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Generation of Paths With Minimum Curvature
Derivative With ���

�-Splines
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Abstract—This paper deals with the generation of smooth paths
planned by means of �-splines, a recently devised planning prim-
itive used for the automated steering of wheeled mobile robots. The
shape of �-splines can be easily modified by acting on a set of free
parameters. This capability can be used, for example, to satisfy an
assigned optimality criterion. In this paper, it will be used to mini-
mize the curvature variability in order to reduce the lateral solicita-
tions affecting an autonomous robot. Evidently, curvature deriva-
tive could be minimized by means of an optimization algorithm.
However, this approach cannot be suitably used in an online ap-
plication which continuously requires the curve updating. For this
reason, a heuristic method, based on closed form expressions, has
been devised and proposed in the paper in order to efficiently gen-
erate almost optimal curves on the sole basis of the interpolating
conditions. As a further characteristic, the proposed heuristic ex-
pressions permit obtaining, when appropriate interpolating condi-
tions are given, �-splines which at best emulate circular arcs and
clothoids.

Note to Practitioners— �-splines represent a powerful tool
for the generation of smooth planar paths. Indeed, by means of
�-splines it is easily possible to obtain complex composite paths

with continuous curvature and curvature derivative. The shape
of �-splines can be finely modeled by means of a set of tuning
parameters. This positive characteristic poses a practical problem
when �-splines have to be used in a real-time framework: the
computational burden spent for the parameters tuning must be
minimized. The efficient evaluation of such shaping parameters
can convert the �-splines from an interesting theoretical tool
into a practical, easy-to-use, path generation primitive. The paper
investigates this problem and proposes a solution which makes it
possible to easily and efficiently generate paths with low curvature
derivatives. The final example case shows that, owing to this
choice, smooth robot movements, characterized by minimum
lateral jerks, can be planned.

Index Terms—Geometric continuity, mobile robots, optimal
path generation.

I. INTRODUCTION

S EVERAL approaches can be found in the literature in
order to generate appropriate paths for autonomous ve-

hicles. Two different frameworks are normally considered.
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In the first one, usually indicated with the name of “motion
planning,” a structured and known environment is considered.
A path joining two given points is generated taking into account
the obstacle avoidance problem and possibly satisfying given
constraints. A typical constraint is represented by the maximum
path curvature. The first work related to motion planning was
due to Dubin [1]: a minimum length path was generated by
means of linear segments and circular arcs. Successively, many
other works addressed the same problem [2]–[4]. Recently, the
problem has been enriched by considering the generation of
continuous curvature paths [5].

In the second framework, usually indicated with the term of
“motion generation,” the planning phase assumes local charac-
teristics being focused on the generation of short distance paths.
This framework is generally encountered when a limited in-
formation on the vehicle surroundings is available, such in the
case of a car vehicle moving along an unknown road or an au-
tonomous robot moving inside an environment with strong dy-
namics characteristics. Obstacle avoidance is generally handled
through an opportune choice of the goal point and of the robot
final orientation: if a collision is detected, a different target point
is selected.

In a motion generation context, path geometric character-
istics assume a relevant role. Several path primitives, which
generate continuous curvature paths, were proposed in the past:
clothoids, cubic spirals [6], polar polynomials [7], intrinsic
splines [8], -splines [9], etc.

Sometimes, curvature continuity is not sufficient to guarantee
the generation of smooth robot movements. For example, in
[10], it was shown that in order to control an unicycle-like
robot by means of continuously differentiable control signals,
it is necessary to plan paths whose curvature derivative is
continuous. Paths which possess this characteristic are named

-paths. This requirement is not strictly necessary in case of
car-like or omnidirectional vehicles, however the use of paths
whose curvature is continuously differentiable leads to the
generation of smooth command signals, which is, undoubtedly,
a positive characteristic [11].

