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Abstract—An accurate estimation of the dynamics efforts acting on a
robot manipulator represents an important issue for both the analysis
of its behavior and the synthesis of appropriate controllers. This paper
proposes an iterative algorithm, based on the Newton-Euler approach, for
the efficient evaluation of the manipulators high order kinematics and
dynamics. In particular, the algorithm computes velocities, accelerations,
and jerks of each link, while new dynamic equations are devised in
order to evaluate the first derivative of generalized forces. Owing to its
moderate computational burden, the algorithm is suited to be used in
online applications.

Index Terms—Kinematics, dynamics, jerk, force derivative, Newton-
Euler, rigid-body manipulators.

I. INTRODUCTION

Manipulators joint forces and torques, i.e., the Generalized Forces
(GFs), are naturally bounded due to the actuators physical limits.
For this reason, the generalized force bounding problem has been
widely investigated in the past. Several solutions have been proposed,
which can be roughly divided into two categories: offline and online
approaches. Offline approaches are normally based on algorithms
for the optimal trajectory planning which consider the existence of
kinematic and/or dynamic constraints. For example, in [1] a minimum-
time movement along an assigned path was planned by accounting
for constraints on joint velocities and torques. However, when an
optimal trajectory is used, there is at least one joint which is constantly
working at the maximum of its kinematic or dynamic capabilities: due
to model uncertainties the control could easily be lost. Several online
algorithms have been developed in the past for handling this problem.
The scheme originally proposed in [2] is often cited as an example:
dynamic constraints are satisfied by means of an online method which
automatically and appropriately scales assigned trajectories.

Similarly, also Generalized Force Derivatives (GFDs) are physically
bounded. For example, in case of electric actuators, the available
supply voltage necessarily limits the GFs variation rate. Unfortunately,
closed form expressions for the evaluation of GFDs are normally
complex and time expensive. As a consequence, bounds on GFDs are
often neglected or indirectly considered by limiting jerks. For example
in [3], again in the context of offline optimal trajectory planning, kine-
matic limits on joint velocities, accelerations, and jerks were converted
into constraints for the resulting minimum-time optimization problem,
while in [4] optimality was achieved by means of an efficient online
algorithm. In other approaches, still not considering GFDs, kinematic
and dynamic constraints have been simultaneously considered. For
example, works [5]-[7] deal with minimum-time trajectory planning
problems which take into account constraints on jerks and torques.

The simultaneous existence of bounds on both GFs and GFDs was
first explicitly mentioned in [8]. The two authors proposed a dynamic
programming approach, which, unfortunately, was not sufficiently
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investigated in the paper. Later, the topic was also considered in [9] for
a discretized robot. In that paper, numerically evaluated generalized
force derivatives were used. The necessity of considering a discrete-
time model, and consequently a discrete-time problem, was justified
as follows: “...discrete computation methods are essential as the
highly nonlinear equations of motion for the manipulator dynamics
are too complex for real-time computation within a sampling interval”.
Evidently, the approach proposed in [9] only solves an approximate
problem. Generalized force derivatives have been recently considered
in [10] where a Lagrangian based approach was used for the optimal
offline trajectory planning along assigned paths. Depending on the
complexity of the considered manipulator, the computational burden
introduced by Lagrangian based approaches can easily become un-
acceptable: the sampling time could be violated in case of online
methods, or the convergence of offline optimization algorithms could
require an excessive time.

This paper proposes a technique for the exact and efficient evalua-
tion of GFDs. In particular, high order kinematics and dynamics are
evaluated by means of an algorithm obtained by adding new equations
to the standard Newton-Euler recursive algorithm originally proposed
in [11]. The advantage of this choice is double. First, existing iterative
algorithms can easily be modified in order to implement the new
functionalities and, secondly, the number of operations required for
the evaluation of the high order dynamics is moderate, since it still
linearly depends on the number of joints. Precursors of the algorithm
here proposed, see e.g. [12], were used in [13] for the optimal offline
trajectory planning, and in [14] for the online trajectory scaling. In
both cases constraints on GFs and on GFDs were considered.

