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Smart changes of the end-effector orientation for the automatic
handling of singular configurations

Fabio Ghilardelli, Corrado Guarino Lo Bianco∗, Member, IEEE, and Marco Locatelli

Abstract—Trajectories in the operational space could easily
cause feasibility issues when they incur in kinematic singularities.
In proximity of singular configurations, as known, joint velocities
and accelerations could indeed assume unfeasible values, thus
worsening the tracking performances of controllers: In case of
strong violations of the assigned bounds, manipulators could
even be stopped in order to prevent control losses. Problems
are especially evident when trajectories are online defined for
non-repetitive tasks. This paper proposes an algorithm for
the real-time handling of wrist singularities for non-redundant
manipulators. The proposed method makes it possible to execute
otherwise unfeasible trajectories by simultaneously preserving
an accurate path tracking, by guaranteeing the fulfillment of the
assigned longitudinal time law and by fulfilling a given set of
bounds on the joint velocities and accelerations. This result is
achieved by acting on the orientation of the end-effector: Only
minor changes are admitted in order to minimize their impact
on the process quality. The proposed method has been verified by
means of simulations and real experiments. Comparisons have
been made with the performances of an analogous commercial
system.

Index Terms—Kinematic singularities, kinematics constraints,
real-time trajectory planning.

I. INTRODUCTION

Possible problems deriving from the physical limits of elec-
tromechanical systems can be mitigated by means of proper
reference signals which keep those systems far from unfea-
sible configurations. In robotic contexts, undesired behaviors
typically arise because of the velocity and the acceleration
limits of the electric actuators. Problems become especially
evident in case of trajectories planned in the operational space
since, as known, even slow Cartesian motions could require
unfeasible velocities and accelerations in the neighborhoods
of singular configurations.

Early works on this topic date back to the mid ’90s and
were basically focused on redundant manipulators. Critical
configurations were avoided by properly acting on the null
space of the Jacobian matrix and by exploiting the redundant
Degrees of Freedom (DOF) [1], [2] in order to find feasible
solutions that were able to preserve the end-effector path.

For non-redundant manipulators the problem is even more
complex. It can be managed by designing systems which
singularities are located outside the workspace [3]–[5], or by
planning trajectories which do not cross singularities [6], [7],
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or by admitting that planned trajectories could be modified, for
example, by altering the path geometry in order to skip the
singular points. To this purpose offline and online approaches
have both been proposed [8]–[12]. Unfortunately, in many
industrial applications modifications of the Cartesian path
are not allowed, so that the problem solution is typically
based on one of the following two alternative methods: The
velocity of the end-effector is properly slowed down in order
to preserve its Cartesian path and orientation or, alternatively,
small changes of the tool orientation are admitted in order to
maintain the assigned execution time and the Cartesian path.

The scientific literature proposes many works which handle
the problem through the first approach. Proposed solutions
concern both trajectories in the configuration space [13]–[19]
or trajectories in the operational space [20]–[23].

On the contrary, strategies based on the second approach
are seldom considered, despite there are many industrial
processes which require preserving both paths and time-laws.
Let us mention, for example, application fields like automatic
painting [24]–[27], gluing, or welding [28], in which changes
of the tool velocity or of the Cartesian path would lead to
quality losses, while small changes of the tool orientation
(±20 deg) can be admitted [11], [12], [29]. For the above
mentioned applications, the problem is typically handled by
means of offline constrained optimization algorithms, but in
case of non-repetitive tasks, appropriate online techniques
need to be developed. As previously recalled, only a few online
algorithms [30]–[32] have been proposed in the literature to
this purpose (actually, the iTaSC algorithm proposed in [31]
does not specifically address the singularity management, but
it could be adapted to that target). They are based on different
strategies but, due to their computational burden or to the
adopted design choices, they are all suited to slow motions,
like those that can be obtained through the use of manual
teaching-devices.

The Singularity Avoidance System (SAS) proposed in this
paper is conceived to handle in real time the wrist singularities
which represent, as known, the main cause of problems in
case of trajectories in the operational space for 6R anthropo-
morphic, non-redundant manipulators. Like in [30]–[32], this
result is achieved by admitting minor changes of the tool-frame
orientation while accurately preserving the assigned Cartesian
path and time-law but, differently from those approaches,
which are specifically suited for manually operated manip-
ulators, the novel system is conceived to operate at normal
working speeds, i.e., it can be used in real industrial contexts
in order to preserve the robot productivity even in presence
of singularities. This result is possible by adopting a totally
different strategy: The system core is indeed represented by
an array of nonlinear filters, which permits reduced evaluation
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times.
The paper is structured as follows. The problem statement

and the proposed solution are formulated in Section II. Sec-
tions III, IV, and V describe each single block which composes
the SAS. Simulation results are reported and commented
in Section VI, while Section VII is totally devoted to the
experimental tests executed on a Comau Smart SiX 6-1.4 ma-
nipulator. Finally, the conclusions are drawn in Section VIII.

NOTATION

The following notation is assumed along the paper. CpA,B
is the vector which individuates the position of point A w.r.t.
point B described w.r.t. frame C. A compact notation is used
any time a vector is described w.r.t. an inertial frame (typically
represented by the manipulator frame 0) so that pA is the
position of A w.r.t. 0 described w.r.t. frame 0. An analogous
notation is used for velocities and accelerations.

II. PROBLEM DEFINITION AND PROPOSED SOLUTION

Trajectories in the operational space are typically specified
by defining proper time functions which describe position
and orientation of tool frame T . For example, they can be
expressed through the following signals described w.r.t. an
inertial frame
0
TR(t) Rotation matrix: Orientation of frame T ;
pT (t) Position of frame T ;
ωT (t) Angular velocity of frame T ;
vT (t) Linear velocity of frame T ;
αT (t) Angular acceleration of frame T ;
aT (t) Linear acceleration of frame T .

According to the scheme shown in Fig. 1, the Cartesian
planner is normally followed by an inverse kinematics block
which returns an equivalent trajectory in the configuration
space that, in turn, is used to drive the joint actuators.

When trajectories are planned in real-time, their feasibility
w.r.t. the physical limits of the system can not be guaranteed
in advance. In particular, joint velocities could exceed the
given bounds or available motor torques could be insufficient
to guarantee the required joint accelerations. If q ