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Online Trajectory Scaling for Manipulators Subject to
High-Order Kinematic and Dynamic Constraints

Corrado Guarino Lo Bianco and Oscar Gerelli

Abstract—Robotic manipulators are usually driven by means of
minimum-time trajectories. Unfortunately, such trajectories strongly so-
licit the actuators whose dynamic limits could be easily exceeded. There-
fore, kinematic and/or dynamic constraints are commonly considered for
offline planning. Nevertheless, during actual operations, dynamic limits
could be violated because of model uncertainties and measurement noise,
thus causing performance losses. In order to fulfill the given bounds with
certainty, planned trajectories are typically online scaled, by accounting
for generalized force (GF) constraints. The resulting command signal is
typically discontinuous; therefore, the system mechanics are unnecessarily
solicited, and nonmodeled dynamics are excited. Moreover, in the case of
systems that admit limited derivatives for GFs, tracking accuracy worsens.
To prevent possible problems that derive from GF discontinuities, this pa-
per proposes an online trajectory scaling approach that accounts for the
simultaneous existence of joint constraints on GFs and their derivatives. At
the same time, it is able to manage bounds on joint velocities, accelerations,
and jerks.

Index Terms—Bounded dynamics, bounded kinematics, manipulator
dynamics, robot motion, trajectory scaling.

I. INTRODUCTION

The productivity of industrial processes is clearly related to the time
required to accomplish the assigned tasks. Therefore, when robotic
manipulators are involved, users ask for very demanding trajecto-
ries, which possibly exceed the manipulators limits and cause track-
ing losses. For this reason, kinematics limits are normally considered
during the trajectory planning phase, e.g., by bounding joint veloci-
ties, accelerations, and jerks. When possible, generalized force (GF)
constraints are also considered. Typically, existing bounds are taken
into account by means of offline optimization algorithms that mini-
mize traveling times while simultaneously handling explicit kinematic
and/or dynamic constraints. In some works, trajectories are planned as a
whole [1], while in others, the path-velocity decomposition scheme [2]
is adopted. In this latter framework, initial results for nonredundant ma-
nipulators have been proposed in [3], where a scaling factor was intro-
duced to guarantee the feasibility of a planned trajectory. This approach
has been subsequently extended to robots in cooperative tasks [4] and
for manipulators with elastic joints [5]. Alternative approaches, which
are not based on standard optimization algorithms, were proposed in
the two independent works [6], [7].

Mentioned offline methods are characterized by a couple of draw-
backs. First, they do not foresee the effects of external disturbances
that act on real manipulators, and as such, they do not manage model
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uncertainties. As a consequence, disturbances and modeling errors are
subsequently compensated by the feedback controller that generates
GFs that, being different from those originally planned, could saturate
the actuators. Second, they cannot be used in applications that require
an on-the-fly planning, such as, for example, the tracking of a moving
object whose trajectory is not known a priori.

The first kind of problems can still be handled by using offline
strategies like that proposed in [8]: The real system is investigated
in advance by the execution of test trajectories that are subsequently
used to generate almost time-optimal transients that robustly avoid
saturations. The situation becomes more complex when trajectories are
modified on-the-fly: because of the lack of time, their feasibility cannot
be guaranteed.

Online approaches have been proposed to handle these situations:
starting from any desired trajectory, which could also be unfeasible,
online methods scale it in order to satisfy the system constraints. Pro-
posals have appeared in [9] and [10] for manipulators subject to kine-
matic constraints, in [11]–[17] for systems subject to torque limits,
while in [18], a robust online extension of [3] has been described.

In recent papers [19], [20], the bounding problem has been extended
by the consideration of the existence of constraints on the time deriva-
tives of GFs. Indeed, GF derivatives (GFDs) are evidently bounded in
many systems that are characterized by slow dynamics, like hydrauli-
cally actuated systems; therefore, if bounds are not taken into account,
controller performances degenerate. Moreover, even when actuators are
able to handle large GFDs, it is better to bound them since discontinu-
ities on GFs solicit the system mechanics and excite undesired dynam-
ics because of gears backlashes and elasticity. GFs discontinuities are
common to the aforementioned online strategies, since they typically
downscale trajectories while simultaneously satisfying an optimality
criterion: An immediate consequence is that GFs assume bang–bang
shapes. That is what happens in [17], for example, where planned
trajectories, which are sometimes abandoned to preserve GFs limits,
are newly hanged in minimum time when dynamic bounds no longer
represent a problem. For this purpose, discontinuous GFs are used.

To preserve optimality and avoid GFs discontinuities, in this study, a
novel online trajectory scaling system is proposed, which improves the
results achieved in [17] by also considering constraints on GFDs. Early
results that are proposed in [21] and [22] are here improved with the
help of the novel filter devised in [23]. The new filter online scales tra-
jectories by simultaneously accounting for the existence of constraints
on GFs and GFDs, as well as on joint velocities, accelerations, and jerks.
It is worth noticing that, in realistic scenarios, only a subset of such
constraints are normally considered: For example, trajectories could be
scaled by only considering bounds on velocities, GFs, and GFDs or, in
the case of inadequate knowledge of the manipulator dynamics, it could
be possible to consider an alternative problem where only kinematic
constraints are involved, owing to the correlation that exists between
accelerations and GFs, as well as between jerks and GFDs. As a further
step forward with respect to [21] and [22], the velocity profile that is
used to move along the planned path is directly defined in the time
domain. This choice, which is also adopted in [15]–[17], is the reason
of two important improvements: The time law is generated by means
of standard planning methods and, more important, time delays that
are accumulated because of saturations are recovered as soon as those
limitations cease.

The paper is organized as follows. In Section II, the trajectory scaling
problem is formulated. Some feasibility considerations that concern
the trajectory scaling problem are drawn in Section III. The control
strategy and the method that are used for the online conversion of
the joint bounds into equivalent limits for the longitudinal time law
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are described in Section IV. The overall control strategy is tested in
Section V by means of example cases. Section VI concludes this paper.

NOTATION

The elements of any generic vector t ∈ R
n are indicated as tk ,

where k = 1, 2, . . . , n. Ci indicates the set of functions that are con-
tinuous until the ith derivative, while Cp indicates the set of piecewise
continuous functions. Overlined and underlined symbols, respectively,
indicate the upper bound and the lower bound of a variable, e.g., q̇k is
the upper bound of the kth joint velocity, while q̇

k
is the corresponding

lower bound. Along this paper, upper and lower bounds are always
supposed to be known. They can also be time varying.

II. TRAJECTORY SCALING PROBLEM

Let us define a parametric curve in the joint space by means of a
vector function f (u) that is defined as follows:

f : [0, uf ] → R
n

u → qd := f (u) (1)

where u is the scalar that is used to parameterize the curve, uf is its
final value, and n is the number of independent joints. The curve must
be planned such that f (u)′′′ ∈ Cp ([0, uf ]) and f (u)′ 	= 0 ∀u ∈ [0, uf ],
where the superscript

′
indicates a differentiation with respect to u,

e.g., f (u)′ = [df (u)]/(du), while as usual, dots will be used in the
following to indicate time derivatives, e.g., u̇(t) = [du(t)]/(dt).

In the same way, it is possible to define a monotonically increasing
time law to move along the curve

u : [0, tf ] → [0, uf ]

t → ud := u(t) (2)

where tf is the total traveling time. Reasonably, u̇d (t) > 0 for any
t ∈ (0, tf ). This implies that motion cannot be inverted or stopped in
any point along the path. The overall robot trajectory is obtained by the
combination of (1) and (2): qd = f [u(t)]. By taking into account the
chain differentiation rule, the trajectory time derivatives are

q̇d (u, u̇) = f (u)
′
u̇ (3)

q̈d (u, u̇, ü) = f (u)
′′
u̇2 + f (u)

′
ü (4)

¨q̇d (u, u̇, ü,̈u̇) = f (u)
′′′
u̇3 + 3f (u)

′′
u̇ü + f (u)

′
¨u̇ . (5)

Problem 1: Given a trajectory, which is represented according to
the path-velocity decomposition, its longitudinal time law must be
automatically scaled such that path tracking is not lost even when
kinematic and/or dynamic saturations occur.

Practically, this allows trajectory tracking to be lost when limits
are reached, to try to preserve an accurate path tracking. It is rele-
vant to point out which constraints can be handled by means of the
proposed approach. Usually [11], trajectory scaling only considers GF
constraints, i.e., the trajectory is online modified such that, at any time,
GF τk of the kth joint is bounded between assigned limits, i.e.,

τ k ≤ τk ≤ τ k , k = 1, 2, . . . , n . (6)

In this paper, the problem is extended in order to guarantee
that (6) is fulfilled together with other constraints. For example,
still remaining in a dynamic context, for the reasons highlighted in

Section I, it could be important to limit maximum GFDs τ̇k . Formally,
this result is achieved by guaranteeing that the following inequalities
are simultaneously satisfied:

τ̇ k ≤ τ̇k ≤ τ̇ k , k = 1, 2, . . . , n . (7)

Furthermore, kinematic constraints on joint velocities q̇k , accel-
erations q̈k , and jerks¨˙qk are considered as well, by imposing (k =
1, 2, . . . , n)

q̇
k
≤ q̇k ≤ q̇k (8)

q̈
k
≤ q̈k ≤ q̈k (9)

¨˙q
k
≤¨˙qk ≤¨˙qk . (10)

It is interesting to notice that in order to meet kinematic bounds,
both f (u) and u(t) must fulfill some requirements.

Proposition 1: Any trajectory that is planned according to the path-
velocity decomposition scheme can be followed with bounded joint
velocities, accelerations, and jerks iff f (u)′′′ ∈ Cp ([0, uf ]) and ¨u̇(t) ∈
Cp ([0, tf ]).

Proof: It immediately descends from (3)–(5).
Sufficiency: If f (u)′′′ ∈ Cp ([0, uf ]) and ¨u̇(t) ∈ Cp ([0, tf ]), then,

necessarily, f (u) ∈ C2 ([0, uf ]) and u(t) ∈ C2 ([0, tf ]). This, in
turn implies, owing to (3)–(5), that ¨q̇d ∈ Cp ([0, tf ]), while qd ∈
C2 ([0, tf ]), i.e., joints velocities, accelerations, and jerks are bounded.