The paper is organized as follows. The notation used along the paper
is presented in §2, together with an overview of the basic rules used
to manipulate vectors and rotation matrices. The iterative algorithm is
proposed in §3, while §4 is devoted to demonstrating its equations.
Some computational considerations are drawn in §5, where a Stanford
manipulator is used to validate the algorithm. Final conclusions are
reported in §6.

II. NOTATION

This section introduces the notation used along the paper. Frames
have been assigned to an N link manipulator according to the modified
Denavit-Hartenberg procedure [15]. Using a well assessed convention,
let us define (see Fig. 1)

Q; angle between the z; and the z;;; axes measured in the
righthand sense about X;;

a; distance between the z; and the 2,41 axes, measured along
Xi;
0i+1 angle between the X; and the X;4; axes, measured in the

righthand sense about Z;41;
d;i+1 distance between the x; and the X;41 axes, measured along
i¢+1 .

The orientation of a generic frame ¢4 1 with respect to frame ¢ can
be expressed by means of the following rotation matrix

] ) C9i+1 —Sei+1 0
1 R= HliRT = | sbir1ca;  cbip1ca;  —sq; ,
59i+1 SQ; C9i+1 SO CQy;

while the position of frame ¢ + 1 with respect to frame 7, described
with respect to frame ¢, is given by

aj
—SQ; di+1
Cy; di+1

i o
Pit1,i =

A compact notation has been adopted for H_fR and “p;y1,i, so that
cl; := cosb;, sO; := sin6; and so on.



Fig. 1.

Modified Denavit-Hartenberg frames.

Conventionally, v » represents the velocity between frame j and
frame k, described with respect to frame ¢. As known, the same vector
can be described with respect to a different frame by means of a
rotation matrix, e.g. hvj,k ='"R ‘v x. To shorten the representation,
inertial frame O is normally not indicated, thus v; is equivalent to
va and *v; is equivalent to ivw = 6R va. The same convention
is assumed for accelerations and jerks.

According to the differentiation rules of rotation matrices, it is
possible to write

iR=S(w) /R, M
where S(w;) is a skew-symmetric matrix based on the components of
angular velocity w; := [ws wy w;]T and defined as follows

0 —Wz Wy
S(w;) = Ws 0 —wy
—Wy W 0

Properties of skew-symmetric matrices can be found in [16].

Symbol Z;,1 is used to indicate the % unit vector of frame i +
1, described with respect to frame ¢. It can be obtained from H_f'R
according to the following expression

i in s
Zi+1 = 11 R Zo ,

where 2o is a constant unit vector defined as Zo := [0 0 1]7.
Analogously, unit vector Z;41 can be represented as

~ 0 ~
Zit1 = 41 RZo,

so that, by virtue of (1) and the properties of S(-), its derivative can
be expressed as

X 01 A 0 ~ ~ ~
Ziy+1 — it+1 RZO = S(wi+1) i+1 RZO = S(wi+1) Ziy1 — w,-+1><zi+1

(€5

III. A RECURSIVE NEWTON-EULER ALGORITHM FOR THE
EVALUATION OF GENERALIZED FORCE DERIVATIVES

The recursive algorithm proposed in the following efficiently eval-
uates the joint GFDs for rigid, open chain manipulators. It returns, as
usual, the solution of the inverse dynamic problem

T = T(q’ q7 q) )

but it also evaluates, and this is a novelty, GFDs

T=1(q,4,4,9) .
To this purpose, the efficient Newton-Euler approach originally pro-
posed by Luh, Walker and Paul [11] has been modified by adding
new expressions. For each link, a forward recursion returns linear and

angular velocities, accelerations, and jerks, then a backward recursion
gives the solution of the inverse dynamic problem by evaluating for
each link GFs and, furthermore, GFDs.