The earlier mentioned -splines cannot be used to generate
-paths, so that a new planning primitive, named -spline,

has been proposed in [12]. -splines are evaluated by means
of closed form expressions and always fulfill any arbitrarily
assigned set of interpolating conditions, including, differently
from -splines, the curvature derivatives on the boundary
points. The shape of -splines can be refined by acting on a
set of six freely assignable parameters which do not affect the
curve boundary points: the assigned interpolating conditions
are always fulfilled independently from the choice of such pa-
rameters. Consequently, given an appropriate shaping criterion,
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-splines can be considered a powerful tool for the generation
of optimal paths. Two main questions arise: which is the most
appropriate optimality criterion to be fulfilled? And, moreover:
is it possible to devise the optimal shaping parameters by means
of a simple method? There is not a single answer to the first
question. Since the control strategy proposed in [10] aims at
generating smooth and accurate robot movements, the em-
phasis has been posed on the generation of paths with reduced
curvature derivatives. It will be shown in the paper that, owing
to this choice, lateral solicitations acting on a moving vehicle
are limited. Curvature derivative can be reduced either by
minimizing, along the curve, the integral of its squared values
[13] or by minimizing, again along the curve, its maximum
values. The two problems are similar but not equivalent. In
particular, the first, which can be solved by means of efficient
algorithms [14], returns curves whose curvature derivative is
on average minimized, but cannot guarantee that spikes of the
curvature derivative will not appear in isolated points along the
curve, thus causing a control loss. For this reason, the maximum
curvature derivative is adopted in this paper as the performance
index to be minimized.

Also the answer to the second question is not trivial. If
-splines are used in a motion planning context, the optimal

planning problem can be offline solved by means of an algo-
rithm for the global semi-infinite optimization able to manage
nonlinear objective functions [15]. This approach is not suited
to be used in a motion generation context since, owing to the
problem complexity, evaluation times are not compatible with
online applications. As a consequence, the solution must be
found through a different method. With the help of a program
for the global semi-infinite optimization, a heuristic procedure
has been devised for the optimal planning of -splines. Evi-
dently, generated splines are only suboptimal with respect to the
proposed optimization problem, but they can be efficiently used
in a real-time framework owing to their light computational
burden.

In Section II, the -interpolation problem solved in [12]
is recalled (Problem 1), and the optimal shaping problem
(Problem 2), which represents the key point of this paper, is
formulated. The proposed solution for Problem 2 is described
in Section III. The results are verified in Section IV by means
of a path planning and tracking test case. Final conclusions are
drawn in Section V.

II. PROBLEM FORMULATION

A curve in the Cartesian planar space can be described by
means of the function

where is a real closed interval. The associated “path”
is the image of under the vectorial function ,
i.e., . We say that is a regular curve if
is piecewise continuous, i.e., , and

. The arc length or, equivalently, the

curvilinear coordinate measured along , denoted by , can
be evaluated as

where indicates the Euclidean norm.
Associated with any point of a regular curve there is a

tangent vector measured with respect to the coordinate
-axis, a scalar curvature , and a curvature derivative

. If , , are continuous functions over
, then is a -curve, i.e., it has a second-order

geometric continuity. If also is continuous over ,
then has a third-order geometric continuity and is indi-
cated as a -curve.

In order to control unicycle-like robots by means of con-
tinuously differentiable control signals, it is necessary to plan

-curves [10]. A composite -path can be generated by com-
bining several -curves if it is possible to assign tangents, cur-
vatures, and curvature derivatives at the extreme points of each
of them. This consideration generated the following interpola-
tion problem

Problem 1: Assume that two points and
have been assigned in the Cartesian space.

Generate a -curve between and which fulfills
given interpolating conditions on the initial and final tangent an-
gles and , curvatures and , and curvature derivatives

and .
In order to solve Problem 1, a new planning primitive, named
-splines, has been proposed in [12]. It is given by two seven-

order polynomial functions defined as follows:

(1)

where

(2)

(3)

In the same paper, closed form expressions were proposed in
order to efficiently evaluate coefficients and on the basis
of the interpolating conditions. From a rapid inspection of the
closed form expressions proposed in [12], it is immediately pos-
sible to observe that coefficients and depend on the as-
signed interpolating conditions , , , , , , ,

, , and as well as on a set of six real parameters . Such
parameters, which give their name to the planning primitive, can
be packed into a single vector

. Among the other characteristics of the -splines,
one, in particular, needs to be highlighted: -splines always
fulfill the boundary conditions independently from the choice
of . Consequently, vector can be used to shape the curve in-
terior points. This is an important feature of -splines since it
introduces flexibility in their design. On the other hand, it forces
to find an appropriate method for the selection of . Several
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choices are possible. For example, in a motion planning con-
text, could be used to avoid obstacles. In a motion generation
context, like that considered in this work, can be used to fulfill
an appropriate optimality criterion.

