho [L(G-1)nr0 BT up
h+1 [1G—-2)nA0 525" 0

: 0

h+j—2 (110527

The transient is also shown by the dash-dotted line of Fig. 7,
for n = 1. Practically, with a single step the state is projected
on the lower surface of the BL. At step h — 1, z reaches box
Wi j.n, then, with a single step, it moves on the lateral surface

J/’—Ln of Wi j—1,,. It is possible to verify that points lying
on ¢; , have equation [1 j 1 A 0 ﬁ_ia]T so that zj, is clearly
located below ¢;_; , when 7 =1 (or above ¢}_; . if n = —1),
while the subsequent state, i.e., zjt1, exactly lies on ;;_2)77.
Box Wi 1,4 is reached, after h + j — 2 steps with u = 0 and
with an acceleration that is equal to z*, i.e., to z; or to z3
depending on 7: The whole transient is feasible with respect
to the acceleration constraint.

The subsequent step is the most critical. It was early
anticipated that the final transient toward the origin is achieved
by means of o3: The state, with a single transient, enters in
the area that is handled by such SS. As shown in Fig. 8§,
two alternative situations can arise depending on p, both
characterized by u = 0:
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Fig. 8. 2D view in the (21, 22)-space of the switching phase between oy
and o3 (n = 1). Starting from W 1,1 the state always reaches, with a single
step, B1,7,1 (dashed line) or By +_1,1 (dash-dotted line).

a) p > [(1 = M) (7 —1)]/[7 + 2\ — 1]. The state evolves to
Znij—1 = [L 7 nay az az]” where a3 = [(A—1)(F — 1) +
P(F 422 =1/ (7 +1), az = [(1 = p)(A—1)a]/(8 — @), and
as = {B(-+1)+alF (A1) 2—p)+AA—1)]H/[(F+1)(—a)].
It is easy to verify that coefficients a1, as,as € [0,1), so that
Zpyj—1 € Bisgs

b) p < [(1 = N)(F —1)]/[F + 2X — 1]. The state evolves to
Zh-‘rj—l = [1 (72 — 1) n ap az a3]T where ay = [[)(7: — 1) +
AF425— 1)]/(F—1), a3 = —[a\p(7+ D]/[(F— D)(5— ),
and ag = [B—a(1—A+Xp)]/(8—«). Coefficients a1, as, as €
[07 1), so that Zp+j-1 € Bl,f'fl,n-

Once inside B; ; ,, the origin is reached with o3 according
to the following steps (one less step is required from By +_1 )

{ Z; Uit1
h+j5—1 [171na as az]” aza+ (1 —a3)p
h+j M (F-1)na0(1—-a)] aB+(1-a)a
h+j+1 [1(F—=2)na; 01T a
: a
h+j+7-2 [11na 017 o
h+j+7—1 [1190 2zt g7 a
h+j+7 [11n0 5% zae? a1
h+j+74+1 [1190 7% )7

Thus, starting from any state zg € W, 4, the origin is
reached, in the worst case, in h+j+7+1 steps, i.e., the same
number of steps of the transients that are required from q; 1, 4.
The transient optimality is also proved by the bang-zero-bang
behavior of the command signal, that admits v = 0 only when
the acceleration is equal to the maximum admissible value.

V. CONVERGENCE PROPERTIES OF 01 AND 09

Surfaces o; and o9 are used to fulfill the velocity limits. To
this aim, they force z inside the quadrangle that is shown in
Fig. 9 and that has been obtained by converting the feasible
domain of the (%, )-space — that is represented by a rectangle
that is bounded by the following four straight lines: & = S,
Z=S8",2=R" and £ = R~ — into an equivalent feasible
domain in the (z2, z3)-space.

Surfaces o1 and o are derived from an analogous surface
that was originally proposed in [36]. This is possible because

-10

Fig. 9. System trajectories in the (z2, z3)-space obtained by assuming: a)
o = o1 and b) 0 = 02. SSs 01 and o2 are indicated by means of dashed lines
and are surrounded by their BLs (dash dotted lines). The dotted quadrangle
contours the feasible area. z;' and z3 are defined according to (12).