The algorithm is proposed in the following, while its equations are
derived in the next section. Frames are assigned according to the mod-
ified Denavit-Hartenberg method [15]. An equivalent algorithm based
on the standard Denavit-Hartenberg convention has been proposed in
[12].

A. Forward recursion

The following recursive algorithm evaluates link velocities, accel-
erations, and jerks (: =0,1,...,N — 1)

i+1

wiy1 = FRw; + 04120 3)
H_1’)’i+1 = H_}RZ% + H'}szi X 0i41 20 + 0it1 Zo 4)
Z+1Li+l Z+%R lei + Z+%R Z’Yi « 9i+1 20 i .é.i+1 20

FHR w0 (2000 80 + IR Wi x G o) )
i+lai+1 = H%R |:iai + i')’i X ipi+1,i + iwi X (iwi X "piﬂﬂﬂ)]
+2 i+1wi+1 X di+1 Zo + d"i+1 Zo 6)
iaci = iai + i’)’i X ipci,i + iwi X (iwi X ipci,i) (7
Z'+1ji+1 = H_liR {1.]1 + ' x ipi+1,i + 21'%_ X (iwi X ipi_,_l’i)
+lw; x [i'Yi X ipi+1,i + "w; (iwi X ipi_‘_l’i)]}
+dir1zo + TRy x 3dis120
+ TR w; x (3diy120 + TR 'w;i x 3div120) (8)
Z.jci = ij + iLi X ipci,i + 21"‘/1 X (lwl X ipci’i)

+iw; x [i'n X "Pesi + wi ¥ (iwi X ipci,i)] ©)

where (all vectors are described with respect to frame 7)
‘w; angular velocity of frame 4
‘~;  angular acceleration of frame i;

t;  angular jerk of frame ¢;

a; linear acceleration of frame i;

a., linear acceleration of the link ¢ mass centre;

5;  linear jerk of frame 3;

‘e, linear jerk of the link 4 mass centre;

Z'pcw- position of the link ¢ mass centre with respect to frame i;

i
i

i

while 9i+1, 0it1, 'é'iH, dH_l, di+1, and 'c'l'iﬂ represent the first,
second, and third time derivatives of the joint variables. It is worth
noting that 6; 11 = 6; 11 = §;.1 = 0 if joint i + 1 is prismatic, while
di+1 = c.l'iH = 'd'H_l = 0 if joint ¢ + 1 is revolute.

. B. Backward recursion

Starting from the manipulator kinematics, evaluated by means of
(3)—(9), and from the knowledge of the external efforts acting on
the last link, i.e., N+lfN+1,N+1nN+1, N+1fN+1,N+lI'1N+1, it is
possible to determine the joint GFs and GFDs. The following recursive
backward algorithm is proposed (¢ = N, N —1,...,1)

Fi = mi'a, (10)

‘N, = I i')’i +fwi X T w; (11)

Fi o= mi'je (12)
N; fwi x Ly Ly x Cwi] + T

+i"ﬁ X T Tws + fws x NG (13)

i = R +Fy (14)

n; H.f i + ipci,i x 'Fy
+ipi+1,i X i+1iRi+1fi+1 +'N; (15)



f, = i+1i i+1fi+1+iFi (16)

‘n; = i+1iR i + (iwi X ipci,i) x 'F; + ipci,i x 'Ry
+(iwi X "piv1i +dita iii+1) X ¢+1iRi+1fi+1
+ipi+1,¢ X i+1iRi+lfi+1 + ZNz (17)
iniT Zo if joint ¢ is revolute (18)
o= {ZflT Zo if joint ¢ is prismatic (19)

) ) AT
) { |:Zfli +'n; x 'w;| 2o if joint ¢ is revolute (20)
Ti |:

4+ X iwi] Zo if joint 4 is prismatic 21

where (all vectors are described with respect to frame ¢)

m; mass of link 7;

‘F, total force acting on the link ¢ mass centre;

‘N; total torque acting on the link ¢ mass centre;

i, total force exerted on link ¢ by link ¢ — 1;

‘n; total torque exerted on link 7 by link 7 — 1;

T generalized force exerted on joint ;

‘I,  inertia tensor of link ¢ about a frame placed at the mass
centre and fixed to the body.

The accuracy of (18)—(21) could be improved by considering friction
and motor inertia. The interested reader can refer to [16] for a
discussion on the consequences that both phenomena have on general-
ized joint forces. By opportunely differentiating the generalized force
components corresponding to friction and motor inertia, it is easily
possible to devise the further terms to be added to (20) and (21) in
order to obtain more accurate expressions. For the sake of simplicity,
both effects have been neglected in this work.

IV. SYNTHESIS OF THE RECURSIVE EQUATIONS

It is known that the kinematic equations of an N degrees of freedom,
rigid-link manipulator can be written in recursive form according the
scheme originally proposed in [17] and in [18], i.e., the kinematic
status of each link can be evaluated by means of a recursive algorithm
according to the following equations

Wit1 = w;+ 9¢+1 Zit1 s (22)
Vitl1 = Vit w; XPiy1,4+ di+1 Zit1 s (23)
Yi+1 = Yi+ éi+1 Zi+1 + éi+1 wi X Ziy1 (24)
A1 = &+ Y X Pit1, + wi X (Wi X Pit1,5)
+dig12ii1 + 2digrws X Zig1 (25)

In [11], the efficiency was improved by describing velocities and
accelerations of each link directly with respect to the link frame. The
result was a smart recursive algorithm given by (3), (4), (6), (7), (10),
(11), (14), (15), (18), and (19).

In order to evaluate the generalized force derivatives, new expres-
sions have been added to the algorithm proposed in [11]. The following
subsections are devoted to demonstrating the new equations (5), (8),
9), (12), (13), (16), (17), (20), and (21).

Any effort has been spent in order to optimize the performances.
For the same efficiency reasons pointed out in [11], link variables
are always described with respect to the link frames and equations are
arranged such to minimize the number of products between vectors and
matrices as well as the number of crossproducts, since both operations
are computationally expensive.

A. Recursive formulation of angular jerk

It is well known [15] that the angular acceleration of frame ¢ with
respect to inertial frame O can be expressed by means of (24). By

differentiating (24) with respect to time and also considering (2), it is
possible to express the angular jerk of frame ¢ + 1 as follows
Lit1 = L+ '6'?'1'.;.1 Zit1 + éi+1 (Wit1 X Zi+1) + éi+1 Wi X Zig1
F+0i11 Yi X Zig1 + Oip1 wi X (Wit1 X Zig1) - (26)

By taking into account (22) it is possible write

Wit1 X Zit1 = (ws + i1 Zit1) X Zit1 = Wi X Zit1 27)
since, as known, Z;y1 X Z;y1 = 0. Consequently, (26) can be
reorganized as follows

Liv1 = i+ Oip1 Zir1 + 2éi+1 (Wi X Zit1)

+éi+1 Yi X Zit1 + 91‘+1 wi X (Wi X Zig1) .
i1y

By noting that *""2,,1 = Zo, angular jerk can be described with
respect to frame 7 + 1 according to the following equation

Tl = H'liRiLi + Gip1 20+ 2éi+1 (H_liRiwi X Zo)
+0ip1 TRy x 20
+0i1 TER 'wp x (TLR Wi x 20) (28)

Equation (5) is finally inferred by rearranging (28).

It is worth noticing that (5) can be indifferently used for prismatic
or revolute joints. In case of prismatic joints evidently 6; 11 = 0,41 =
.9.i+1 =0.

B. Recursive formulation of linear jerk

The linear jerk of frame ¢ 4+ 1 can be obtained by differentiating
(25)

Ji+1 = Jit i X Pit1,i+ Y X Pitli % X (Wi X Pit1,)
Fw;i X (9i X Pit1,i) + wi X (Wi X Piti,i)
+dit1Zi1 + d.i-ﬁ-léi-&-l + QCZi-&-lwi X Zit1
+2dis19i X Zir1 + 2dis1wi X Zig1 -

Since pi+1,i = Pi+1—Pi, it is possible to write Pi+1,; = Pi+1—Pi =
vit1 — v; and to conclude that, owing to (23),

pi+1,i = Ww; X Pit1,i+ di+1 ii+1 . (29)

Thus, taking into account (2) and (27), after a few algebraic manipu-
lations, jerk can be expressed as follows

Jiv1 = Jit i X Pit1,i + 27 X (wi X Pigi,i)
Fwi X [¥i X Pit1,i +wi X (Wi X Pit1,:)]
Fdig12ir1 + 3d‘i+1wi X Zit+1 + 3di+1’7i X Zit1
+3 di+1Wi X (Wi X Zig1) -

Also in this case, the number of involved mathematical operations
reduces if jerk is described with respect to frame 7 + 1

i = i-HiR {l.]z + i % ipi+1,i + 2y x (iwi X ipi+1,i)
+iwi X [i’yi X ipz'+1,i + iwi X (iwi X ipi+1,i)]}

Vit + 3R w; x dipazo + 3 LR Iyi X disio
+3 H—liRiwi X (H—liRiwi X di-‘-lio) :

Equation (8) is obtained straightforward. The same equation can also
be used for revolute joints assumed that di+1 = Ji+1 =dis1 =0.
The linear jerk of the mass centre can be written in an iterative
fashion starting from the knowledge of the linear jerk of frame 3.
The expression to be used is still (8), but, now, the role of frame
i+ 1 is played by the centre of gravity frame c¢;. By considering this
substitution and remembering that frames ¢ and ¢; are fixed to the



same arm so that we can assume d., = d.; = d., = 0, it is possible
to write

Cis

jo = R {J 40 X "Peyi +2 i X ("wi X "Pey.i)
+rwi X [ X Peyi + wi x (‘wi x ipci,i)]} .(30)

Equation (9) is obtained by describing (30) with respect to frame .

C. Recursive formulation of force and torque derivatives acting on
the links mass centre

Equation (12) is immediately obtained by differentiating Newton
equation F; = m; a.; and describing the result with respect to frame
i.

Similarly, the torque resultant can be expressed by means of the
Euler equation

where I; is the inertia tensor evaluated with respect to a frame placed
at the link gravity centre and parallel to frame 0. Evidently, I; is not
constant. Now consider the following transformation rule [16]

L = RLIR="RLL'R", (32)

where ‘I; is the inertia tensor of link i evaluated with respect to a
frame placed at the link gravity centre and fixed to the link body.
Tensor “I;, being integral with link 4, is constant. The time derivative
of I; can be obtained from (32)

I, = S(w;i)I; — I; S(wy) . (33)
Let us differentiate (31)
Ni = L’yi—i—Iibi—l—’yi X I; wi; +w; X i(Lwl) . (34

dt
By virtue of (31) and (33), (34) becomes
N, -

wi X Ly = Lifw; x vi] + Liti + 9 x Liw; +wi x Ny .

Again, for efficiency reasons, it is better to describe N; with respect
to frame ¢
ZN@ = 7()R.(.t)»b X Z)RL Yi — BRL[wZ X ")’7;] + ERL L
Owing to (32), it is possible to write
(RL ="L (R,

so that “N; can be written as follows

1Nz = f)Rwi X iIi 6R"}’i — iIi BR[UJl X ’)’i} + iIi éRLi
+0R~i x ‘I (Rw; + (Rw; x (RN, ,

and, in turn, as (13).

D. Recursive formulation of the joints generalized force derivatives

It is known that, for a rigid manipulator, the force resultant is given
by the sum of the joint forces, i.e., F; = f; — f;1 1. Equation (16) is
immediately obtained by differentiating this equation and describing
it with respect to frame 3.