The control strategy developed in [10] and [16] aims at gen-
erating smooth robot movements. The path shape has a strong
impact on the robot lateral solicitations. In particular, it is well
known that lateral accelerations are correlated to the path cur-
vature. In the same way, lateral jerks depend on the curvature
derivative with respect to the curvilinear coordinate . In order
to reduce lateral stresses, can be selected by solving the fol-
lowing optimization problem.

Problem 2: Given any set of interpolating conditions , ,
, , , , , , , and , find the optimal -spline

which solves the following semi-infinite minimax problem:

(4)

subject to

(5)

Constraint (5) is added to guarantee the curve regularity.
Problem 2 is strongly nonlinear and is characterized by a very

large number of local minima. For this reason, it can only be
solved by means of an algorithm for the global nonlinear opti-
mization. In this paper, the optimal solution is gained by using
the hybrid genetic-interval algorithm proposed in [15] and [17].
Unfortunately, this approach can only be adopted for offline
cases, since, owing to the problem complexity, evaluation times
are normally not compatible with realtime applications. Con-
sequently, it is necessary to devise an efficient heuristic rule to
be used when computational efficiency represents an important
issue. Such rule, which returns effective solutions and is char-
acterized by an almost zero evaluation time, is described in the
next section. In the same section, a comparison is made with a
preliminary approach proposed in [12]. In particular, it will be
shown how, in most practical cases, the selection method pro-
posed in [12] returns very good results from the point-of-view
of problem 2, even if better solutions can be achieved by means
of the new approach.

It is worth noticing that the same problem was considered in
the past for -splines [18]. Also, in that case a heuristic pro-
cedure was proposed for the optimal selection of . By com-
paring the two heuristics, it is immediately possible to observe
that the solution proposed in [18] has a structure which is much
simpler than the one proposed in the next section for -splines.
This depends on the different characteristics of the two planning
primitives. In case of -splines, shaping vector is composed
by four elements, while it is made of six elements in case of

-splines. This implies that -splines are characterized by less
degrees of freedom, so that it is relatively simple to obtain small
curvature derivatives. On the contrary, the optimal selection of

is much more critical for -splines and requires a more com-
plex heuristic selection rule: the curvature derivative can rapidly
increase due to a wrong choice of .

III. HEURISTIC PROCEDURE

Let us indicate by

the vector containing the interpolating conditions used to plan
a generic -spline. The minimizer of Problem 2 necessarily
depends on , so that it will be indicated in the following as

. In order to avoid an explicit online solution of Problem
2 an algebraic function

which at the best approximates , needs to be estimated.
Evidently, any effort must be spent in order to guarantee that
curves obtained by means of have performance indexes
close to those obtained by means of .

A preliminary function was proposed in [12]. More pre-
cisely, it was selected on the sole basis of the Euclidean norm
between and according to the following rule:

In this section, a new function, which uses all the inter-
polating conditions, is designed with the purpose of generating
curves with a smaller curvature derivative. The new function

is obtained through a two steps procedure. The first step
aims at devising a possible structure for . In particular, the
structure of is obtained by solving Problem 2 for a set of
appropriate interpolating conditions and analyzing the cor-
responding solutions . The result of such analysis is a
parametric function , where

is a vector of real parameters used for its “tuning.” The
first step also returns an initial proposal for . Successively,
is refined in the second step by formulating a new optimization
problem.

A. Devising the Structure of

The structure of must be characterized by its simplicity.
To this purpose, let us consider some typical planning situa-
tions where the solution of problem 2 is known. Evidently, when

, the optimal solution of problem 2 is characterized by
, i.e., is kept as constant as possible along

the curve or, equivalently, the curve at the best approximates a
circular arc. In the same way, if , the optimal solution
is characterized by a function which almost linearly de-
pends on , so that is almost constant and the curve
at the best approximates a clothoid. Bearing in mind this idea,
a set of interpolating conditions , compatible with arcs and
clothoids, has been generated (see Tables I and II).

