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Abstract—An accurate estimation of the dynamics efforts acting on a

robot manipulator represents an important issue for both the analysis

of its behavior and the synthesis of appropriate controllers. This paper

proposes an iterative algorithm, based on the Newton-Euler approach, for

the efficient evaluation of the manipulators high order kinematics and

dynamics. In particular, the algorithm computes velocities, accelerations,

and jerks of each link, while new dynamic equations are devised in

order to evaluate the first derivative of generalized forces. Owing to its

moderate computational burden, the algorithm is suited to be used in

online applications.

Index Terms—Kinematics, dynamics, jerk, force derivative, Newton-

Euler, rigid-body manipulators.

I. INTRODUCTION

Manipulators joint forces and torques, i.e., the Generalized Forces

(GFs), are naturally bounded due to the actuators physical limits.

For this reason, the generalized force bounding problem has been

widely investigated in the past. Several solutions have been proposed,

which can be roughly divided into two categories: offline and online

approaches. Offline approaches are normally based on algorithms

for the optimal trajectory planning which consider the existence of

kinematic and/or dynamic constraints. For example, in [1] a minimum-

time movement along an assigned path was planned by accounting

for constraints on joint velocities and torques. However, when an

optimal trajectory is used, there is at least one joint which is constantly

working at the maximum of its kinematic or dynamic capabilities: due

to model uncertainties the control could easily be lost. Several online

algorithms have been developed in the past for handling this problem.

The scheme originally proposed in [2] is often cited as an example:

dynamic constraints are satisfied by means of an online method which

automatically and appropriately scales assigned trajectories.

Similarly, also Generalized Force Derivatives (GFDs) are physically

bounded. For example, in case of electric actuators, the available

supply voltage necessarily limits the GFs variation rate. Unfortunately,

closed form expressions for the evaluation of GFDs are normally

complex and time expensive. As a consequence, bounds on GFDs are

often neglected or indirectly considered by limiting jerks. For example

in [3], again in the context of offline optimal trajectory planning, kine-

matic limits on joint velocities, accelerations, and jerks were converted

into constraints for the resulting minimum-time optimization problem,

while in [4] optimality was achieved by means of an efficient online

algorithm. In other approaches, still not considering GFDs, kinematic

and dynamic constraints have been simultaneously considered. For

example, works [5]–[7] deal with minimum-time trajectory planning

problems which take into account constraints on jerks and torques.

The simultaneous existence of bounds on both GFs and GFDs was

first explicitly mentioned in [8]. The two authors proposed a dynamic

programming approach, which, unfortunately, was not sufficiently
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investigated in the paper. Later, the topic was also considered in [9] for

a discretized robot. In that paper, numerically evaluated generalized

force derivatives were used. The necessity of considering a discrete-

time model, and consequently a discrete-time problem, was justified

as follows: “. . . discrete computation methods are essential as the

highly nonlinear equations of motion for the manipulator dynamics

are too complex for real-time computation within a sampling interval”.

Evidently, the approach proposed in [9] only solves an approximate

problem. Generalized force derivatives have been recently considered

in [10] where a Lagrangian based approach was used for the optimal

offline trajectory planning along assigned paths. Depending on the

complexity of the considered manipulator, the computational burden

introduced by Lagrangian based approaches can easily become un-

acceptable: the sampling time could be violated in case of online

methods, or the convergence of offline optimization algorithms could

require an excessive time.

This paper proposes a technique for the exact and efficient evalua-

tion of GFDs. In particular, high order kinematics and dynamics are

evaluated by means of an algorithm obtained by adding new equations

to the standard Newton-Euler recursive algorithm originally proposed

in [11]. The advantage of this choice is double. First, existing iterative

algorithms can easily be modified in order to implement the new

functionalities and, secondly, the number of operations required for

the evaluation of the high order dynamics is moderate, since it still

linearly depends on the number of joints. Precursors of the algorithm

here proposed, see e.g. [12], were used in [13] for the optimal offline

trajectory planning, and in [14] for the online trajectory scaling. In

both cases constraints on GFs and on GFDs were considered.

The paper is organized as follows. The notation used along the paper

is presented in §2, together with an overview of the basic rules used

to manipulate vectors and rotation matrices. The iterative algorithm is

proposed in §3, while §4 is devoted to demonstrating its equations.

Some computational considerations are drawn in §5, where a Stanford

manipulator is used to validate the algorithm. Final conclusions are

reported in §6.