Similarly, the torque balance, evaluated with respect to the centre

of gravity, can be expressed as
n; — i1 + £ X pe;i — fig1 X Pejitr = Ny (35)

In order to simplify the subsequent differentiation operation, (35) can
be reorganized as follows (see also Fig. 1)

n, = N4+ ?Ripci,i X Fi +pit1,i X fip1 + N; .

The time derivative of n; can be evaluated by taking into account
that p;+1,; is given by (29), while “pe,,; is constant

n; = i1+ (Wi X JRpe,i) x Fi + (R 'pe,i x Fy

+(wi X pit1,i + di+1 Zi+1) X fiv1 + Pit1,s ¥ £ +N; .

Finally, (17) is obtained by describing n; with respect to frame <.

The last step of the recursive algorithm evaluates the derivative of
the joint GFs. First consider a revolute joint. Scalar products are not
influenced by the reference frame used to describe its operands. Thus,
(18) can be equivalently written as follows

i T .

7 i T i T A
i = N, Zo= N; Z; =N, Z; .

By differentiating with respect to time and taking into account (2), it
follows that

%¢:ﬁ$ii+n? izzanil+an (wz Xii) .
Now, express all the operands with respect to frame ¢
i ="nr ‘% +'nl (iwi X liz) ="'nf 2o+ ‘n} (iwi X Z) .
The second term is a triple scalar product: its result does not change
if the scalar and the cross product operators are exchanged

. 1T A~ ) [ T~
T, = N, Zo+(ni>< wz) Zo .

Equation (20) is finally obtained by collecting Zo.

In case of prismatic joints, motion depends on the joint forces.
Equation (21) is obtained by differentiating (19) and considering the
same algebraic manipulations proposed for revolute joints. Passages
are omitted for brevity.

V. COMPUTATIONAL CONSIDERATIONS

The algorithm efficiency can be assessed on the basis of the number
of involved mathematical operations. As usual, the computational
burden is estimated by considering a generic manipulator with revolute
joints under the hypothesis of an immobile base frame and taking into
account the existence of a gravitational field. In order to figure out the
worst situation, inertia tensors are supposed to be full matrices and
external forces are applied to the last link.

Many terms of the iterative algorithm are common to several
equations. For example, ; 'R *T'f;1; appears three times in the
backward recursion. By evaluating multiply repeated terms only a
single time (e.g., i+1Riwi’ ”%Ri'yi, etc..), it is possible to greatly
reduce the number of required mathematical operations: the current
implementation evaluates GFs and GFDs by means of 309/N-162 mul-
tiplications and 268 N-138 additions. The new iterative algorithm, like
any classic Newton-Euler approach, involves a number of operations
which linearly depends on the number of joints. The computational
load approximately doubles with respect to classic algorithms which
only evaluate GFs, but evaluation times are still compatible with real-
time control loops, as it will be shown in the following.

It is interesting to observe that the analogous algorithm proposed
in [12], based on the standard Denavit-Hartenberg frame allocation,
evaluates generalized force derivatives by means of 327N-81 multi-
plications and 274N-72 additions. This confirms the common idea
that algorithms based on the modified Denavit-Hartenberg method are
slightly more efficient.

The computational load can further be reduced by specializing (3)—
(21) for specific applications. For example, the number of involved
operations dramatically decreases when diagonal inertia tensors are
considered or when the algorithm is optimized for a specific robot by
means of symbolic techniques similar to those proposed in [19], [20].

The iterative algorithm (3)—(21) has been tested by considering
a Stanford manipulator (2R)P(3R) whose kinematic and dynamic
parameters are reported in Table I and II respectively [21]. The



TABLE I
KINEMATIC PARAMETERS OF A STANFORD MANIPULATOR

i a o dit1 0it1
0 0 0 0.412 01
1 0 -—m/2 0154 62
2 0 w/2 ds —7/2
3 0 0 0 04
4 0 —m/2 0 05
5 0 7w/2 0263 O
TABLE II

DYNAMIC PARAMETERS OF A STANFORD MANIPULATOR.