For each configuration the optimal solution has
been found by means of the genetic-interval algorithm proposed
in [15], [17]. As expected, in the case of interpolating conditions
compatible with circular arcs, problem 2 converges toward solu-
tions with , i.e., -splines almost perfectly emulate cir-
cular arcs, while, when interpolating conditions are compatible
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TABLE I
INTERPOLATING CONDITIONS ��� COMPATIBLE WITH CIRCULAR ARCS

TABLE II
INTERPOLATING CONDITIONS ��� COMPATIBLE WITH CLOTHOIDS

TABLE III
MINIMIZERS ��� ���� � FOR PROBLEM 2 WHEN INTERPOLATING CONDITIONS ARE

CONGRUENT WITH CIRCULAR ARCS

with clothoids, it converges toward constant values of and
-splines approximate clothoids. Moreover, in the case of cir-

cular arcs, owing to the symmetry characteristics of such curve
( , ), the minimizers are characterized
by , , and . Minimizers ,

, corresponding to circular arcs, are reported
in Table III.

In the case of clothoids, and are no more equal, but they
remain each other close. The same happens for and , and
for and . For example, for the clothoid whose interpolating
conditions are given by the obtained minimizer is

, , , ,
, . For the sake of conciseness, the

set of optimal solutions obtained for clothoids are herein not
reported.

TABLE IV
POSSIBLE OPTIMAL PARAMETERIZATIONS FOR (6)–(11)

By scrutinizing optimal solutions , it has been possible
to devise some correlations between them and the interpolating
conditions reported in Tables I and II. Such information has been
used to propose the following structure for :

(6)

(7)

(8)

(9)

(10)

(11)

where indicates the Euclidean norm and
is a vector of

real parameters. It is easily possible to verify that, when
interpolating conditions are compatible with circular
arcs, (6)–(11) correctly return , , and

, while different, but similar, values have to be
expected in the case of clothoids. The same selection rule
proposed in [12] can be obtained from (6)–(11) by imposing

.
An initial estimate for has been found by means of a least

square approach which minimizes the differences between
and , for . The obtained ,

indicated in the following as , is shown in Table IV.

B. Estimating the Optimal

Starting from , it is possible to find a more “performing”
value of . To this purpose, let us introduce the following opti-
mization problem:

(12)

where

(13)
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Fig. 1. Comparison between solutions � �� � and � in the case of inter-
polating conditions compatible with circular arcs. The pie diagram reports the
percentage of best solutions among � �� � and � , while the histogram com-
pares their ��� and their ��. A logarithmic scale has been adopted.

Fig. 2. Comparison between solutions � �� � and � in the case of inter-
polating conditions compatible with clothoids. The pie diagram reports the per-
centage of best solutions among� �� � and� , while the histogram compares
their ��� and their ��. A logarithmic scale has been adopted.

and where is a weight assigned to each interpolating con-
dition , is the
maximum curvature derivative obtained by means of ,

while represents the maximum curvature derivatives

corresponding to the optimal solutions ) of problem 2. The
same interpolating conditions used for the first phase have
been adopted (see Tables I and II). Weights are introduced to
take into account the different order of magnitude of minimizer

(see the last column of Table III). It is worth remem-

bering that is equal to zero when interpolating condi-
tions are compatible with circular arcs, while it is equal to the

elements of the last column of Table II in the case of clothoids.
Practically, the solution of (12) and (13) generates -splines
whose maximum curvature derivative is very close to the min-
imum achievable for the considered interpolating conditions.

Problem (12), (13) has been solved with a standard optimiza-
tion algorithm whose starting point was set equal to . The
algorithm has converged to solution shown in Table IV,
consequently improving the cost index from 5.88589 down to
1.28337e-2.

The effectiveness of , , and is discussed in the fol-
lowing with the help of two performance indexes. In particular,
we define mean squared deviation (MSD) the mean, evaluated
over all the interpolating conditions , of the squared differ-
ences between and , that is

(14)

where , while is the number of considered in-
terpolating conditions . In the same way, we define maximum
deviation (MD) the following index:

(15)

i.e., the maximum difference, evaluated over a set of interpo-
lating conditions , between the optimal cost indexes and those
obtained by means of (6)–(11).

