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Minimum-jerk velocity planning for mobile robot
applications

Corrado Guarino Lo Bianco, Member

Abstract—The paper studies an assigned-time velocity planning prob-
lem for robotic systems that are subject to velocity and acceleration
constraints. The planning problem, that is justified by several robotic
applications, poses feasibility issues that are investigated in the paper.
In particular, the paper shows that feasible solutions exist if and only if
proper interpolating conditions are assigned, and proposes an efficient
planning strategy, that is suitable for online implementations. Available
degrees of freedom are used to smooth the velocity function by minimizing
its maximum jerk.

I. INTRODUCTION

The optimal trajectory planning problem has been widely investi-
gated in robotics. Several optimality criteria have been considered,
but two of them are the most frequently adopted: Traveling times are
commonly minimized for productivity reasons, while minimum-jerk
trajectories are planned for smoothness reasons.

Minimum-time trajectories have been initially handled by means of
offline constrained optimization approaches. In particular, constraints
typically concerned kinematics bounds – joint velocities, accelera-
tions, and jerks cannot evidently exceed some given maximum values
[1] – and/or dynamics bounds – joint torques [2], [3] or torque
derivatives [4] must be limited within given intervals. – In order to
handle rapidly mutating scenarios, recent approaches focus on online
strategies. In [5], for example, step reference signals are interpolated
by trajectories that admit bounded velocities, accelerations, and jerks.
A similar result is achieved in [6] by using a parabolic shape for the
jerk signal, thus obtaining almost optimal solutions, while the exact
solution that has been proposed in [7] is also able to manage variable
input signals. The study on minimum-time solutions has been recently
enlarged in [8]–[11] by considering multidimensional trajectories.

The generation of minimum-jerk trajectories, that are typically
used to reduce mechanical solicitations and to obtain better control
performances, represents another optimal planning problem that is
often considered in the literature. Traveling time is not minimized,
but, conversely, it is determined by the task. Minimum-jerk fixed-
time trajectories can easily be applied in robotic or electromechanical
contexts, where they are used to avoid collisions [12] or to intercept
moving objects [13]. It is also worth to mention the existence of
hybrid strategies, like the one that is proposed in [14] for a multi-axis
system, in which the performance index is obtained by combining
traveling time with the integral of the squared jerk along the curve.

The minimum-jerk problem was introduced in [15] for a multidi-
mensional point-to-point movement subject to torque constraints. The
problem was offline solved by means of standard optimization pro-
grams. A global approach, that was based on interval techniques, was
later proposed in [16] for an unconstrained point-to-point movement.

Even in this field, the attention is currently migrating to online
strategies. Still considering unconstrained problems and point-to-
point movements, in [17] and in [12], online approaches have been
proposed for the minimization of the integral of the squared jerk.
Alternatively, a genetic algorithm has been used in [18] in order
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to manage a larger class of problems, by considering constraints
on positions, velocities, and accelerations and by admitting generic
interpolating conditions.

The constrained minimum-jerk problem that was studied in [18],
differently from minimum-time problems or from minimum-jerk
unconstrained problems, is characterized by feasibility issues: De-
pending on the interpolating conditions and on the constraints, it can
admit no feasible solutions. An initial study on the feasibility issues of
minimum-jerk problems was proposed in [13] by only considering the
velocity constraint. The analysis was deepened in [19] by introducing
the acceleration bounds and by providing sufficient conditions for the
solution existence.

In this paper, the feasibility problem is further analyzed and nec-
essary and sufficient conditions are devised to check the existence of
solutions. Additionally, if such conditions are satisfied, a procedure,
that is exclusively based on closed form expressions, is proposed for
an efficient evaluation of an initial feasible trajectory. Such trajectory
is subsequently improved by means of an optimization algorithm that
minimizes its maximum jerk by acting over a suitably parametrized
subset of the complete set of feasible solutions. The knowledge
of an initial feasible solution is mandatory, because the problem
is nonlinear: Offline commercial programs are often unable to find
the feasible area. The results here proposed were early anticipated,
without demonstrations, in [20]. In this new paper, the approach is
analytically demonstrated and more experimental results are reported
in order to verify its performances.

The paper is organized as follows. The problem motivations
are discussed in §II, where the velocity planning problem is also
formulated. In subsequent §III, necessary and sufficient conditions
are proposed to guarantee the existence of feasible solutions, while
in §IV a procedure is devised for the evaluation of one of them: Its
feasibility is proved in the Appendix section. In §V, the reliability of
the algorithm is checked by means of an extended set of tests. Final
considerations are drawn in §VI.

II. THE VELOCITY PLANNING PROBLEM: MOTIVATION AND

REQUIREMENTS

The minimum-jerk problem considered in this paper was originally
motivated by the planning scenario that is shown in Fig. 1. A mobile
robot, that is placed at time t = 0 in B, must hit a ball initially
located in A. A supervisor, on the basis of the ball trajectory, poses
the interception point in C at time t = te. Clearly, for a correct
task accomplishment, the fulfillment of the assigned traveling time
is mandatory. The desired motion can be achieved, e.g., by means
of the control strategy proposed in [21], that uses the path-velocity
decomposition paradigm [22], i.e., the trajectory is obtained by
combining a parametric path f(s), with a longitudinal time-law s(t).
The path can be evaluated, e.g., according to the procedure proposed
in [23], while s(t) can be computed according to the minimum-jerk
strategy described in this paper.

B

A

C

t = 0

t = 0

t = te

s(t) D

Fig. 1. Trajectory planning for a mobile robot.
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Mentioned application directly suggests the time-law planning
requirements. Function s(t) must guarantee that path length se is
exactly traversed in te seconds, i.e., s(te) = se. As a consequence,
velocity v(t) := ṡ(t) must fulfill the following equation

se =
∫ te

0
v(τ)dτ . (1)

Because of the analysis that was reported in [21], v(t), for smoothness
reasons, must be continuous together with its first derivative, i.e.,
v(t) ∈ C 1([0, te]). Still for smoothness reasons, the longitudinal jerk
along the trajectory must be minimized.

The robot physical limits must be necessarily fulfilled. This result
is achieved by limiting v(t) and a(t) within proper bounds

0 < v(t)≤ ṽ ,∀t ∈ (0, te) , (2)

|a(t)| ≤ ã ,∀t ∈ [0, te] , (3)

where ṽ and ã are user defined limits. It is worth noticing that the
velocity lower bound has been posed equal to zero in order to avoid
useless backward movements.