II. NOTATION

This section introduces the notation used along the paper. Frames

have been assigned to an N link manipulator according to the modified

Denavit-Hartenberg procedure [15]. Using a well assessed convention,

let us define (see Fig. 1)

αi angle between the ẑi and the ẑi+1 axes measured in the

righthand sense about x̂i;

ai distance between the ẑi and the ẑi+1 axes, measured along

x̂i;

θi+1 angle between the x̂i and the x̂i+1 axes, measured in the

righthand sense about ẑi+1;

di+1 distance between the x̂i and the x̂i+1 axes, measured along

ẑi+1.

The orientation of a generic frame i+1 with respect to frame i can

be expressed by means of the following rotation matrix

i
i+1R = i+1

iR
T :=




cθi+1 −sθi+1 0
sθi+1 cαi cθi+1 cαi −sαi

sθi+1 sαi cθi+1 sαi cαi


 ,

while the position of frame i + 1 with respect to frame i, described

with respect to frame i, is given by

i
pi+1,i :=




ai

−sαi di+1

cαi di+1


 .

A compact notation has been adopted for i
i+1R and ipi+1,i, so that

cθi := cos θi, sθi := sin θi and so on.
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Fig. 1. Modified Denavit-Hartenberg frames.

Conventionally, ivj,k represents the velocity between frame j and

frame k, described with respect to frame i. As known, the same vector

can be described with respect to a different frame by means of a

rotation matrix, e.g. hvj,k = h
i R

ivj,k. To shorten the representation,

inertial frame 0 is normally not indicated, thus vi is equivalent to
0vi,0 and ivi is equivalent to ivi,0 = i

0R
0vi,0. The same convention

is assumed for accelerations and jerks.

According to the differentiation rules of rotation matrices, it is

possible to write

0
i Ṙ = S(ωi)

0
iR , (1)

where S(ωi) is a skew-symmetric matrix based on the components of

angular velocity ωi := [ωx ωy ωz]
T and defined as follows

S(ωi) :=




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 .

Properties of skew-symmetric matrices can be found in [16].

Symbol iẑi+1 is used to indicate the ẑ unit vector of frame i +
1, described with respect to frame i. It can be obtained from i

i+1R

according to the following expression

i
ẑi+1 = i

i+1R ẑ0 ,

where ẑ0 is a constant unit vector defined as ẑ0 := [0 0 1]T .

Analogously, unit vector ẑi+1 can be represented as

ẑi+1 = 0
i+1 Rẑ0 ,

so that, by virtue of (1) and the properties of S(·), its derivative can

be expressed as

˙̂zi+1 = 0
i+1 Ṙ ẑ0 = S(ωi+1)

0
i+1 Rẑ0 = S(ωi+1) ẑi+1 = ωi+1×ẑi+1 .

(2)

III. A RECURSIVE NEWTON-EULER ALGORITHM FOR THE

EVALUATION OF GENERALIZED FORCE DERIVATIVES

The recursive algorithm proposed in the following efficiently eval-

uates the joint GFDs for rigid, open chain manipulators. It returns, as

usual, the solution of the inverse dynamic problem

τ = τ (q, q̇, q̈) ,

but it also evaluates, and this is a novelty, GFDs

τ̇ = τ̇ (q, q̇, q̈,
...
q) .

To this purpose, the efficient Newton-Euler approach originally pro-

posed by Luh, Walker and Paul [11] has been modified by adding

new expressions. For each link, a forward recursion returns linear and

angular velocities, accelerations, and jerks, then a backward recursion

gives the solution of the inverse dynamic problem by evaluating for

each link GFs and, furthermore, GFDs.

The algorithm is proposed in the following, while its equations are

derived in the next section. Frames are assigned according to the mod-

ified Denavit-Hartenberg method [15]. An equivalent algorithm based

on the standard Denavit-Hartenberg convention has been proposed in

[12].