Fig. 1 shows some statistic results concerning circular arcs.
They have been evaluated by considering the set of interpo-
lating conditions of Table I. The pie diagram shows the per-
centage of best solutions, from the point-of-view of the cur-
vature derivative, among and . In 66.7% of cases,

exhibits the smallest cost index. The histogram in the same
figure compares and by means of (14) and (15), as-
suming , , and . Also in

this case represents the best solution since the and the
indexes are, respectively, one-order and two-orders of mag-

nitude smaller that those obtained for .
In the case of clothoids, the comparisons are shown in Fig. 2.

The pie diagram evidences how best solutions are equally spread
among and . Nevertheless, some further conclusions can
be drawn from the histogram. It has been evaluated by consid-
ering and . Necessarily, terms
depend on the interpolating conditions (see the last column
in Table II). The histogram reveals that the and the
indexes of are evidently better than those of . The reason
of this result is that when is characterized by the best cost
indexes, has worst but similar performance indexes, while
when returns the best solutions they are neatly better than
those proposed by .

Owing to the method used for selecting , function
generates curves which very well approximate circular arcs and
clothoids. It could be interesting to verify what happens in the
case of generic interpolating conditions. To this purpose, 30 in-
terpolating conditions have been randomly chosen belonging
to the following intervals: , ,

, , .
Without any loss of generality, it has been supposed that
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Fig. 3. Comparison between solutions � �� � and � in the case of generic
interpolating conditions. The pie diagram reports the percentage of best solu-
tions among � �� � and � , while the histogram compares their ��� and
their ��. A logarithmic scale has been adopted.

since, according to (6)–(11), terms are evalu-
ated on the sole basis of differences and .

For each value of an optimal solution has been ob-
tained by solving problem 2 with the genetic-interval algorithm.
The resulting cost indexes have been compared with

the performance indexes evaluated for , , and
. The pie diagram of Fig. 3 shows that can be consid-

ered the best solution in the 83% of cases. Nevertheless, and
have comparable performance indexes, as can be deduced

from the histogram in the same figure. This conclusion is also
confirmed by : for the three cases it is respectively equal
to , , and .
Fig. 4 further proves this assertion by showing a direct compar-
ison, for 7 of the 30 analyzed cases, between the maximum cur-
vature derivatives obtainable with the three proposed methods
and those returned by the genetic-interval algorithm. In any sit-
uation, the best solutions are those devised by the genetic-in-
terval algorithm, but the performance indexes of , , and
are each other comparable and very close to those of the actual
minimizers.

Some conclusions can be drawn from the comparisons. Gen-
erally, generates the smallest curvature derivatives. Even
when or are characterized by smaller curvature deriva-
tives, the performance indexes of are only slightly worse.
In the case of generic interpolating conditions , , and
can be considered equivalent: this result proves that the method
originally proposed in [12] for the selection of represents a
sufficiently good solution for problem 2.

One final doubt is instilled by Fig. 4. It seems that, in the case
of generic interpolating conditions, the selection of is not par-
ticular critical since the cost indexes of , , and are each
other comparable and close to those of the global optimal solu-
tions. This is not true, as can be evinced from the example case

Fig. 4. Comparison between the performance indexes of ��� , � �� � and
� for seven generic sets of interpolating conditions. A linear scale has been
adopted.

TABLE V
INTERPOLATING CONDITION ��� CHOSEN FOR THE EXAMPLE CASES

proposed in the next section where the -parameters obtained
from (6)–(11) and are slightly perturbed, thus causing an
immediate rise of .

IV. APPLICATION CASE

The example case proposed in the following points out the
influence exerted by the curvature derivative on the motion per-
formances of a mobile robot. Let us consider an unicycle mo-
bile robot which must move along a composite curve planned
by means of -splines. The interpolating conditions used for
the generation of the -spline paths are listed in Table V. In
more detail, the interpolating conditions , , and are
compatible with a clothoid, a circular arc and a linear segment
respectively, while interpolating conditions and are not
compatible with any standard planning primitive in order to em-
ulate a set of actual data obtained, e.g., from a visual system. It
can be immediately evinced from Table V that the interpolating
conditions of each partial curve, i.e., initial and final tangents,
curvatures, and curvature derivatives, are selected such to guar-
antee the required -continuity of the overall composite path.