The C 1-continuity of v(t) must also be guaranteed in case of
anticipated re-plannings, e.g., to reach the new contact point D in
Fig. 1. To this purpose, velocity v(0) and acceleration a(0) need to
be arbitrarily assigned. Analogously, the target is reached with the
correct status of motion only if proper values can be imposed to
v(te) and to a(te). Thus, named vs and as the boundary conditions at
the start point, and ve and ae those at the end point, the following
equations must be satisfied

v(0) = vs ,v(te) = ve ,a(0) = as ,a(te) = ae . (4)

As it has been early announced, only positive velocities are consid-
ered: A velocity equal to zero is only admitted for t = 0 and t = te, so
that vs,ve ∈ [0, ṽ]. Moreover, when vs = 0, condition (2) is satisfied
only if as ≥ 0, while, if ve = 0, it is necessary to impose ae ≤ 0.
Analogously, if vs = ṽ, it is necessary to guarantee that as ≤ 0, while
if ve = ṽ then, necessarily, ae ≥ 0. Finally, the boundary conditions
on the acceleration must also satisfy (3), i.e., as,ae ∈ [−ã, ã].

Due to previous definitions and assignments, it is possible to define
a feasible profile v(t) as follows

Definition 1: A curve v(t) ∈ C 1 ([0, te]) is feasible if it satisfies
conditions (1)–(4).

The paper is devoted to solve the following planning problem
Problem 1: Given a path of length se and a traveling time te,

let design a feasible velocity function v(t) ∈ C 1([0, te]) that satisfies
generic boundary conditions vs,ve ∈ [0, ṽ] and as,ae ∈ [−ã, ã], where
ṽ, ã > 0 are assigned and proper bounds on the velocity and on the
acceleration.

The problem is characterized by feasibility issues. For this reason,
necessary and sufficient closed form expressions must be devised in
order to verify the existence of a solution. This is an important feature
since, if Problem 1 is unfeasible, the supervisor must immediately
try a different approach to the moving object.

An important aspect that must be carefully considered is rep-
resented by the evaluation times. For the robotic application here
considered, good performances are obtained if trajectories are updated
every 1e-1 s: The computational burden of the time-law planner
must be compatible with such time. Actually, as shown in §V,
obtained evaluation times are well below such limit, thus the proposed
approach can also be used in more demanding contexts.

In the paper, ṽ and ã are supposed to be constant while, in
more realistic scenarios, they are influenced by kinematic and/or
dynamic constraints. For variable values of ṽ and ã, the feasibility
conditions provided in the following are only sufficient to prove the

solutions existence, but the planning scheme is still usable, as proved,
e.g., in [24], where the time-law was found by considering variable
constraints that were function of the path geometry.

III. A FEASIBILITY RESULT

The posed feasibility issue is solved by the following proposition:
Proposition 1: A feasible solution of Problem 1 exists with cer-

tainty if and only if the following conditions simultaneously hold

|vs− ve|< ãte , (5)
se <

[
te +

vs + ve− ṽ
ã

]
ṽ− v2

s + v2
e

2ã
if vs + ve + ãte > 2 ṽ

se <
(vs + ve)te

2
+

ãt2
e

4
− (vs− ve)

2

4ã
if vs + ve + ãte ≤ 2 ṽ

(6)


se >

v2
s + v2

e
2ã

if vs + ve− ãte < 0

se >
(vs + ve)te

2
− ãt2

e
4

+
(vs− ve)

2

4ã
if vs + ve− ãte ≥ 0

(7)

Proof - The proof is based on the hypothesis that assigned interpo-
lating conditions are compatible with the bounds on the maximum
velocity and acceleration, i.e., vs,ve ∈ [0, ṽ], as,ae ∈ [−ã, ã].

Necessity - It is necessary to prove that, for any feasible solution
of Problem 1, conditions (5)–(7) hold.

Velocity v(t) can be expressed as

v(t) = vs +
∫ t

0
a(τ)dτ . (8)

If v(t) is feasible, then condition (3) holds, so that it is possible to
infer that

v(t) ≤ vs +
∫ t

0
ã dτ = vs + ãt , ∀t ∈ [0, te] , (9)

v(t) ≥ vs−
∫ t

0
ã dτ = vs− ãt , ∀t ∈ [0, te] . (10)

Both conditions must also apply for t = te. Thus, it is possible to
assert that, for any feasible solution, the following two inequalities
must simultaneously apply

ve = v(te)≤ vs + ãte , (11)

ve = v(te)≥ vs− ãte . (12)

Simple manipulations on (11) and (12) lead to the following inequal-
ity

|vs− ve| ≤ ãte . (13)

In (13), the equality sign is only compatible with a solution in which
v(t) is a linear segment directly joining vs with ve and characterized
by the following interpolating conditions: as = ae = (ve − vs)/te,
|as|= |ae|= ã, se = (vs+ve)te/2. This particular case can be handled
separately, while, for generic interpolating condition, (5) must be used
instead of (13).

The same result could also have been achieved by evaluating v(t)
through a backward integration, i.e., by starting from t = te

v(t) = ve +
∫ t

te
a(τ)dτ . (14)

Thus, any feasible profile must also fulfill the following inequalities

v(t) ≤ ve−
∫ t

te
ã dτ = ve + ã(te− t) , ∀t ∈ [0, te] , (15)

v(t) ≥ ve +
∫ t

te
ã dτ = ve− ã(te− t) , ∀t ∈ [0, te] . (16)

A few algebraic manipulations lead again to (13) and, in turn, to (5).
Equations (9), (10), (15), and (16) are also instrumental in order

to devise (6) and (7). Evidently, (9), (10), (15), and (16) map the



3

v t( )

v
s

v
~

t
e

t

v
e

a
~

a
~-a

~

-a
~

Fig. 2. An example of the feasible area for a generic velocity profile.
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Fig. 3. Maximum admissible area of any feasible velocity profile.

acceleration bounds into equivalent bounds for the velocity profile.
Further constraints on v(t) are added by (2), thus it is possible to
assert that any feasible profile must lay inside the white area that
is shown in Fig. 2. This implies that the area of any feasible curve
v(t) is superiorly and inferiorly bounded because of the constraints.
In particular, (6) and (7) respectively account for the limits on the
maximum and on the minimum area that any feasible v(t) can assume
depending on the interpolating conditions.

Let us focus the attention on (6). Depending on the initial and
final boundary conditions, the two situations that are shown in
Fig. 3 can arise. In the case of Fig. 3a, the velocity upper bound
ṽ can never be reached owing to ã, vs and ve. By means of some
algebraic manipulations it is possible to prove that the configuration
of Fig. 3a is characterized by vs +ve + ãte ≤ 2 ṽ while, viceversa, the
configuration of Fig. 3b is characterized by vs + ve + ãte > 2 ṽ. As a
consequence, the maximum admissible area of any feasible velocity
function cannot be greater than the two white areas of Fig. 3. It is
simple to prove that the area of the feasible zone in Fig. 3a is equal

to
(vs + ve)te

2
+

ãt2
e

4
− (vs− ve)

2

4ã
, while, in the case of Fig. 3b, it is

equal to
[

te +
vs + ve− ṽ

ã

]
ṽ− v2

s + v2
e

2ã
. In both the two cases, such

maximum values can never be exactly reached by means of a feasible
curve: Because of the required C 1 continuity, it is not possible to
generate cuspid points like those pointed out by the circles of Fig. 3,
so that, according to (6), for any feasible solution, se is strictly smaller
than the above mentioned limits.

Similar considerations apply for (7), but the bounds concern
the minimum admissible area of any feasible curve. One of the
two cases that are shown in Fig. 4a or in Fig. 4b can appear.
In the first case vs + ve − ãte > 0 and the area of v(t) must be

greater than
(vs + ve)te

2
− ãt2

e
4

+
(vs− ve)

2

4ã
, while in the second one

vs + ve − ãte ≥ 0 and se must be greater than
v2

s + v2
e

2ã
. Again, the

two given limits cannot be exactly obtained owing to the continuity
constraint.

Sufficiency - The sufficiency condition is proved if it is possible to
demonstrate that (5)–(7) imply that a feasible solution for Problem 1
exists with certainty. In the next §IV a method for the synthesis
of a feasible solution is proposed under the hypothesis that (5)–(7)
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Fig. 4. Minimum admissible area of any feasible velocity profile.
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simultaneously hold. �

IV. A FEASIBLE SOLUTION

Every time conditions (5)–(7) are fulfilled, it is possible to devise
a feasible solution for Problem 1. Such solution is not unique, so that
the approach that is proposed in the following returns just one among
all the feasible functions. The proposed solution has two peculiarities.
First of all, it is obtained by means of closed form expressions,
thus with a negligible evaluation time. Secondly, due to the adopted
parametrization, it is characterized by several degrees of freedom that
can be later used to optimize a given performance index. Since in
this paper smoothness covers a relevant role, available degrees of
freedom are spent to minimize the maximum jerk associated to v(t).

The adopted velocity function v(t) is made of seven parabolic
curves that are defined over as many time intervals ti (i = 1, . . . ,7)

vi(t) := p1i +2p2it +3p3it2, t ∈ [0, ti] . (17)

Correspondingly, for each vi(t) it is possible to define a curvilinear
coordinate si(t), an acceleration function ai(t), and a jerk function
ji(t) where

si(t) = p1it + p2it2 + p3it3, t ∈ [0, ti], (18)

ai(t) = 2p2i +6p3it, t ∈ [0, ti], (19)

ji(t) = 6p3i, t ∈ [0, ti]. (20)

Notice that, at the beginning of each interval, time t and curvilinear
coordinate si(t) start from zero. Boundary velocities and accelerations
are synthetically indicated in the following by “overlined” symbols,
so that, e.g., v2(0) = v1(t1) = v̄1 (see also Fig. 5).

The choice of a seven segments profile guarantees that a feasible
solution can be found independently from the assigned planning
conditions. The most critical situations are those in which (6) or
(7) are almost violated. In such cases, the admissible solutions must
necessarily assume shapes that are similar to those that are shown
in Figs. 3b and 4b, i.e., they are given by linear segments, that
must be properly joined in order to fulfill the continuity condition on
the acceleration signal: With a seven segments profile, like the one
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Fig. 6. Typical velocity and acceleration profiles obtained at the end of
Step 1.

that is shown in Fig. 6, it is always possible to generate a feasible
solution. Profiles with a higher number of segments can be evidently
adopted, but this choice would obviously increase the evaluation times
of the subsequent optimization problem. Similar considerations hold
for the degree of the polynomial curves: The seven segments, cubic
polynomial profile is the minimum order solution that can be used
to interpolate any free set of planing data and that leaves sufficient
degrees of freedom for the jerk minimization.

Coefficients p ji can be evaluated according to the equations that are
provided in [20]. They were originally obtained by imposing the C 1

continuity of the overall curve and the fulfillment of boundary condi-
tions (4). Coefficients p ji are parametrized by seven traveling times,
i.e., t1, t2, t3, t4, t5, t6, t7, seven velocities, i.e., v̄0, v̄1, v̄2, v̄3, v̄4, v̄5, v̄7,
and two accelerations, i.e., ā0, ā7. Some of those parameters are
imposed by the problem constraints. For example, the constraint on
the total traveling time is taken into account by imposing

t4 = te− ∑
i=1,2,3,5,6,7

ti . (21)

Analogously, terms v̄0 = vs, ā0 = as, v̄7 = ve, and ā7 = ae are assigned
by the user, so that the overall profile is actually function of the
following eleven free elements

h = [h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11]
T

:= [t1 t2 t3 t5 t6 t7 v̄1 v̄2 v̄3 v̄4 v̄5]
T , (22)

where h ∈H := (0, te)6× (0, ṽ]5.
Let us suppose that (5)–(7) simultaneously hold and that conditions

vs,ve ∈ [0, ṽ], and as,ae ∈ [−ã, ã] are fulfilled. Moreover, let us
indicate by S the area of v(t). Under such hypotheses, it is possible
to evaluate a feasible solution for Problem 1 by means of following
four steps procedure:

Step 1 - Specialize the spline equations in order to obtain an
appropriate shape for v(t);

Step 2 - Find a velocity profile such that v(t)∈ [0, ṽ], a(t)∈ [−ã, ã],
traveling time is equal to te and S > se;

Step 3 - Find a velocity profile such that v(t)∈ [0, ṽ], a(t)∈ [−ã, ã],
traveling time is equal to te and S < se;

Step 4 - Find a feasible v(t).

The four steps procedure is detailed in the following, while, in order
to lighten the presentation, the feasibility of v(t) is proved in the
Appendix section.

Step 1 - The spline equations are specialized in order to obtain the
almost trapezoidal shape of v(t) that is shown in Fig. 6. In particular,
this result is obtained by imposing the linearity of v(t) inside intervals
2,4, and 6 (p32 = p34 = p36 = 0), the condition v̄4 = v̄3, and by
assigning t3 = t5 = t7 := t1. The simplified profile, which coefficients
are reported in [20], is parametrized by means of a reduced number
of coefficients, more precisely it is only function of t1, t2, t6, and v3.

The velocity profile is further specialized by choosing the max-
imum strictly positive value of t1 that simultaneously satisfies the
following conditions

t1 ≤



te
4 if (vs = 0)&(ve = 0)

min
{

2ve
ae+2as+2 ã ,

2(−te ã+ve)
ae+2as−6ã

}
if (vs = 0)&(ve > 0)

min
{
− 2vs

as+2ae−2ã ,
2(te ã−vs)

as+2ae+6 ã

}
if (vs > 0)&(ve = 0)

min
{

2(vs+ve−te ã)
ae−as−4 ã , 2vs

2 ã−as
, 2ve

2 ã+ae

}
if (vs > 0)&(ve > 0)&(vs + ve− ãte < 0)

, (23)

t1 ≤



te
4 if (vs = ṽ)&(ve = ṽ)

min
{
−2(−ve+ṽ)
ae+2as−2 ã ,

−2(ṽ−te ã−ve)
2as+6 ã+ae

}
if (vs = ṽ)&(ve < ṽ)

min
{

2(ṽ−vs)
2ae+as+2 ã ,

2(−vs−te ã+ṽ)
as−6 ã+2ae

}
if (vs < ṽ)&(ve = ṽ)

min
{

2(ve+vs−2 ṽ+te ã)
4 ã+ae−as

,
2(ṽ−vs)
2 ã+as

,
2(ṽ−ve)
2 ã−ae

}
if (vs < ṽ)&(ve < ṽ)&(vs + ve + ã te)> 2 ṽ

,

(24)

t1 ≤ min
{

2(vs−ve+te ã)
10 ã−ae−as

,
2(ve−vs+te ã)
10 ã+ae+as

}
if (vs + ve + ãte ≤ 2 ṽ) or (vs + ve− ãte ≥ 0) , (25)

t1 < t̃(α,β ,δ ), (26)

t1 < t̂(µ,ρ,ν). (27)

where min{·} indicates the minimum value of a set, while t̃(α,β ,δ )
and t̂(γ,ρ,ν) represent the minimum, strictly positive, root of equa-
tions α t̃2 +β t̃ +δ = 0 and µ t̂2 +ρ t̂ +ν = 0, which coefficients are
respectively defined in Table I.

In the Appendix section, it is shown that conditions (23)–(27) are
essential in order to find a solution that fulfills (1) and (2), i.e., the
area and the velocity constraints.

At the end of Step 1 all the curve parameters have been assigned
apart from partial traveling times t2, t6, and velocity v̄3.

Step 2 - A velocity function v(t) is found such that v(t) ∈ [0, ṽ],
a(t) ∈ [−ã, ã], and S < se. To this purpose, t2, t6 and v̄3 are selected
as follows

v̄′3 =



as t1 if (vs = 0)&(ve ≥ 0)
−ae t1 if (vs > 0)&(ve = 0)
0 if (vs > 0)&(ve > 0)&(vs + ve− ã te < 0)
6ã+as−ae

4
t1 +

vs + ve− teã
2

if (vs > 0)&(ve > 0)&(vs + ve− ã te ≥ 0)

,

(28)

t ′2 :=

 0 if vs ≤ v̄′3
vs− v̄′3

ã
+
( as

2ã
−1
)

t1 if vs > v̄′3
, (29)
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TABLE I
COEFFICIENTS THAT ARE USED FOR THE EVALUATION OF t1

(vs = 0)&(ve = 0)
α =− 5as

3 −
ae
3

β = te as
δ =−se

(vs = 0)&(ve > 0)
α = as

as+ae
2 ã −

14as+ae
12 +

a2
e

8 ã
β = ve+2 te as

2 − ve
2as+ae

2 ã

δ =
v2

e
2 ã − se

(vs > 0)&(ve = 0)
α = ae

as+ae
2 ã + 14ae+as

12 +
a2

s
8 ã

β = vs−2 te ae
2 + vs

2ae+as
2 ã

δ =
v2

s
2 ã − se

(vs > 0)&(ve > 0)
&(vs + ve− ã te < 0)

α = as−ae
12 +

a2
s+a2

e
8 ã

β = as vs−ae ve
2 ã + vs+ve

2

δ =
v2

s+v2
e

2 ã − se

(vs > 0)&(ve > 0)
&(vs + ve− ã te ≥ 0)

α = 2(ae−as)+9 ã
12 + (as+ae)

2

16 ã
β = (as+ae)(vs−ve)

4 ã + (2 ã+as−ae) te
4

δ = (vs+ve) te
2 − ã t2

e
4 + (vs−ve)

2

4 ã − se

(vs = ṽ)&(ve = ṽ)
µ =− 5as

3 −
ae
3

ρ = te as
ν =−se + ṽ te

(vs = ṽ)&(ve < ṽ)
µ =−as

as+ae
2 ã −

14as+ae
12 − a2

e
8 ã

ρ = ve+2 te as
2 + ve

2as+ae
2 ã − ã+ae+2as

2 ã ṽ

ν =− v2
e

2 ã − ṽ ṽ−2 te ã−2ve
2 ã − se

(vs < ṽ)&(ve = ṽ)
µ =−ae

as+ae
(2 ã) + 14ae+as

12 − a2
s

8 ã

ρ = vs−2 te ae
2 − vs

2ae+as
2 ã − ṽ ã−2ae−as

2 ã

ν =− v2
s

2 ã − ṽ ṽ−2vs−2 te ã
2 ã − se

(vs < ṽ)&(ve < ṽ)
&(vs + ve + ã te > 2 ṽ)

µ = as−ae
12 −

a2
s+a2

e
8 ã

ρ = (as−ae) ṽ−as vs+ae ve+(ve+vs−2 ṽ) ã
2 ã

ν = (te + vs+ve−ṽ
ã ) ṽ− v2

s+v2
e

2 ã − se

(vs < ṽ)&(ve < ṽ)
&(vs + ve + ã te ≤ 2 ṽ)

µ = 2(ae−as)−9 ã
12 − (as+ae)

2

16 ã
ρ = (as+ae)(ve−vs)

4 ã + (as−ae−2 ã) te
4

ν = (vs+ve) te
2 +

ã t2
e

4 −
(vs−ve)

2

4 ã − se

t ′6 :=

 0 if ve ≤ v̄′3
ve− v̄′3

ã
−
( ae

2ã
+1
)

t1 if ve > v̄′3
. (30)

It is worth to point out that the obtained solution is not feasible
because it does not fulfill neither the area, nor the velocity constraints
(indeed, v(t) can be equal to zero inside [0, te]). Conversely, the
acceleration constraint is certainly satisfied since, by means of few
algebraic manipulations, it is possible to prove that a1(t1) =−ã and
a7(0) = ã. v(t) assumes a shape that is similar to one of those that
are shown in Fig. 4.