A. Forward recursion

The following recursive algorithm evaluates link velocities, accel-

erations, and jerks (i = 0, 1, . . . , N − 1)

i+1
ωi+1 = i+1

iR
i
ωi + θ̇i+1 ẑ0 (3)

i+1
γi+1 = i+1

iR
i
γi +

i+1

iR
i
ωi × θ̇i+1 ẑ0 + θ̈i+1 ẑ0 (4)

i+1
ιi+1 = i+1

iR
i
ιi +

i+1

iR
i
γi × θ̇i+1 ẑ0 +

...
θ i+1 ẑ0

+i+1

iR
i
ωi ×

(
2 θ̈i+1 ẑ0 +

i+1

iR
i
ωi × θ̇i+1 ẑ0

)
(5)

i+1
ai+1 = i+1

iR
[
i
ai +

i
γi ×

i
pi+1,i +

i
ωi ×

(
i
ωi ×

i
pi+1,i

)]

+2 i+1
ωi+1 × ḋi+1 ẑ0 + d̈i+1 ẑ0 (6)

i
aci = i

ai +
i
γi ×

i
pci,i +

i
ωi ×

(
i
ωi ×

i
pci,i

)
(7)

i+1
ji+1 = i+1

iR
{

i
ji +

i
ιi ×

i
pi+1,i + 2iγi × (iωi ×

i
pi+1,i)

+i
ωi × [iγi ×

i
pi+1,i +

i
ωi × (iωi ×

i
pi+1,i)]

}

+
...
d i+1ẑ0 +

i+1

iR
i
γi × 3 ḋi+1ẑ0

+i+1

iR
i
ωi × (3 d̈i+1ẑ0 +

i+1

iR
i
ωi × 3 ḋi+1ẑ0) (8)

i
jci = i

ji +
i
ιi ×

i
pci,i + 2 i

γi ×
(
i
ωi ×

i
pci,i

)

+i
ωi ×

[
i
γi ×

i
pci,i +

i
ωi ×

(
i
ωi ×

i
pci,i

)]
. (9)

where (all vectors are described with respect to frame i)
i
ωi angular velocity of frame i;

i
γi angular acceleration of frame i;

i
ιi angular jerk of frame i;

iai linear acceleration of frame i;
iaci linear acceleration of the link i mass centre;
iji linear jerk of frame i;
ijci linear jerk of the link i mass centre;
ipci,i position of the link i mass centre with respect to frame i;

while θ̇i+1, θ̈i+1,
...
θ i+1, ḋi+1, d̈i+1, and

...
d i+1 represent the first,

second, and third time derivatives of the joint variables. It is worth

noting that θ̇i+1 = θ̈i+1 =
...
θ i+1 = 0 if joint i+1 is prismatic, while

ḋi+1 = d̈i+1 =
...
d i+1 = 0 if joint i+ 1 is revolute.

B. Backward recursion

Starting from the manipulator kinematics, evaluated by means of

(3)–(9), and from the knowledge of the external efforts acting on

the last link, i.e., N+1fN+1,
N+1nN+1, N+1 ḟN+1,

N+1ṅN+1, it is

possible to determine the joint GFs and GFDs. The following recursive

backward algorithm is proposed (i = N,N − 1, . . . , 1)

i
Fi = mi

i
aci (10)

i
Ni = i

Ii
i
γi +

i
ωi ×

i
Ii

i
ωi (11)

i
Ḟi = mi

i
jci (12)

i
Ṅi = i

ωi ×
i
Ii

i
γi +

i
Ii[

i
γi ×

i
ωi] +

i
Ii

i
ιi

+i
γi ×

i
Ii

i
ωi +

i
ωi ×

i
Ni (13)

i
fi = i

i+1R
i+1

fi+1 +
i
Fi (14)

i
ni = i

i+1R
i+1

ni+1 +
i
pci,i ×

i
Fi

+i
pi+1,i ×

i
i+1R

i+1
fi+1 +

i
Ni (15)



i
ḟi = i

i+1R
i+1

ḟi+1 +
i
Ḟi (16)

i
ṅi = i

i+1R
i+1

ṅi+1 + (iωi ×
i
pci,i)×

i
Fi +

i
pci,i ×

i
Ḟi

+(iωi ×
i
pi+1,i + ḋi+1

i
ẑi+1)×

i
i+1R

i+1
fi+1

+i
pi+1,i ×

i
i+1R

i+1
ḟi+1 +

i
Ṅi (17)

i
n
T
i ẑ0 if joint i is revolute (18)

τi =

{
i
f
T
i ẑ0 if joint i is prismatic (19)

[
i
ṅi +

i
ni ×

i
ωi

]T
ẑ0 if joint i is revolute (20)

τ̇i =

{
[
i
ḟi +

i
fi ×

i
ωi

]T
ẑ0 if joint i is prismatic (21)

where (all vectors are described with respect to frame i)

mi mass of link i;
iFi total force acting on the link i mass centre;
iNi total torque acting on the link i mass centre;
ifi total force exerted on link i by link i− 1;
ini total torque exerted on link i by link i− 1;

τi generalized force exerted on joint i;
iIi inertia tensor of link i about a frame placed at the mass

centre and fixed to the body.

The accuracy of (18)–(21) could be improved by considering friction

and motor inertia. The interested reader can refer to [16] for a

discussion on the consequences that both phenomena have on general-

ized joint forces. By opportunely differentiating the generalized force

components corresponding to friction and motor inertia, it is easily

possible to devise the further terms to be added to (20) and (21) in

order to obtain more accurate expressions. For the sake of simplicity,

both effects have been neglected in this work.

IV. SYNTHESIS OF THE RECURSIVE EQUATIONS

It is known that the kinematic equations of an N degrees of freedom,

rigid-link manipulator can be written in recursive form according the

scheme originally proposed in [17] and in [18], i.e., the kinematic

status of each link can be evaluated by means of a recursive algorithm

according to the following equations

ωi+1 = ωi + θ̇i+1 ẑi+1 , (22)

vi+1 = vi + ωi × pi+1,i + ḋi+1 ẑi+1 , (23)

γi+1 = γi + θ̈i+1 ẑi+1 + θ̇i+1 ωi × ẑi+1 , (24)

ai+1 = ai + γi × pi+1,i + ωi × (ωi × pi+1,i)

+d̈i+1ẑi+1 + 2 ḋi+1ωi × ẑi+1 . (25)

In [11], the efficiency was improved by describing velocities and

accelerations of each link directly with respect to the link frame. The

result was a smart recursive algorithm given by (3), (4), (6), (7), (10),

(11), (14), (15), (18), and (19).

In order to evaluate the generalized force derivatives, new expres-

sions have been added to the algorithm proposed in [11]. The following

subsections are devoted to demonstrating the new equations (5), (8),

(9), (12), (13), (16), (17), (20), and (21).

Any effort has been spent in order to optimize the performances.

For the same efficiency reasons pointed out in [11], link variables

are always described with respect to the link frames and equations are

arranged such to minimize the number of products between vectors and

matrices as well as the number of crossproducts, since both operations

are computationally expensive.

A. Recursive formulation of angular jerk

It is well known [15] that the angular acceleration of frame i with

respect to inertial frame 0 can be expressed by means of (24). By

differentiating (24) with respect to time and also considering (2), it is

possible to express the angular jerk of frame i+ 1 as follows

ιi+1 = ιi +
...
θ i+1 ẑi+1 + θ̈i+1 (ωi+1 × ẑi+1) + θ̈i+1 ωi × ẑi+1

+θ̇i+1 γi × ẑi+1 + θ̇i+1 ωi × (ωi+1 × ẑi+1) . (26)

By taking into account (22) it is possible write

ωi+1 × ẑi+1 = (ωi + θ̇i+1 ẑi+1)× ẑi+1 = ωi × ẑi+1 (27)

since, as known, ẑi+1 × ẑi+1 = 0. Consequently, (26) can be

reorganized as follows

ιi+1 = ιi +
...
θ i+1 ẑi+1 + 2θ̈i+1 (ωi × ẑi+1)

+θ̇i+1 γi × ẑi+1 + θ̇i+1 ωi × (ωi × ẑi+1) .

By noting that i+1ẑi+1 = ẑ0, angular jerk can be described with

respect to frame i+ 1 according to the following equation

i+1
ιi+1 = i+1

iR
i
ιi +

...
θ i+1 ẑ0 + 2θ̈i+1 (i+1

iR
i
ωi × ẑ0)

+θ̇i+1
i+1

iR
i
γi × ẑ0

+θ̇i+1
i+1

iR
i
ωi × (i+1

iR
i
ωi × ẑ0) . (28)

Equation (5) is finally inferred by rearranging (28).

It is worth noticing that (5) can be indifferently used for prismatic

or revolute joints. In case of prismatic joints evidently θ̇i+1 = θ̈i+1 =
...
θ i+1 = 0.

B. Recursive formulation of linear jerk

The linear jerk of frame i + 1 can be obtained by differentiating

(25)

ji+1 = ji + ιi × pi+1,i + γi × ṗi+1,i + γi × (ωi × pi+1,i)

+ωi × (γi × pi+1,i) + ωi × (ωi × ṗi+1,i)

+
...
d i+1ẑi+1 + d̈i+1

˙̂zi+1 + 2 d̈i+1ωi × ẑi+1

+2 ḋi+1γi × ẑi+1 + 2 ḋi+1ωi × ˙̂zi+1 .