Necessity: Let us suppose that ¨q̇d is bounded but f (u)′′′ /∈
Cp ([0, uf ]), or¨u̇(t) /∈ Cp ([0, tf ]). This is clearly impossible because
of (5). �

Remark 1: An immediate consequence of Proposition 1 is that, ow-
ing to kinematic bounds, f (u)′, and f (u)′′, u̇(t) and ü(t) must be
continuous functions. This is a general property which applies inde-
pendently from the adopted control strategy.

The problem that is considered in this paper accounts for the simul-
taneous existence of constraints (6)–(10). It is worth remarking that, as
asserted in Section I, the same approach can handle problems where
such constraints are not simultaneously imposed.

III. SOME FEASIBILITY CONSIDERATIONS

Given a manipulator and a trajectory qd = f [u(t)], we want to verify
if this trajectory is feasible with respect to (6) and (7).

To this purpose, closed-form equations are compulsory for both
GFs and GFDs. As usual, GFs can be evaluated with the classic inverse
dynamics equation

τ = H(q) q̈ + C(q, q̇)q̇ + g(q) + v(q, q̇) . (11)

Here, q, q̇, q̈ ∈ R
n indicate the joint variables and their first and second

time derivatives, H(q) ∈ R
n×n is the symmetric and definite positive

inertia matrix, C(q, q̇) ∈ R
n×n is the matrix of centripetal and Coriolis

terms, g ∈ R
n is the vector of the gravity forces, and v(q, q̇) ∈ R

n is
the vector of the friction forces.

The time derivative of (11) can be easily evaluated [22] and posed
into the following compact form:

τ̇ = Ḣ(q, q̇) q̈ + H(q)̈q̇ + D(q, q̇) q̇ + 2C(q, q̇) q̈

+ L(q, q̇) q̇ + E(q, q̇) q̈ . (12)

The first two terms represent the components of the GFD which depend
on the system inertia. In the same way, the second two terms derive
from the Coriolis and the centripetal forces, while the last two terms
refer to the gravity and the friction effects.
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Because of (1)–(5), (11) and (12) can be expressed as functions of
u and its derivatives

τ (u, u̇, ü) = a1 (u)ü + a2 (u, u̇) (13)

τ̇ (u, u̇, ü,̈u̇) = b1 (u)̈u̇ + b2 (u, u̇, ü) (14)

where

a1 (u) = b1 (u) := H[qd (u)]f (u)
′

(15)

a2 (u, u̇) := H[qd (u)]f (u)
′′
u̇2

+ C[qd (u), q̇d (u, u̇)]q̇d (u, u̇)

+ v[qd (u), q̇d (u, u̇)] + g[qd (u)] (16)

b2 (u, u̇, ü) := H[qd (u)][f (u)
′′′
u̇3 + 3f (u)

′′
u̇ü]

+ Ḣ[qd (u), q̇d (u, u̇)] q̈d (u, u̇, ü)

+ D[qd (u), q̇d (u, u̇)] q̇d (u, u̇)

+ 2C[qd (u), q̇d (u, u̇)] q̈d (u, u̇, ü)

+ L[qd (u), q̇d (u, u̇)] q̇d (u, u̇)

+ E[qd (u), q̇d (u, u̇)] q̈d (u, u̇, ü) (17)

and where a1 (u) = [a1 ,1 a1 ,2 · · · a1 ,n ]T ∈ R
n , a2 (u, u̇) =

[a2 ,1 a2 ,2 · · · a2 ,n ]T ∈ R
n , b1 (u) = [b1 ,1 b1 ,2 · · · b1 ,n ]T ∈ R

n ,
and b2 (u, u̇, ü) = [b2 ,1 b2 ,2 · · · b2 ,n ]T ∈ R

n .
Like in the case of kinematic constraints, bounds on the GFs and the

GFDs impose some requirements on the characteristics of f (u) and of
u(t).

Proposition 2: Any trajectory that is planned according to the path-
velocity decomposition scheme can be followed with bounded GFs and
GFDs iff f (u)′′′ ∈ Cp ([0, uf ]) and ¨u̇(t) ∈ Cp ([0, tf ]).

Proof: The proof is a direct consequence of (13)–(17) and of (3)–
(5). The same reasonings used for the demonstration of Proposition 1
apply. The demonstration is omitted for conciseness. �

Remark 2: Boundedness of τ and τ̇ , because of Proposition 2,
impose on the curve geometry and on the longitudinal time law the
same constraints that are described in Remark 1.

Owing to (13) and (14), constraints (6) and (7) are fulfilled if the
following inequalities are simultaneously satisfied:

τ k ≤ a1 ,k (u)ü + a2 ,k (u, u̇) ≤ τ k (18)

τ̇ k ≤ b1 ,k (u)̈u̇ + b2 ,k (u, u̇, ü) ≤ τ̇ k . (19)

By means of (18) and (19), it is possible to define a feasible zones in
the [u, u̇, ü]-space.

For torque constraint (18), the problem has been widely investigated
in the past [3], [6], [7], [11], both for offline and online approaches.
In particular, the feasible zone in the (u, u̇)-plane is given by the area
where, for any pair u, u̇, there exists at least one value ü which fulfills
(18): Any trajectory that is completely contained in such region is fea-
sible with respect to the GF constraint (see, e.g., area B in Fig. 1). If
also GFD constraints are addressed, the feasible zone becomes 3-D and
coincides with the volume where, for any triplet u, u̇, and ü, there exists
at least one value ¨u̇ that fulfills (19). Fig. 1 shows feasible volume A
for the manipulator that is proposed in Section V. Upper bounds on u̇
coincide for A and B; therefore, it is possible to summarize that any
feasible longitudinal time-law u(t) must necessarily be entirely con-
strained inA—and, consequently, in B—and formulate the following
definition of feasibility.

Definition 1: Given a manipulator (11) and (12), a curve f (u), and
a time law u(t), the resulting trajectory f [u(t)] is feasible with respect

Fig. 1. Example of admissible regionsA andB corresponding to the manip-
ulator that is proposed in Section V.

to the GF and GFD constraints iff curve [u(t), u̇(t), ü(t)] belongs to
A for any t ∈ [0, tf ].

Obviously, if GF and GFD constraints are not taken into account,
there is no certainty that the planned trajectory will be completely
contained in A, but even when they are considered, feasibility is not
guaranteed. This assertion can be easily justified. Feasible region A
can only be evaluated on the basis of an estimated manipulator model.
This implies that A is a theoretical feasible region which can differ
from the actual one because of model uncertainties. This mismatching
can be very critical if, e.g., optimal trajectories have been computed by
an offline algorithm that minimizes traveling time subject to GF and
GFD constraints. Indeed, it is known that resulting curves constantly
lie on the boundaries of the theoretical feasible zone; therefore, they
can easily violate the bounds of actualA.

Every time actual A is abandoned, path tracking is lost. For this
reason, online algorithms that are able to online estimate the actual
bounds ofA and to force the system inside such limits must be devised.

Kinematic constraints also affect the shape ofA. Nevertheless, they
are less critical than dynamic constraints: In the next section, it will be
shown that kinematic constraints only depend on f (u), which, differ-
ently from the manipulator model, is perfectly known.

IV. TRAJECTORY SCALING APPROACH

The trajectory scaling approach that is described in this paper is
able to overcome the problems that are mentioned in Section III. The
proposed implementation is suited to be used both with feedforward
controllers with position and velocity feedback (FCPVs) and with in-
verse dynamics controllers (IDCs). For conciseness, the discussion
will only involve IDCs, but obtained results can be easily extended to
FCPVs according to the approach that is proposed in [21]. The dynamic
equation of an IDC is

τ = Ĥ(q) q̈d + Ĉ(q, q̇)q̇ + ĝ(q) + v̂(q, q̇)

+ kT
p e + kT

v ė (20)

where kp ,kv ∈ (R+ )n are the controller gain vectors, while
e := q − qd , ė := q̇ − q̇d represent, respectively, the trajectory track-
ing error and its derivative. Symbol ̂ points out that the controller is
based on an estimate of the manipulator model.

Even when a trajectory is planned to be feasible with respect to
(6), i.e., (18) is satisfied, feasibility can be lost because of the reasons
that are discussed in Section III. The control scheme that is shown in
Fig. 2 is suited to manage possible feasibility issues. The manipulator
whose model accounts for kinematic and dynamic saturations is driven
by means of an IDC. Reference trajectories are planned in the joint
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Fig. 2. Overall manipulator control scheme. The dashed box surrounds the automatic trajectory scaling system.

space according to the path-velocity decomposition paradigm: The path
generator evaluates qd , q̇d , q̈d , and¨q̇d by means of (1), (3), (4), and (5)
so that they are clearly function of the curvilinear coordinate u and its
derivatives. Commonly, u and its derivatives, i.e., the longitudinal time
law, are directly obtained by means of a scalar trajectory generator. In
the modified control scheme that is proposed in this study, a trajectory
scaler is posed between the time-law generator and the path generator.
It is designed to online scale the reference time law in order to fulfill
the assigned dynamic and/or kinematic constraints.

The trajectory scaler is composed of two blocks. The first converts
kinematic and dynamic constraints into equivalent constraints for the
longitudinal time law: Joint constraints are converted into upper and
lower bounds for the longitudinal velocity, namely R+ and R−, for the
longitudinal acceleration, namely S+ and S−, and for the longitudinal
jerk, namely U+ and U−. All bounds are online evaluated and con-
tinuously change depending on the system status. The second block
is a modified version of the nonlinear filter proposed in [23] and is
used to scale the longitudinal time law in order to fulfill the converted
constraints.

It is clearly important to understand how joint dynamic and kine-
matic constraints can be transformed into equivalent bounds for u(t)
and its derivatives. Regarding the GF and the GFD constraints, the
conversion depends on the adopted controller.

Under the hypothesis that the manipulator is following path f (u),
(20) can be rewritten, because of (4), as follows:

τ (u, u̇, ü;q, q̇) = â1 (u;q)ü + â2 (u, u̇;q, q̇) (21)

where

â1 (u;q) := Ĥ(q) f (u)
′

(22)

â2 (u, u̇;q, q̇) := Ĥ(q) f (u)
′′
u̇2 + Ĉ(q, q̇)q̇ + ĝ(q) + v̂(q, q̇)

+ kT
p e + kT

v ė (23)

and where â1 (u;q) = [â11 , â12 , . . . , â1n ]T , and â2 (u, u̇;q, q̇) =
[â21 , â22 , . . . , â2n ]T .

Equation (21) is instrumental for converting constraints on GFs into
equivalent bounds on ü according to the technique that was originally
proposed in [11]. In particular, for the kth joint it is possible to write
τk = â1k ü + â2k so that, depending on the current values of u, u̇, ü,q,
and q̇, constraints (6) are satisfied if the following inequalities simul-
taneously hold:

τ k ≤ â1k ü + â2k ≤ τ k , k = 1, 2, . . . , n . (24)

Since (21) is also used by the controller for the evaluation of τ , at any
time â1 and â2 are both known, and consequently, they are immediately
available for the online estimation of the admissible bounds on ü at no
additional cost. More in detail, (24) implies that feasibility is guaranteed

if ü ∈
⋂n

k=1 [βk , αk ], with

αk =

⎧
⎪⎪⎨

⎪⎪⎩

τ k − â2k

â1k

, if â1k > 0

τ k − â2k

â1k

, if â1k < 0

∞, if â1k = 0

(25)

βk =

⎧
⎪⎪⎨

⎪⎪⎩

τ k − â2k

â1k

, if â1k > 0

τ k − â2k

â1k

, if â1k < 0

−∞, if â1k = 0.

(26)

As early anticipated, the scaling strategy that was originally pro-
posed in [11] is improved in this study by accounting for the bounded-
ness of the GFDs. GFDs for IDCs can be obtained by differentiating
(20). The same manipulations that are considered while devising (12)
lead to

τ̇ = ˙̂H(q, q̇) q̈d + Ĥ(q)̈q̇d + D̂(q, q̇) q̇ + 2Ĉ(q, q̇) q̈

+ L̂(q, q̇) q̇ + Ê(q, q̇) q̈ + kT
p ė + kT

v ë . (27)

In addition, this expression can be parameterized in function of the
curvilinear coordinate u by means of (4) and (5), leading to

τ̇ (u, u̇, ü,̈u̇;q, q̇, q̈) = b̂1 (u;q)̈u̇ + b̂2 (u, u̇, ü;q, q̇, q̈) (28)

where

b̂1 (u;q) = â1 (u;q) := Ĥ(q) f (u)
′

(29)

b̂2 (u, u̇, ü;q, q̇, q̈) := ˙̂H(q, q̇) [f (u)
′′
u̇2 + f (u)

′
ü]

+ Ĥ(q) [f (u)
′′′
u̇3 + 3f (u)

′′
u̇ü]

+ D̂(q, q̇) q̇ + 2Ĉ(q, q̇) q̈ + L̂(q, q̇) q̇

+ Ê(q, q̇) q̈ + kT
p ė + kT

v ë . (30)

Thus, the requirements on GFDs are satisfied if the following in-
equalities are simultaneously fulfilled:

τ̇ k ≤ b̂1 k̈u̇ + b̂2k ≤ τ̇ k , k = 1, 2, . . . , n . (31)

In the case of GFDs, some additional computational burden is re-
quired, since more terms have to be evaluated online. Term b̂1 (u;q) =
â1 (u;q) is already known since it is the same that appears in (22), but
the online evaluation of b̂2 (u, u̇, ü;q, q̇, q̈) could be time consum-
ing. For this reason, an efficient method for the online evaluation of
b̂2 (u, u̇, ü;q, q̇, q̈) was proposed in [22]. It is based on an extended
iterative Newton–Euler algorithm devised in [24], which is able to eval-
uate (12) with a computational burden comparable with that required
by standard Newton–Euler algorithms for the evaluation of (11). Matrix
˙̂H(q, q̇), which is essential for the evaluation of b̂2 , can be obtained by

means of the efficient algorithm that is proposed in [22]. Since b̂1 and
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b̂2 can be evaluated online, from now on, both terms are assumed to
be known: They will be used for the conversion of the GFD constraints
into equivalent bounds on the longitudinal jerk¨u̇. More precisely, by
virtue of (31), feasibility is achieved if ¨u̇ ∈

⋂n

k=1 [δk , γk ], with

γk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ̇ k − b̂2k

b̂1k

, if b̂1k > 0

τ̇ k − b̂2k

b̂1k

, if b̂1k < 0

∞, if b̂1k = 0

(32)

δk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ̇ k − b̂2k

b̂1k

, if b̂1k > 0

τ̇ k − b̂2k

b̂1k

, if b̂1k < 0

−∞, if b̂1k = 0.

(33)

Additional restrictions must be considered in order to constraint
joints jerks, accelerations, and velocities between assigned bounds.
Assuming that the manipulator is currently tracking the path, it is
possible to assert that q = qd so that for each joint k = 1, 2, . . . , n
constraints (8)–(10) can be rewritten, because of (3)–(5), as follows:

q̇
k
≤ fk (u)

′
u̇ ≤ q̇k (34)

q̈
k
≤ fk (u)

′′
u̇2 + fk (u)

′
ü ≤ q̈k (35)

¨˙q
k
≤ fk (u)

′′′
u̇3 + 3fk (u)

′′
u̇ü + fk (u)

′
¨u̇ ≤¨˙qk . (36)

It is then possible to convert such bounds into equivalent con-
straints on u̇, on ü, and on ¨u̇. In particular, (34) is fulfilled if the
longitudinal velocity is bounded according to the following expression
u̇ ∈
⋂n

k=1 [0 , ηk ], where

ηk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q̇k

f
′
k

, if f
′
k > 0

q̇
k

f
′
k

, if f
′
k < 0

∞, if f
′
k = 0.

Notice that the lower bound on u̇ has been posed equal to zero in order
to avoid backward movements.

In the same way, joints accelerations fulfill (35) if ü belongs to the
interval ü ∈

⋂n

k=1 [μk ,λk ], with

λk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q̈k − f
′′
k u̇2

f
′
k

, if f
′
k > 0

q̈
k
− f

′′
k u̇2

f
′
k

, if f
′
k < 0

∞, if f
′
k = 0

μk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q̈
k
− f

′′
k u̇2

f
′
k

, if f
′
k > 0

q̈k − f
′′
k u̇2

f
′
k

, if f
′
k < 0

−∞, if f
′
k = 0

while (36) is satisfied, and ¨u̇ is feasible, if ¨u̇ ∈
⋂n

k=1 [σk , ρk ], with

ρk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

¨˙qk − f
′′′
k u̇3 − 3f

′′
k u̇ü

f
′
k

, if f
′
k > 0

¨˙q
k
− f

′′′
k u̇3 − 3f

′′
k u̇ü

f
′
k

, if f
′
k < 0

∞, if f
′
k = 0

σk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

¨˙q
k
− f

′′′
k u̇3 − 3f

′′
k u̇ü

f
′
k

, if f
′
k > 0

¨˙qk − f
′′′
k u̇3 − 3f

′′
k u̇ü

f
′
k

, if f
′
k < 0

−∞, if f
′
k = 0.

In conclusion, all kinematic and dynamic constraints are certainly
satisfied if, at any time, u̇, ü, and ¨u̇ are bounded between proper
intervals. More precisely, u̇ is feasible only if it lies in the interval
[R−, R+ ] where

R− := 0 , R+ := min
k=1 , . . . ,n

{ηk } . (37)

Analogously, ü is feasible if ü ∈ [S− , S+ ], where

S− := max
k=1 , . . . ,n

{βk , μk } , S+ := min
k=1 , . . . ,n

{αk ,λk } (38)

while feasibility of¨u̇ requires that ¨u̇ ∈ [U− , U+ ], where

U− := max
k=1 , . . . ,n

{δk , σk } , U+ := min
k=1 , . . . ,n

{γk , ρk }. (39)

Configurations such that R− > R+ , S− > S+ , or U− > U+ could
arise. They indicate that, owing to the manipulator current status of
motion, Problem 1 admits no feasible solution; therefore, at least one
dynamic or kinematic limit is violated with certainty. It is worth noting
that, since such bounds are online evaluated depending on the controller
deeds, it is not possible to guarantee a priori that a feasible solution
exists with certainty.

The fulfillment of the longitudinal bounds is ascribed to a nonlinear
trajectory scaling filter whose scheme is shown in Fig. 3. It is composed
by two basic elements: a nonlinear algebraic feedback control system
that is designed by means of variable structure techniques, followed
by a chain of three discrete-time integrators. The nonlinear controller
is robustly stable and has been designed to guarantee that output u
always tracks, at best and compatibly with assigned limits on u̇, ü, and
¨u̇, a given reference signal ud , known together with its first and second
time derivatives. More precisely, the filter guarantees an output signal
u characterized by bounded first, second, and third time derivatives,
i.e.,

R− ≤ u̇ ≤ R+ , S− ≤ ü ≤ S+ , U− ≤ ¨u̇ ≤ U+ . (40)

The bounds which appear in (40) are freely assignable and can be
time varying: Changes are also allowed during transients. If (40) are
not satisfied because of the filter initial conditions or a sudden bounds
change,̈u̇ is forced within the given limits in a single step, while u̇ and ü
reach the assigned bounds in minimum time. If a discontinuous signal
ud is applied or ud admits unfeasible time derivatives, its tracking is
voluntarily lost. It is achieved again, still in minimum time, as soon
as ud newly becomes feasible. In general, every time a feasible input
signal ud is applied to the filter, tracking condition u = ud is obtained
in minimum time and, compatibly with (40), without overshoot. The
filter is similar to that proposed in [23]; therefore, the interested reader
can refer to that paper for technical details.

V. SIMULATION RESULTS

The proposed trajectory scaling technique has been simulated by
considering a fictitious RP planar manipulator whose dynamic param-
eters are reported in Table I. Viscous and Coulomb friction have been
modeled as follows:

vi = v1 i q̇i + v2 i sign(q̇i ) , i = 1, 2
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Fig. 3. Detail of the automatic trajectory scaling system composed by a chain
of three integrators driven by a variable structure controller.

TABLE I
ROBOT INERTIAL PARAMETERS

where v11 = 1.5e−3 N·m·s/rd, v21 = 2 N·m, v12 = 2.8e−3 N·s/m,
and v22 = 2 N. Controller gains are equal to kp = [800 2500]T and
kv = [20 30]T .