Step 3 - A velocity function v(t) is found such that v(t) ∈ [0, ṽ],
a(t) ∈ [−ã, ã], and S > se. To this purpose, t2, t6 and v̄3 are selected
according to the following equations

v̄′′3 =



as t1 + ṽ if (vs = ṽ)&(ve ≤ ṽ)
−ae t1 + ṽ if (vs < ṽ)&(ve = ṽ)
ṽ if (vs < ṽ)&(ve < ṽ)

&(vs + ve + ã te > 2 ṽ)
as−ae−6ã

4
t1 +

vs + ve + teã
2

if (vs > 0)&(ve > 0)
&(vs + ve + ã te ≤ 2 ṽ)

, (31)

t ′′2 :=

 0 if vs ≥ v̄′′3
v̄′′3− vs

ã
−
( as

2 ã
+1
)

t1 if vs < v̄′′3
, (32)

t ′′6 :=

 0 if ve ≥ v̄′′3
v̄′′3− ve

ã
+
( ae

2 ã
−1
)

t1 if ve < v̄′′3
. (33)

Also this solution is not feasible because it does not fulfill neither
the area, nor the velocity constraints (indeed, v(t) can be equal to ṽ
inside [0, te]). Again, the acceleration constraint is certainly satisfied
since a1(t1) = ã and a7(0) =−ã, while v(t) assumes a shape that is
similar to one of those that are shown in Fig. 3.

Step 4 - A feasible solution for Problem 1 is found. In particular,
v̄3 is posed equal to the minimum, positive-defined solution of the
following equation

σ v̄2
3 +η v̄3 +ζ = se , (34)

where

σ = −
t ′′6 + t ′′2 − t ′6− t ′2

2(v̄′′3− v̄′3)
, (35)

η =
(t ′′2 − t ′2)(ast1 +2vs +2v̄′3)

4(v̄′′3− v̄′3)
+ te−2t1−

(t ′2 + t ′6)
2

−
(t ′′6 − t ′6)(aet1−2ve−2v̄′3)

4(v̄′′3− v̄′3)
, (36)

ζ =
as−ae

3
t2
1 +

ast ′2−aet ′6
4

t1 +(vs + ve)t1 +
vst ′2 + vet ′6

2

−v̄′3
(2vs +ast1)(t ′′2 − t ′2)+(2ve−aet1)(t ′′6 − t ′6)

4(v̄′′3− v̄′3)
. (37)

The existence with certainty of such solution is proved in the
Appendix section, where it is also shown that v̄3 ∈ (v̄′3, v̄

′′
3). The

demonstration if based on the fulfillment of (5)–(7).
Traveling times t2 and t6 are successively selected as follows

t2 := t ′2 +
t ′′2 − t ′2
v̄′′3− v̄′3

(v̄3− v̄′3) , (38)

t6 := t ′6 +
t ′′6 − t ′6
v̄′′3− v̄′3

(v̄3− v̄′3) . (39)

Despite the apparent complexity of (23)–(39), the procedure for
the evaluation of the feasible solution is very efficient. Indeed, (23)–
(39) are algebraic closed-form expressions that immediately return,
when sequentially executed, a feasible solution for Problem 1.

Some final remarks can be useful to understand why the feasible
solution has been obtained by means of the four steps approach.
Smoothness represents one of the design requirements. In Ap-
pendix B, it will be shown that v(t) is obtained by “averaging” the two
solutions found at Step 2 and Step 3. In this way, it is characterized by
accelerations and velocities that are kept far from the given bounds.
Moreover, the averaging effect applies also to the jerk, that is smaller
for the final v(t). Practically, the four steps approach returns solutions
that, still being far from optimality, are sufficiently smooth to be
directly used in a robotic context.

Such solutions are characterized by jerks that, still being finite,
can potentially assume large values. For this reason, the final time-
law is devised through a jerk minimization. To this purpose, the
imposed restrictions on h are first dropped, thus considering h as
composed by 11 independent parameters, then the acquired degrees
of freedom are used to minimize the maximum jerk, by starting from
feasible solution (23)–(39). Obviously, the optimization algorithm
must preserve feasibility conditions (1)–(4). The adopted solver must
possess two characteristics: It must be efficient, in order to be
executed online, and it must return the final minimizer by passing
through a sequence of feasible solutions. In this way, a feasible
trajectory is constantly available and it can be used if convergence
times are not compatible with the sampling rate. The optimization
problem is nonlinear, so that the two requirements are very stringent.
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An extension of a reliable and efficient algorithm, that was originally
proposed in [13], has been used in next §V, while a more performing
strategy can be found in [25]. Since the optimization algorithm is not
the objective of this work, the interested reader can refer to that papers
for details.

V. TEST CASES

The test problems proposed in the following are mainly intended to
verify the approach effectiveness and its compatibility with an online
implementation, so that particular attention has been devoted to the
execution times.

The first problem concerns a critical situation, in which assigned
planning data almost violate (6) and (7), so that the feasible zone is
very narrow: Several commercial solvers were not able to converge
to any feasible solution. The path length is se = 11, while traveling
time is te = 18. The velocity and acceleration limits are respectively
equal to ṽ = 0.7, ã = 0.2. The following boundary conditions are
considered: vs = 0.01, ve = 0.7, as = −0.2, ae = 0.0. The initial
solution, found by means of (23)–(39), and the optimal one are
compared in Fig. 7. Owing to the very critical planning conditions, the
two solutions have similar shapes. Nevertheless, the optimal solution
is characterized by a neatly smaller maximum jerk, as can be evinced
from Table II.

The second example regards a less critical planning scenario, in
which boundary conditions are well inside the feasible region. The
path length is se = 8 while the traveling time is te = 18. The velocity
and the acceleration limits are still equal to ṽ = 0.7, ã = 0.2, while
boundary conditions are set equal to vs = 0.05, ve = 0.4, as =−0.2,
ae =−0.2. This time, the optimal solution is quite different from the
initial one and it is characterized by a better performance index. In
both cases, the velocity and the acceleration constraints are fulfilled,
as can be evinced from Fig. 7. In the first example convergence is
achieved in 2.74e-3 s (Intel Centrino 2, @2.53 GHz), while, in the
second case, the solution is obtained in 3.22e-3 s. It is worth to point
out that the computational burden is only due to the optimization
process, while the initial solution is found by the four steps procedure
in a negligible time.