In order to verify the relevance of designing curves with
minimum curvature derivative, three different scenarios have
been considered. In the first case, indicated in the following
as the nominal case, the parameters are evaluated by means
of (6)–(11) and coefficients shown in Table IV. In the
second and in the third case, the perturbed cases, the previously
evaluated -parameters are slightly modified. More precisely,

and have been increased and decreased, respectively, by
the 10% with respect to the nominal case. As a result, three
different composite curves satisfying the assigned interpolating
conditions have been generated. It is possible to evince from
Fig. 5 that the three curves have a very similar shape, but a
comparison between Figs. 6 and 7, which report and for
the nominal case and one of the two modified cases, highlights
how the small perturbations introduced in and produce



GUARINO LO BIANCO AND GERELLI: GENERATION OF PATHS WITH MINIMUM CURVATURE DERIVATIVE 255

Fig. 5. Nominal path (continuous curve) compared with the paths obtained in-
creasing (dashed line) or decreasing (dash-dotted line) � and � by the 10%.

Fig. 6. Path curvature and its first derivative for the nominal case.

Fig. 7. Path curvature and its first derivative obtained increasing � and � by
the 10%.

evident changes in the curvature and in the curvature derivative.
Fig. 6 highlights the better emulation of clothoids and circular
arcs obtained in the nominal case: differently from the per-
turbed scenario, the curvature derivative is almost constant. As
expected, is generally higher in the perturbed case. The situ-
ation worsens especially in the case of , thus demonstrating
how the selection of can be very critical also when generic
interpolating conditions are considered.

To better point out the differences between the three com-
posite curves, they have been tracked by an unicycle-like mo-
bile robot driven accordingly to the control strategy proposed

Fig. 8. Lateral acceleration and jerk along the nominal curve.

Fig. 9. Lateral acceleration and jerk obtained increasing � and � by the 10%.

Fig. 10. Lateral acceleration and jerk obtained decreasing � and � by the
10%.

in [10]. The robot model used for the simulations takes into ac-
count the vehicle dynamics and the existence of sliding effects
between wheels and ground. To this purpose, the wheels traction
model originally proposed in [19] has been adopted. The vehicle
moves at a constant longitudinal velocity, thus the shape of the
lateral acceleration is similar to the curvature shape, while the
jerk profile mimics the curvature derivative profile. Fig. 8 shows
the lateral acceleration and the lateral jerk acting on the vehicle
during its movement along the nominal path. The detail in the
same figure reveals how the lateral skidding phenomenon can
appear every time lateral accelerations and jerks are sufficiently
high. As previously asserted, lateral jerk is directly correlated
to the curvature derivative and, consequently, the nominal case
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is characterized by smaller lateral solicitations, being an almost
optimal solution for problem 2. On the contrary, Fig. 9 reveals
that if and are increased, the lateral skidding phenom-
enon can more easily appear owing to the higher lateral stresses
acting on the vehicle. The situation does not improve when
and are decreased with respect to the optimal values, as can
be evinced from Fig. 10.

V. CONCLUSION

Smart planar curves, suited for autonomous robots, can be
generated by means of -splines. Acting on a vector of freely
tunable parameters, it is possible to shape -splines such to ful-
fill a given optimality criterion. The selection of represents a
key point for the generation of optimal paths: a wrong choice can
easily introduce undesired vehicle solicitations. In particular, it
has been shown how, by acting on , it is possible to generate
curves with minimum curvature derivative with the purpose of
minimizing the vehicle lateral jerk. In order to avoid the execu-
tion of huge online optimizations, a heuristic method has been
proposed for the suboptimal selection of . When interpolating
conditions are compatible with circular arcs and clothoids, the
devised expressions generate curves which at the best emulate
such primitives. In the case of generic interpolating conditions,
the curvature derivative is very close to the actual achievable
minimum.
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