Since pi+1,i = pi+1−pi, it is possible to write ṗi+1,i = ṗi+1−ṗi =
vi+1 − vi and to conclude that, owing to (23),

ṗi+1,i = ωi × pi+1,i + ḋi+1 ẑi+1 . (29)

Thus, taking into account (2) and (27), after a few algebraic manipu-

lations, jerk can be expressed as follows

ji+1 = ji + ιi × pi+1,i + 2γi × (ωi × pi+1,i)

+ωi × [γi × pi+1,i + ωi × (ωi × pi+1,i)]

+
...
d i+1ẑi+1 + 3 d̈i+1ωi × ẑi+1 + 3 ḋi+1γi × ẑi+1

+3 ḋi+1ωi × (ωi × ẑi+1) .

Also in this case, the number of involved mathematical operations

reduces if jerk is described with respect to frame i+ 1

i+1
ji+1 = i+1

iR
{

i
ji +

i
ιi ×

i
pi+1,i + 2 i

γi × (iωi ×
i
pi+1,i)

+i
ωi × [iγi ×

i
pi+1,i +

i
ωi × (iωi ×

i
pi+1,i)]

}

+
...
d i+1ẑ0 + 3 i+1

iR
i
ωi × d̈i+1ẑ0 + 3 i+1

iR
i
γi × ḋi+1ẑ0

+3 i+1

iR
i
ωi × (i+1

iR
i
ωi × ḋi+1ẑ0) .

Equation (8) is obtained straightforward. The same equation can also

be used for revolute joints assumed that ḋi+1 = d̈i+1 =
...
d i+1 = 0.

The linear jerk of the mass centre can be written in an iterative

fashion starting from the knowledge of the linear jerk of frame i.

The expression to be used is still (8), but, now, the role of frame

i+ 1 is played by the centre of gravity frame ci. By considering this

substitution and remembering that frames i and ci are fixed to the



same arm so that we can assume ḋci = d̈ci =
...
dci = 0, it is possible

to write

ci jci = ci
i R

{
i
ji +

i
ιi ×

i
pci,i + 2 i

γi × (iωi ×
i
pci,i)

+i
ωi × [iγi ×

i
pci,i +

i
ωi × (iωi ×

i
pci,i)]

}
.(30)

Equation (9) is obtained by describing (30) with respect to frame i.

C. Recursive formulation of force and torque derivatives acting on

the links mass centre

Equation (12) is immediately obtained by differentiating Newton

equation Fi = mi aci and describing the result with respect to frame

i.

Similarly, the torque resultant can be expressed by means of the

Euler equation

Ni =
d

dt
(Ii ωi) = Ii γi + ωi × Ii ωi . (31)

where Ii is the inertia tensor evaluated with respect to a frame placed

at the link gravity centre and parallel to frame 0. Evidently, Ii is not

constant. Now consider the following transformation rule [16]

Ii = 0
iR

i
Ii

i
0R = 0

iR
i
Ii

0
iR

T
, (32)

where iIi is the inertia tensor of link i evaluated with respect to a

frame placed at the link gravity centre and fixed to the link body.

Tensor iIi, being integral with link i, is constant. The time derivative

of Ii can be obtained from (32)

İi = S(ωi) Ii − Ii S(ωi) . (33)

Let us differentiate (31)

Ṅi = İi γi + Ii ιi + γi × Ii ωi + ωi ×
d

dt
(Ii ωi) . (34)

By virtue of (31) and (33), (34) becomes

Ṅi = ωi × Ii γi − Ii[ωi × γi] + Ii ιi + γi × Ii ωi + ωi ×Ni .

Again, for efficiency reasons, it is better to describe Ṅi with respect

to frame i

i
Ṅi = i

0Rωi ×
i
0RIi γi −

i
0RIi[ωi × γi] +

i
0RIi ιi

+i
0Rγi ×

i
0RIi ωi +

i
0Rωi ×

i
0RNi .

Owing to (32), it is possible to write

i
0R Ii =

i
Ii

i
0R ,

so that iṄi can be written as follows

i
Ṅi = i

0Rωi ×
i
Ii

i
0Rγi −

i
Ii

i
0R[ωi × γi] +

i
Ii

i
0R ιi

+i
0Rγi ×

i
Ii

i
0Rωi +

i
0Rωi ×

i
0RNi ,

and, in turn, as (13).

D. Recursive formulation of the joints generalized force derivatives

It is known that, for a rigid manipulator, the force resultant is given

by the sum of the joint forces, i.e., Fi = fi − fi+1. Equation (16) is

immediately obtained by differentiating this equation and describing

it with respect to frame i.

Similarly, the torque balance, evaluated with respect to the centre

of gravity, can be expressed as

ni − ni+1 + fi × pci,i − fi+1 × pci,i+1 = Ni . (35)

In order to simplify the subsequent differentiation operation, (35) can

be reorganized as follows (see also Fig. 1)

ni = ni+1 +
0
iR

i
pci,i × Fi + pi+1,i × fi+1 +Ni .

The time derivative of ni can be evaluated by taking into account

that ṗi+1,i is given by (29), while ipci,i is constant

ṅi = ṅi+1 + (ωi ×
0
iR

i
pci,i)× Fi +

0
iR

i
pci,i × Ḟi

+(ωi × pi+1,i + ḋi+1 ẑi+1)× fi+1 + pi+1,i × ḟi+1 + Ṅi .

Finally, (17) is obtained by describing ṅi with respect to frame i.

The last step of the recursive algorithm evaluates the derivative of

the joint GFs. First consider a revolute joint. Scalar products are not

influenced by the reference frame used to describe its operands. Thus,

(18) can be equivalently written as follows

τi =
i
n
T
i ẑ0 = i

n
T
i

i
ẑi = n

T
i ẑi .

By differentiating with respect to time and taking into account (2), it

follows that

τ̇i = ṅ
T
i ẑi + n

T
i

˙̂zi = ṅ
T
i ẑi + n

T
i (ωi × ẑi) .

Now, express all the operands with respect to frame i

τ̇i =
i
ṅ
T
i

i
ẑi +

i
n
T
i (iωi ×

i
ẑi) =

i
ṅ
T
i ẑ0 +

i
n
T
i (iωi × ẑ0) .

The second term is a triple scalar product: its result does not change

if the scalar and the cross product operators are exchanged

τ̇i =
i
ṅ
T
i ẑ0 + (ini ×

i
ωi)

T
ẑ0 .

Equation (20) is finally obtained by collecting ẑ0.

In case of prismatic joints, motion depends on the joint forces.

Equation (21) is obtained by differentiating (19) and considering the

same algebraic manipulations proposed for revolute joints. Passages

are omitted for brevity.

V. COMPUTATIONAL CONSIDERATIONS

The algorithm efficiency can be assessed on the basis of the number

of involved mathematical operations. As usual, the computational

burden is estimated by considering a generic manipulator with revolute

joints under the hypothesis of an immobile base frame and taking into

account the existence of a gravitational field. In order to figure out the

worst situation, inertia tensors are supposed to be full matrices and

external forces are applied to the last link.

Many terms of the iterative algorithm are common to several

equations. For example, i
i+1R

i+1fi+1 appears three times in the

backward recursion. By evaluating multiply repeated terms only a

single time (e.g., i+1

iR
i
ωi,

i+1

iR
i
γi, etc..), it is possible to greatly

reduce the number of required mathematical operations: the current

implementation evaluates GFs and GFDs by means of 309N -162 mul-

tiplications and 268N -138 additions. The new iterative algorithm, like

any classic Newton-Euler approach, involves a number of operations

which linearly depends on the number of joints. The computational

load approximately doubles with respect to classic algorithms which

only evaluate GFs, but evaluation times are still compatible with real-

time control loops, as it will be shown in the following.

It is interesting to observe that the analogous algorithm proposed

in [12], based on the standard Denavit-Hartenberg frame allocation,

evaluates generalized force derivatives by means of 327N -81 multi-

plications and 274N -72 additions. This confirms the common idea

that algorithms based on the modified Denavit-Hartenberg method are

slightly more efficient.

The computational load can further be reduced by specializing (3)–

(21) for specific applications. For example, the number of involved

operations dramatically decreases when diagonal inertia tensors are

considered or when the algorithm is optimized for a specific robot by

means of symbolic techniques similar to those proposed in [19], [20].