Computational times are compatible with planning scenarios that
require very frequent updates. It is important to establish the approach
performances in case of early stops. To this purpose, an extended set
of experiments has been executed. For each of them, the interpo-
lating conditions have been randomly chosen among the following
ranges: se ∈ [10,30], te ∈ [10,30], ṽ ∈ [0.4,0.7], ã ∈ [0,10], vs ∈ [0, ṽ],
ve ∈ [0, ṽ], as ∈ [−ã, ã], and ae ∈ [−ã, ã]. Interpolating conditions that
were not compatible with (5)–(7) have been discarded in advance,
so that the algorithm proposed in §IV has always returned an initial
feasible solution, that has been subsequently improved by means of
the optimization strategy. Performances have been quantified through
the difference, expressed in percentage, between the cost index that is
obtained by early stopping the algorithm and the cost index that could
have been obtained at the convergence. Each cell of Table II indicates
the number of instances, over 100 runs, in which such difference is
below the given thresholds. For example, if the algorithm is stopped
after 5e-3 s, in the 92% of the runs the cost difference is below 1%.
All solutions, even those concerning early interrupted instances, were
feasible, since the optimization algorithm never abandons the feasible
area.

VI. CONCLUSIONS

A feasibility issue regarding a constrained velocity planning prob-
lem has been analyzed and solved in the paper. In particular, neces-
sary and sufficient conditions have been devised for the existence of

TABLE II
THE INITIAL GUESS ĥ AND THE FINAL SOLUTION h∗ FOR THE TWO TEST

CASES

t1 t2 t3 t5 t6 t7 v̄1 v̄2 v̄3 v̄4 v̄5 jmax

First problem

ĥ 0.0333 3.30 0.0333 0.0333 0.132 0.0333 0.0100 0.670 0.673 0.673 0.676 11.995

h∗ 0.195 3.30 0.105 0.105 0.114 0.0873 9.98−3 0.670 0.681 0.666 0.676 2.0469

Second problem

ĥ 0.167 2.164 0.167 0.167 1.461 0.167 0.0493 0.463 0.478 0.478 0.475 2.3457

h∗ 0.905 2.164 0.905 0.257 0.453 0.221 0.0336 0.395 0.478 0.478 0.473 0.4021

TABLE III
CELLS REPORT THE NUMBER OF RUNS (OVER 100) IN WHICH THE COST

INDEX AT THE STOP TIME DIFFERS FROM THE HOMOLOGOUS OF THE
OPTIMAL SOLUTION FOR LESS THAN A GIVEN PERCENTAGE.

stop time 0.1% 1% 10% 50% 100%

1e-3 s 30 39 46 55 63
2e-3 s 49 59 62 79 85
3e-3 s 63 74 82 91 95
4e-3 s 73 84 90 99 100
5e-3 s 84 92 96 100 100

a velocity profile subject to velocity and acceleration constraints. If
feasibility conditions are satisfied, a suitable solution is obtained by
means of closed form expressions. Such solution can successively
be improved through optimization algorithms that minimize the
maximum longitudinal jerk. Reduced evaluation times have been
verified, so that the approach can be suitably used in online planning
schemes.
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APPENDIX

The algorithm that has been proposed in §IV returns a feasible
solution for Problem 1 every time conditions (5)–(7) are satisfied.
In order to prove this assertion, let us draw some preliminary
considerations. The velocity profile that is shown Fig. 6 has the
following characteristics:
• In the second, fourth, and sixth time intervals, v(t) is linear, so

that a(t) is constant. Moreover, in the fourth time interval v(t)
is constant and a(t) = 0;

• In the first, third, fifth, and seventh time intervals, v(t) is
parabolic;

• Time intervals are chosen such that t1 = t3 = t5 = t7;
Several conclusions can be drawn from the above mentioned charac-
teristics:
• The acceleration constraint can only be violated in the second

and in the sixth time intervals.
• The velocity function can only admit maxima or minima along

the parabolic segments. Nevertheless, in the third interval, be-
cause of the acceleration continuity, such maximum (or min-
imum) coincides with the segment end, i.e., it is equal to
v3(t3) = v̄3, while in the fifth interval it coincides with the
segment beginning, i.e., v5(0) = v̄3: If v̄3 is feasible, the velocity
constraint cannot be violated in such intervals, so that the first
and the seventh segments are the sole candidates for the velocity
constraint violation.

The four steps algorithm generates feasible solutions for generic
interpolating conditions. However, for the sake of brevity, only the
feasibility of the most general case, characterized by vs ∈ (0, ṽ) and
ve ∈ (0, ṽ), will be discussed in the following. The proof for specific
cases, where initial and final velocities lie on the borders of the
feasible area, i.e., vs = 0 or vs = ṽ or ve = 0 or ve = ṽ, is left to
the reader and can be devised according to the same procedure.

A. The velocity constraint

It was early stated that, if v̄3 is feasible, the velocity constraint can
only be violated in the first and in the last time intervals. This can
happen if v(t) has a minimum or a maximum inside those intervals.

Let us consider the first interval. v1(t) is a parabola, so that the
velocity profile admits a minimum or a maximum only if as and
ā1 have opposite signs. This implies that, for any other possible
combination of as and ā1, including those where as = 0 or ā1 = 01, the
velocity constraint cannot be violated. Let us consider the following
proposition:

Proposition 2: If as and ā1 have opposite sign and t1 is selected
as follows

t1 ≤

{
− 2vs

as
if as < 0 and ā1 > 0

2(ṽ−vs)
as

if as > 0 and ā1 < 0
, (40)

condition (2) is fulfilled with certainty in the first time interval.
Proof - The acceleration at the end of the first time interval, is

given by

a1(t1) = ā1 = as +
2(v̄3− vs)− (2 t2 +3 t1)as

2(t2 + t1)
. (41)

Equation (41) can be solved for t2, thus leading to

t2 =
2(v̄3− vs)− (as +2 ā1)t1

2 ā1
. (42)

1If as = 0 then maxt{v1(t)}= v1(0) = vs ∈ [0, ṽ], while if ā1 = 0 it is easily
possible to prove that, owing to the shape of the simplified solution and to
the imposed continuity conditions, maxt{v1(t)}= v1(t1) = v̄1 = v̄2 = v̄3.
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In turn, (42) makes it possible to write v1(t) as follows

v1(t) = vs +as t +
ā1−as

2 t1
t2 . (43)

The maximum (or minimum) of (43) is equal to

v1(tp) = vs−
a2

s t1
2(ā1−as)

. (44)

If as < 0 and ā1 > 0 the velocity has a minimum inside the first
time interval and v1(tp) could become negative or equal to zero, thus
violating (2). In order to avoid this situation, it is sufficient to select
t1 such that v1(tp) > 0. From (44) it is possible to infer that such
condition is satisfied if the following inequality holds

t1 < 2vs
ā1−as

a2
s

. (45)

This result is automatically achieved if (40) is satisfied. Indeed, by
also taking into account that ā1 > 0, it is possible to write

2vs
ā1−as

a2
s

>−2vs
as

a2
s
=−2vs

as
≥ t1 . (46)