The reference path is represented by the following ellipse:

f (u) =

[
θ1

d2

]

:=

[
Atan2(0.8 sin u, 0.4 cos u)√

0.42 cos2 u + 0.82 sin2 u

]

(41)

while the following longitudinal time law has been used

ud (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 t2 , 0 ≤ t < 0.5

2t − 1
2
, 0.5 ≤ t < 1.5

t − 1, 1.5 ≤ t < 3.0
3
2
t − 1

2
, 3.0 ≤ t.

(42)

Signals u̇d (t) and üd (t) are discontinuous; therefore, they do not ful-
fill the conditions of Proposition 2. GFs are certainly discontinuous;
therefore, under the hypothesis of bounded GFDs, path tracking is lost
with certainty.

The following bounds for GFs and GFDs have been assumed:
τ1 , τ2 ∈ [−20, 20], τ̇1 , τ̇2 ∈ [−300, 300]. Analogously, joints ve-
locities, accelerations, and jerks have been constrained between
the following limits: q̇1 , q̇2 ∈ [−0.8, 2.5], q̈1 , q̈2 ∈ [−8, 10],¨˙q1 ,̈ ˙q2 ∈
[−110, 180]. In order to reduce the number of figures, the same bounds
have been adopted for the two joints, but in general, such bounds can
be arbitrarily selected.

In Section I, it has been pointed out that GFs discontinuity should
be avoided. Such discontinuities can be caused, for example, by a
longitudinal time law like (42). Let us consider the aforementioned
system in which all constraints have been disabled apart from those on
GFs. Fig. 4(a) shows the shapes of GFs if reference signal (41), (42)
is directly applied to the controller; discontinuities are evident. The
maximum tracking error, which is defined as the maximal Euclidean
distance between the manipulator tool frame and the reference path,
is relevant because of GFs saturations. More precisely, it is equal to
8.557e-3 m. Now, suppose that, in order to reduce such error, the filter
that was proposed in [17] is used. GFs assume the shape shown in
Fig. 4(b): GF constraints are satisfied so that the worst-case error de-
creases to 4.698e-4 m, but discontinuities on GFs have been accen-
tuated. In particular, GFs assume a bang–bang behavior in order to
guarantee minimum-time transients. In both cases, discontinuities so-
licit the system and, moreover, if GFD constraints are activated, path
tracking is totally lost.

Fig. 4. Output of the IDC that is obtained without (a) or with (b) the filter
proposed in [17].

Fig. 5. (a) Position reference signal ud (dashed line) compared with the filter
output u (solid line). (b) Velocity reference signal u̇d (dashed line) compared
with the filter output u̇ (solid line) and the velocity bounds (dotted lines). (c)
and (d) Online evaluated acceleration and jerks bounds (dotted lines) compared
with the filter output ü and ¨u̇ (solid lines).
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Fig. 6. (a) GFs, (b) GFDs, (c) velocities, (d) accelerations, and (e) jerks for
the two joints compared with the given constraints.

The scaling system proposed in this paper, still guaranteeing
minimum-time transients, is able to constrain GFDs between assigned
bounds, thus eliminating GF discontinuities and fulfilling possible sys-
tem constraints on GFDs. In the first simulation, the manipulator model
is supposed to be perfectly known. All kinematic and dynamic con-
straints have been activated. Simulation results are shown in Fig. 5. In
particular, Fig. 5(a), which compares ud (dashed line) with u (solid
line), makes it possible to highlight that reference signal ud is some-
time lost to fulfill constraints, but compatibly with the same constraints,
the filter continuously attempts to hang ud (t) in minimum time, thus
eliminating tracking delay. Fig. 5(b), (c), and (d) compares signals u̇,
ü, and¨u̇ with the corresponding equivalent kinematic bounds that are
evaluated by means of (37)–(39): As desired, equivalent limits are never
exceeded. According to the theory, this implies, in turn, that the joints
dynamic and kinematic constraints are satisfied, as proved by Fig. 6.
It is also evident from the same figure that, as desired, discontinuities
on GFs have been eliminated. The maximum tracking error is equal to

Fig. 7. Simulation results considering an uncertain model. (a) GFs and (b)
GFDs for the two joints. (c) Path tracking errors detected by considering model
saturations (solid line) or by neglecting them (dashed lines).

Fig. 8. Effects of measurement noise. (a) Acquired velocities and (b) estimated
accelerations compared with the given constraints.

5.643e-4 m, i.e., it is similar to that achieved in the first simulation of
this section, when the filter proposed in [17] was used. In both cases,
constraints are not violated, therefore, such error essentially depends
on the IDC tunings.

A further simulation shows the consequences of model uncertain-
ties. Uncertainties affect system performances in several different ways.
First, a larger error is obtained because of the poor performances of
the IDC. Second, because of this larger error, system outputs saturate
more often, further worsening tracking performances. The trajectory
scaling system is able to eliminate this latter source of problems, pro-
vided that the manipulator model used for the implementation of the
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Fig. 9. Effects of measurement noise (a) on ü and (b) on¨u̇ and their equivalent
longitudinal bounds; effects on (c) GFs. (d) Path tracking errors detected by
considering model saturations (solid line) or by neglecting them (dashed lines).

boundary estimator block is the same adopted for the controller. The
online evaluation of bounds (37)–(39) could potentially be the reason
of further inaccuracies. Indeed, limits are obtained under the hypothe-
sis that the manipulator perfectly tracks the given path. If path tracking
accuracy decreases because of the poor controller performances, equiv-
alent bounds are imprecisely evaluated so that it could happen that they
are satisfied, but actual joint constraints are not.