TABLE III
INITIAL AND FINAL VALUES OF THE JOINT VARIABLES USED FOR THE
TRAJECTORY PLANNING.

Joint Variable 01 02 ds 04 05 O¢
/2 0 0 =w/2 w/4 w2
n/4 w/2 2 7w/4 7/2 0

Initial Value
Final Value

number of involved mathematical operations which linearly depend on
the number of joints. The number of required operations can further
be reduced if the algorithm is optimized for a specific manipulator. An
important advantage of the proposed method is that it is an extension of

Link Mass z (m) y (m)

1 929 0 -0.1105-0.0175 0.276 0.071 0.255
2 501 O 0 —0.1054 0.108 0.100 0.018
3 425 0 0 —0.6447 2.51 2.51 0.006
4 1.08 0 —0.0054 —0.0092 0.002 0.001 0.001
5 0.63 0 —0.0566 0 0.003 0.0004 0.003
6 051 O 0 0.1554 0.013 0.013 0.0003

manipulator was chosen since it has both revolute and prismatic joints:
in this way, all possible combinations of (3)—(21) can be checked. The
aim is to verify the approach correctness and the algorithm efficiency.
A point-to-point movement has been planned in the joint space by
means of quintic order splines which satisfy the boundary conditions
of Table III. The total travelling time is ¢y = 2 s. Initial and final
velocities, accelerations, and jerks are equal to zero. The gravitational
field acceleration is equal to 9.81 ms™2.
The algorithm correctness has been verified by comparing GFDs
evaluated by means of (3)—(21) with those obtained by numerically
differentiating 7; according to the following equation

& Ti(te) — i (tk—1)
Ti (tk) = T, 5
where T is a discrete sampling time and ¢t = kTs, k € N.
In particular, the chosen performance index is the maximum of
|A#(t)] = ‘h(tk) - ?i(tk)‘, evaluated for t; € [0, t/] ie..
the maximum difference between 7; evaluated by means of (3)-(21)
and the corresponding 7; evaluated by means of (36). Necessarily,
numerical differentiation only returns a rough estimation of actual
derivatives: the accuracy depends on the assumed sampling time. For
example, for the first joint max;, {|A71(tx)|} = 2.462e-2 Nms™*
when T’s=1.0e-4 s while it increases of one order of magnitude when
Ts=1.0e-3 s. Another order of magnitude is lost if 7Ts=1.0e-2 s.
Similar figures hold for all the joints. This result highlights a good
agreement between numerically and analytically evaluated derivatives,
thus confirming the correctness of (3)—(21), but, at the same time, it
points out the relevance of using exact expressions for the evaluation
of 7; in order to avoid any dependence of the accuracy on 7%.

The computational burden has been verified by means of a Pentium
Pc, 1400 MHz, OS Windows XP SP2, under the Matlab environment.
For the considered Stanford manipulator, 7; and 7; are calculated on
average in 5.255e-5 s, while classic Newton-Euler algorithm evaluates
the sole 7; in 2.399¢-5 s: nevertheless the Matlab environment is not
optimized for speed, computational times are absolutely compatible
with those required by online applications.

(36)

VI. CONCLUSIONS

A recursive algorithm, able to evaluate generalized force derivatives
for a robotic manipulator, has been proposed in the paper. It has been
explicitly developed for online applications which require accuracy
and a moderate computational burden. Accuracy is gained by using
iterative closed form expressions instead of approximate numerical
differentiation methods. Any effort has been spent to minimize the

analogous algorithms currently used to solve the manipulators inverse

z (m) Ips (Kg.m?) Iy (Kg.m?) I;» (Kg.m?) dynamics: the new functionalities can be obtained by simply updating

existing procedures.
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