Similarly, if as > 0 and ā1 < 0 the velocity has a maximum inside the
first interval and v1(tp) could become greater than ṽ. This situation is
avoided by selecting t1 such to guarantee that v1(tp)≤ ṽ. From (44)
it is possible to infer that feasibility is ensured by imposing

t1 ≤−
2(ā1−as)(ṽ− vs)

a2
s

. (47)

This condition is strictly satisfied for any ā1 < 0 if (40) holds. Indeed

−2(ā1−as)(ṽ− vs)

a2
s

>
2as(ṽ− vs)

a2
s

=
2(ṽ− vs)

as
≥ t1 . (48)

�
With analogous arguments it is possible to prove that the velocity

constraint is also satisfied in the last time interval by imposing
(remember that t7 = t1)

t1 ≤

{
2ve
ae

if ae > 0 and ā6 < 0
2(ve−ṽ)

ae
if ae < 0 and ā6 > 0

. (49)

Remark 1: Because of (40) and (49), the velocity constraint is
satisfied with certainty, for any t2, t6 ≥ 0 and v̄3 ∈ (0, ṽ), provided
that a sufficiently small value of t1 is selected.

Proposition 3: The velocity constraint is satisfied or, equivalently,
(40) and (49) are fulfilled, if t1 is selected according to (23)–(25).

Proof - Still considering the general case, i.e., vs ∈ (0, ṽ) and ve ∈
(0, ṽ), let us focus the attention on the first time interval and suppose
that ā1 < 0, while as > 0: The upper velocity bound can be violated.
Two possible situations can be prefigured depending on vs +ve + ãte.
In particular, if vs +ve + ãte > 2 ṽ, then, due to (24), it is possible to
write

t1 ≤
2(ṽ− vs)

2 ã+as
<

2(ṽ− vs)

as
,

and to conclude that the velocity constraint is fulfilled because of
(40). Otherwise, if vs + ve + ãte ≤ 2 ṽ, then, due to (25), the velocity
constraint is satisfied since the following inequality holds

t1 ≤ 2(ve− vs + te ã)
10 ã+ae +as

<
ve− vs +2 ṽ− vs− ve

ã
≤ 2(ṽ− vs)

as
.

In the same way, if as < 0 and ā1 > 0, the velocity could become
negative. Again, two scenarios can be considered depending on the
sign of vs + ve− ãte. If vs + ve− ãte < 0, from (23) it descends that

t1 ≤
2vs

2 ã−as
<−2vs

as
,

i.e., (40) is satisfied. If vs + ve− ãte ≥ 0, then (40) is fulfilled since
from (25) we can infer that

t1 ≤
2(vs− ve + te ã)
10 ã−ae−as

<
2(vs− ve + vs + ve)

2 ã
≤ 4vs

−2as
=−2vs

as
.

By means of similar arguments, it is possible to demonstrate that
(23)–(25) also guarantee the velocity boundedness in the last time
interval. Demonstration is omitted for brevity. �

B. Feasibility of the four steps solution

As shown in subsection A, it is always possible to fulfill the
velocity constraint in the first and in the last time intervals by
choosing a sufficiently small t1. Relations (5)–(7) are essential in
order to prove the feasibility of the four steps solution.

Let us indicate by S the area of v(t), i.e., the path length
corresponding to v(t). The four steps approach requires the evaluation
of three different velocity profiles. The first two are unfeasible.
In particular, they do not strictly satisfy the velocity and the area
constraints. The final solution is feasible and it is found by combining
the first two.

Solution found at Step 2 (S < se) - The velocity function, that
is obtained by means of (28)–(30), is unfeasible. Indeed, it will be
shown in the following that, nevertheless its traveling time is equal
to te and it fulfills requirements (3) and (4), its area is S < se, i.e.,
(1) is not satisfied, and it also violates (2), since v(t) can be equal to
zero for t ∈ [0, te].

If condition ti ≥ 0 applies for i = 1,2, . . . ,7, then the traveling
time requirement is fulfilled owing to (21). Times t1 = t3 = t5 = t7 are
selected according to (23)–(27), thus they are certainly positive, while
the sign of t ′2, t ′4, and t ′6, depends on the planning data. Remember
that, for conciseness, it has been assumed that vs ∈ (0, ṽ) and ve ∈
(0, ṽ). Thus, according to (28), two different solutions are possible
depending on the sign of vs + ve− ãte. Let us first hypothesize that

vs + ve− ãte < 0 . (50)

v̄′3 = 0 due to (28): According to Proposition 3, the velocity constraint
is verified everywhere, apart from the fourth time interval.

Let us prove the positivity of t ′2. Due to (29) and since vs > v̄′3 = 0,
it is possible to infer that t ′2 = vs

ã +
( as

2ã −1
)

t1. Term
( as

2ã −1
)

is
strictly negative, thus because of (23), the following inequality holds

t ′2 ≥
vs

ã
+

(
as−2ã

2ã

)
2vs

2 ã−as
= 0 .

In the same way, from (30) it is possible to deduce, since
( ae

2ã +1
)

is positive and (23) holds, that

t ′6 =
ve

ã
−
( ae

2ã
+1
)

t1 ≥
ve

ã
−
(

ae +2ã
2ã

)
2ve

2 ã+ae
= 0 .

The sign of t ′4 can be verified by substituting (29) and (30) into
(21). After a few algebraic manipulations, it is possible to write

t ′4 =
ae−as−4ã

2 ã
t1−

vs + ve− teã
ã

.

Term ae−as−4ã
2 ã is clearly negative, so that, owing to (23) and (50),

the following inequality is satisfied

t ′4 ≥
ae−as−4ã

2 ã
2

vs + ve− te ã
ae−as−4 ã

− vs + ve− teã
ã

= 0 .

The fulfillment of the acceleration constraint is straightforward
owing to the shape of a(t). From Fig. 6, it is evident that (3) can only
be violated in the second and in the sixth time intervals. However,
it is easy to verify, with few algebraic manipulations, that (28)–
(30) always generate a profile in which a1(t1) = a2(0) = −ã and
a6(t6) = a7(0) = ã.
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It is further necessary to check if condition S < se holds. Once
v̄3, t2, and t6 have been assigned according to (28)–(30), S can be
posed into the following form

S = α t2
1 +β t1 + γ , (51)

where α,β , and γ are appropriate coefficients. Equation (51) can also
be written as follows

S = α t2
1 +β t1︸ ︷︷ ︸

ξ

+γ− se︸ ︷︷ ︸
δ

+se . (52)

Coefficients α , β , and δ are those reported in the fourth row of Tab. I.
Evidently δ < 0 owing to (7), so that, by choosing a sufficiently small
t1, it is certainly possible to impose ξ + δ < 0 and to achieve, as
desired, S = ξ +δ + se < se. An upper bound for t1 can be found by
selecting the minimum real, positive solution t̃ (if any) of equation
α t̃2 +β t̃ +δ = 0 and by imposing t1 < t̃: This inequality is fulfilled
because of (26) and, consequently, S < se. If α t̃2+β t̃+δ = 0 admits
no real positive solutions then, evidently, condition ξ + δ < 0 is
always satisfied independently from t1, thus t1 is only bounded by
the other inequalities of list (23)–(27).

Previous considerations apply for vs+ve− ãte < 0. In the following
it is proved that similar considerations are also valid when

vs + ve− ãte ≥ 0 . (53)

According to (28), v̄′3 is given by

v̄′3 =
6ã+as−ae

4
t1 +

vs + ve− teã
2

. (54)

Now, v′3 > 0 with certainty. Thus, according to (29), t ′2 can assume
two different values: t ′2 = 0 or

t ′2 =−
10 ã−as−ae

4 ã
t1 +

vs− ve + teã
2 ã

.

In the second case, term − 10 ã−as−ae
4 ã is clearly negative, while

vs−ve+teã
2 ã ≥ 0 owing to (5). Bearing in mind (25), it is possible to

write

t ′2 ≥−
10 ã−as−ae

4 ã
2

vs− ve + te ã
10 ã−as−ae

+
vs− ve + teã

2 ã
= 0 ,

and conclude that, as required, t ′2 ≥ 0. Similarly for t ′6 we have t ′6 = 0
or

t ′6 =−
10 ã+as +ae

4 ã
t1 +

ve− vs + te ã
2 ã

.

Being − 10 ã+as+ae
4 ã < 0, while, owing to (5), ve−vs+te ã

2 ã ≥ 0, due to
(25) it is possible to write

t ′6 ≥−
10 ã+as +ae

4 ã
2

ve− vs + te ã
10 ã+ae +as

+
ve− vs + te ã

2 ã
= 0 .

Finally, by evaluating t ′4 according to (21), the following result is
immediately achieved

t ′4 = t1 > 0 .

By means of few algebraic manipulations, it is newly possible to
prove that a1(t1) =−ã and a7(0) = ã, thus (3) is verified

The area of v(t) can still be expressed into one of the two forms
(51) or (52), where coefficients α,β , and γ are those reported in the
firth row of Tab. I. Like in the previous case, δi is negative owing to
(7), so that inequality (26) guarantees that S < se.

Solution found at Step 3 (S > se) - The solution that is found
at Step 3 shows similar characteristics, but its area is S > se. The
demonstration, that is based on the use of (5) and (6), is omitted for
the sake of conciseness, but it mimics the procedure followed for the
solution that was found at Step 2. It is worth to point out that the new

solution is characterized by the following accelerations: a1(t1) = ã
and a6(t6) =−ã.

Solution found at Step 4 (S = se) - The final feasible solution is
obtained by selecting t1 according to (23)–(27), v̄3 ∈ (v̄′3, v̄′′3) is found
by solving (34), while traveling times t2(v̄3) and t6(v̄3) are evaluated
according to (38) and (39).

Equation (34), that imposes S = se, admits with certainty at least
one solution v̄3 ∈ (v̄′3, v̄

′′
3). Indeed, if traveling times t2, t6 and t4 are

assigned according to (38), (39), and (21), the total area of v(t) can
be expressed as follows

S = σ v̄2
3 +η v̄3 +ζ , (55)

where σ ,η , and ζ are defined according to (35)–(37). By assuming
v̄3 = v̄′3, (38) and (39) return t2 = t ′2 and t6 = t ′6, i.e., the velocity
profile is the same found at Step 2 and its area is S < se. Conversely,
if v̄3 = v̄′′3 , the velocity profile is the same found at Step 3, so that
S > se. Due to the continuity of (55), there exists with certainty a
value of v̄3 ∈ (v̄′3, v̄

′′
3) such that S = se. Such value can be found by

solving (34) and it is feasible only if (2) and (3) are satisfied, all
traveling times are positive and their sum is equal to te.

Traveling times t1 = t3 = t5 = t7, being chosen according to
(23)–(27), are certainly positive. Moreover, it has been proved in
Appendix A that (23)–(27) guarantee the feasibility with respect to
the velocity constraint for any feasible value of v̄3: The chosen value
of v̄3 is evidently feasible being v̄3 ∈ (v̄′3, v̄

′′
3). t2 and t6 are positive

since they are evaluated according to (38) and (39): They linearly
depend on v̄3 and are evidently bounded between t ′2 and t ′′2 and
between t ′6 and t ′′6 , i.e., t2 ∈ (t ′2, t

′′
2 ) and t6 ∈ (t ′6, t

′′
6 ). t4 is evaluated

according to (21) so that, evidently, the traveling time requirement is
satisfied provided that t4 > 0. Solutions that were found at Step 2
and Step 3 fulfill (21) and, consequently, it is possible to write
t ′4 = te−4t1− t ′2− t ′6 and t ′′4 = te−4t1− t ′′2 − t ′′6 , and, in turn,

−(t ′′4 − t ′4) = (t ′′2 − t ′2)+(t ′′6 − t ′6) . (56)

By substituting (38) and (39) in (21), and by also considering (56),
after few algebraic manipulations, it possible to write

t4 = t ′4 +
(t ′′4 − t ′4)
v̄′′3− v̄′3

(v̄3− v̄′3) ,

i.e., t4 linearly depends on v̄3 and it lays in the positive open interval
between t ′4 and t ′′4 , i.e., t4 ∈ (t ′4, t

′′
4 ).

Finally, the fulfillment of (3) can be easily checked. As usual, (3)
can only be violated at the end of the first or at the beginning of
the last time intervals. Let us consider the first possibility, keeping
in mind that the second one can be handled by means of similar
reasonings. By virtue of (38), (41) can be posed, after several
algebraic manipulations, into the following form

a1(t1) =
ξ1 +ξ2v̄3

ξ3 +ξ4v̄3
, (57)

where ξi, i = 1,2,3,4 are given constants that only depend on the
interpolating conditions. Practically, a1(t1) hyperbolically depends on
v̄3 and, consequently, is monotonic. Moreover, the vertical asymptote
of a1(t1) lies outside interval [v̄′3, v̄

′′
3 ] since its denominator, being

given by 2(t1 + t2), can never be equal to zero. Due to Step 2 and
Step 3, when v̄3 = v̄′3 we have t2 = t ′2 and a1(t1) =−ã, while when
v̄3 = v̄′′3 we have: t2 = t ′′2 and a1(t1) = ã. Owing to the monotonicity
of (57), it is possible to conclude that a1(t1)∈ (−ã, ã),∀v̄3 ∈ (v̄′3, v̄′′3).