the evolution of system (6) in the (z2,23)-space does not
depend on the z; component of the state and it is given by

eI

i.e., system equations coincide with those that were considered
in [36], but the role of the pair z; and zo is now played by
zo and z3. Thus, by adopting the same command law that
was proposed in [36], the same convergence properties are
obtained. However, minor changes have been introduced in
o1 and o9 in order to modify the convergence points: o
guarantees the convergence toward z*, while o, guarantees
the convergence toward z~. Due to the lack of space, the
convergence properties of o1 and oy are here not analyzed,
but they can be studied with the same methods that were
considered in [36]. Conversely, it is interesting to analyze the
state transients that are obtained when they are used. Fig. 9
shows the two SSs together with the corresponding BLs, the
feasible area, and some system trajectories. All trajectories
enter, independently from the selected SS, inside the feasible
area. This result is achieved in minimum time because outside
the BLs the command signal always assumes its maximum
value, i.e., w = UT or u = U~. Inside the BL, the state slides
toward z" or Z~, that are respectively defined by (13) and
(14): Such two points are the projections, in the (z3, z3)-space,
of the homologous points (R*,0) and (R~,0) of the (&, 7)-
space, i.e., of the two state configurations in which the system
assumes the maximum feasible speed with zero acceleration.

The role of such two points can be understood by analyzing
a generic transient from a totally unfeasible state. According
to Problem 1, feasibility must be achieved before any transient
toward the origin could start. The jerk constraint is fulfilled
with a single step due to (8), then the state is driven toward o
by applying the maximum command signal: Since oy, 02, and
o are all feasible with respect to the acceleration constraint,
such constraint is fulfilled in minimum time independently

22

22,i4+1
23,

Z23,i+1
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Fig. 10. Comparison between the outputs of the novel filter (solid lines)
and those of the filter proposed in [28] (dash-dotted lines): Reference signal
(dashed lines) is reached in minimum-time and by fulfilling the imposed
bounds (dotted lines). Circles highlight the configurations for which the new
filter returns shorter transients.

from the choice that is made in (9). Subsequently, if & should
drive the system to violate the velocity bounds, o1 or oy are
used to “park” the state, in minimum time, in z~ or z T, i.e., in
the two points corresponding to states (R~,0) and (R™,0) of
the (&, &)-space: It is possible to demonstrate that, in those two
points, the state moves at the maximum velocity, i.e., # = R
or £ = R™, toward o, to finally converge to the origin in
minimum time with a feasible trajectory. The demonstration is
similar to that proposed in [28] and is omitted for conciseness.

VI. A TEST CASE

In the first test case here proposed, the performances of
the new filter are compared with those an analogous filter
devised in [28]. As claimed in the Introduction, the new filter
eliminates a suboptimal behavior that was affecting the version
proposed in [28]: Depending on the reference signal and on
the bounds, transients of [28] could be non-minimum-time
and undesired overshoots could appear. The circles of Fig. 10
show two cases in which the new filter returns better solutions.
Improvements are especially evident for the second of the two
transients, which has been shortened by 0.3 s and its hanging
overshoot has been eliminated. It is interesting to note that the
transient toward the parabolic reference admits an overshoot in
both approaches. This implies that the solution found in [28]
was already minimum-time compatibly with the constraints:
The overshoot can only be eliminated by loosening the bounds.

The second example tests the filter performances in case
of asymmetric constraints, by using an input signal that is
appositely devised in order to highlight the system capabilities.
The test has been executed on a real-time system, based
on RTAI [37]. As shown in Fig. 11, the reference signal is
discontinuous and it is given by a combination of steps, ramps

TT T T T T T 1T

8 10 12 14 16 18
t(s)

Fig. 11. Results of the second test case. The reference signal (dashed line)
is tracked at the best by the filter output (solid lines). Given constraints are
always satisfied (dotted lines).

and parabolas. Assigned constraints are online changed. The
filter, as expected, mimics the input signal by means of an
output that fulfills the given velocity, acceleration, and jerk
constraints. The reference signal is always reached without
overshoot even when, at times ¢t = 7.2 s and ¢t = 12.5 s, the
bounds are changed in the middle of a transient. Transients
are always minimum time compatibly with the constraints.
The jerk has a bang-zero-bang behavior and the chattering
phenomenon is totally avoided. The filter has been executed
with a sampling time 7" = 1le-3 s. An average evaluation time
of 5.24e-6 s has been measured on a PC equipped with an Intel
Core2 Duo processor @3GHz: Even considering less efficient
processors, the computational burden would still be compatible
with the sampling times of many industrial applications.

VII. CONCLUSIONS

The proposed filter is able to generate smooth reference
signals starting from piecewise continuous inputs. Candidate
applications of the novel system coincide with those that were
proposed in [18]-[23]: With a moderate increment of the
computational burden, the smoothness of the reference signals
can be significantly improved.

Among the other properties of the algorithm, it is worth to
mention its compactness and efficiency, which permit imple-
mentations based on commercial control-boards.
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