Effects of system uncertainties have been verified by considering a
manipulator whose inertia tensors and link masses have been perturbed
by 20%. Viscous friction is supposed to be completely unknown, while
coulomb friction is underestimated: v21 = 1 N·m and v22 = 1 N. As
expected, equivalent constraints on the longitudinal time law are still
satisfied so that, as shown in Fig. 7(a) and (b), dynamic constraints are
fulfilled. Fig. 7(c) shows path tracking errors that are obtained by acti-
vating (solid line) or deactivating (dashed line) the model saturations.
Differences between the two signals indicate constraints’ violations.
Only minor differences have been detected: Tracking error is larger
with respect to that measured in the ideal case, but since bounds are
not violated, it is only caused by the reduced capabilities of the IDC.

The last simulation, still considering an uncertain model, verifies
the impact of the acquisition noise. As shown in Fig. 8, a white noise
has been added to measured velocities. Accelerations have been evalu-
ated by low-pass filtering velocities and by numerically differentiating
the resulting signals. Disturbances could potentially worsen the perfor-

mances of the scaling system, since they act on equivalent bounds (25),
(26), (32), and (33). This is immediately clear from Fig. 9(a) and (b):
Equivalent longitudinal bounds become very noisy and change very fast
so that the scaling system, owing to its intrinsically limited dynamics,
sometimes violates them (see dotted circles). Nevertheless, duration
and amplitude of such violations are limited—see the shape of GFs
shown in Fig. 9(c)—so that the order of magnitude of tracking errors
is similar to that detected without noise. This is proved by Fig. 9(d),
which compares, again, errors that are obtained with the saturated and
the unsaturated model: Error shapes are different, thus highlighting
constraints’ violations, but their order of magnitude is the same.

VI. CONCLUSION

To avoid potential problems that derive from discontinuous GF sig-
nals, an online trajectory scaling system has been proposed, which is
based on a dynamic filter that automatically modifies reference trajec-
tories in order to fulfill given constraints, thus preserving an accurate
path tracking. Simulation results prove that the scaling system is ro-
bust with respect to model uncertainties, while acquisition noise has a
limited influence on its performances. Only in the case of huge mea-
surement noises, large errors on the equivalent longitudinal bounds
have to be expected: This suggests to carefully handle input signals.
Nevertheless, the scaling system is perfectly able to work with noisy
signals of reasonable amplitude. In particular, simulations have shown
that, because of noise, minor constraints’ violations can be detected,
which have a marginal influence on path tracking errors, and a large
chattering appears on the longitudinal jerk. Such chattering does not
represent an actual problem since, being the manipulator driven by
means of (21), it does not propagate along the control scheme.
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Sequential Composition for Navigating a Nonholonomic
Cart in the Presence of Obstacles

Vinutha Kallem, Member, IEEE, Adam T. Komoroski,
and Vijay Kumar, Fellow, IEEE

Abstract—In this study, we consider the problem of safely steering a pla-
nar nonholonomic cart around obstacles to reach a goal state. We achieve
this by the decomposition of the free workspace into triangular tori and
generation of local smooth feedback laws that drive the robot from one cell
to an adjoining cell. These control laws exploit the fact that for nonholo-
nomic systems, one can generate smooth controllers to reach a particular
subset in the configuration space, even though smooth feedback laws can-
not be obtained to reach a particular state. These local controllers are
then sequenced using discrete motion planning algorithms like A* or incre-
mental D* to reach the goal. We demonstrate the practical efficacy of this
methodology by applying it to two experimental platforms: 1) a differen-
tial drive robot in which inertial effects are negligible and 2) a hexapedal
robot in which inertial effects are significant but difficult to model. In both
cases, we use the abstraction of a planar kinematic cart with process noise
to develop feedback controllers. We present successful implementation of
the controllers to navigate the hexapedal robot in both static and dynamic
environments with obstacles.

Index Terms—Cluttered environments, feedback control, legged robots,
mobile robots, motion control.

I. INTRODUCTION

While nonholonomic robots are omnipresent, whether as wheeled
robots, legged robots, or as flying robots, their control is often chal-
lenging, more so in the presence of obstacles. Brockett [8] showed
that nonholonomic systems cannot be steered to a goal position using
smooth feedback. This is usually accounted for by using a time-varying
controller or by using hybrid controllers [16], [19], [23], [25], [34]. Any
real situation typically involves navigation of robots around obstacles,
making controller design nontrivial. Potential functions and their gra-
dients have been used by Khatib [17] to navigate fully actuated robots.
While this method is simple and avoids obstacles, it has spurious min-
ima that may result in the robot not converging to the actual goal.
Rimon and Koditschek [27] develop a class of navigation functions in
star worlds that account for the spurious minima and obstacles. Lopes
and Koditschek [23] develop a navigation function-based hybrid con-
troller to drive a three-state nonholonomic system to a desired goal
location. All these are global controllers that take into account the full
information of the environment and the locations of obstacles to design
feedback control laws.

In contrast, in sequential composition [9], a set of local feedback
controllers are designed and are called upon sequentially. The main idea
here is that each local controller prepares the system for the successive
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