The iterative algorithm (3)–(21) has been tested by considering

a Stanford manipulator (2R)P(3R) whose kinematic and dynamic

parameters are reported in Table I and II respectively [21]. The



TABLE I
KINEMATIC PARAMETERS OF A STANFORD MANIPULATOR

i ai αi di+1 θi+1

0 0 0 0.412 θ1
1 0 −π/2 0.154 θ2
2 0 π/2 d3 −π/2

3 0 0 0 θ4
4 0 −π/2 0 θ5
5 0 π/2 0.263 θ6

TABLE II
DYNAMIC PARAMETERS OF A STANFORD MANIPULATOR.

Link Mass x (m) y (m) z (m) Ixx (Kg.m2) Iyy (Kg.m2) Izz (Kg.m2)

1 9.29 0 −0.1105 −0.0175 0.276 0.071 0.255

2 5.01 0 0 −0.1054 0.108 0.100 0.018

3 4.25 0 0 −0.6447 2.51 2.51 0.006

4 1.08 0 −0.0054 −0.0092 0.002 0.001 0.001

5 0.63 0 −0.0566 0 0.003 0.0004 0.003

6 0.51 0 0 0.1554 0.013 0.013 0.0003

manipulator was chosen since it has both revolute and prismatic joints:

in this way, all possible combinations of (3)–(21) can be checked. The

aim is to verify the approach correctness and the algorithm efficiency.

A point-to-point movement has been planned in the joint space by

means of quintic order splines which satisfy the boundary conditions

of Table III. The total travelling time is tf = 2 s. Initial and final

velocities, accelerations, and jerks are equal to zero. The gravitational

field acceleration is equal to 9.81 ms−2.

The algorithm correctness has been verified by comparing GFDs

evaluated by means of (3)–(21) with those obtained by numerically

differentiating τi according to the following equation

˙̃τ i(tk) =
τi(tk)− τi(tk−1)

Ts

, (36)

where Ts is a discrete sampling time and tk := k Ts, k ∈ N.

In particular, the chosen performance index is the maximum of

|∆τ̇i(tk)| =
∣∣∣τ̇i(tk)− ˙̃τ i(tk)

∣∣∣, evaluated for tk ∈ [0, tf ], i.e.,

the maximum difference between τ̇i evaluated by means of (3)–(21)

and the corresponding ˙̃τ i evaluated by means of (36). Necessarily,

numerical differentiation only returns a rough estimation of actual

derivatives: the accuracy depends on the assumed sampling time. For

example, for the first joint maxtk{|∆τ̇1(tk)|} = 2.462e-2 Nms−1

when Ts=1.0e-4 s while it increases of one order of magnitude when

Ts=1.0e-3 s. Another order of magnitude is lost if Ts=1.0e-2 s.

Similar figures hold for all the joints. This result highlights a good

agreement between numerically and analytically evaluated derivatives,

thus confirming the correctness of (3)–(21), but, at the same time, it

points out the relevance of using exact expressions for the evaluation

of τ̇i in order to avoid any dependence of the accuracy on Ts.

The computational burden has been verified by means of a Pentium

Pc, 1400 MHz, OS Windows XP SP2, under the Matlab environment.

For the considered Stanford manipulator, τi and τ̇i are calculated on

average in 5.255e-5 s, while classic Newton-Euler algorithm evaluates

the sole τi in 2.399e-5 s: nevertheless the Matlab environment is not

optimized for speed, computational times are absolutely compatible

with those required by online applications.

VI. CONCLUSIONS

A recursive algorithm, able to evaluate generalized force derivatives

for a robotic manipulator, has been proposed in the paper. It has been

explicitly developed for online applications which require accuracy

and a moderate computational burden. Accuracy is gained by using

iterative closed form expressions instead of approximate numerical

differentiation methods. Any effort has been spent to minimize the

TABLE III
INITIAL AND FINAL VALUES OF THE JOINT VARIABLES USED FOR THE

TRAJECTORY PLANNING.

Joint Variable θ1 θ2 d3 θ4 θ5 θ6
Initial Value π/2 0 0 π/2 π/4 π/2

Final Value π/4 π/2 2 π/4 π/2 0

number of involved mathematical operations which linearly depend on

the number of joints. The number of required operations can further

be reduced if the algorithm is optimized for a specific manipulator. An

important advantage of the proposed method is that it is an extension of

analogous algorithms currently used to solve the manipulators inverse

dynamics: the new functionalities can be obtained by simply updating

existing procedures.
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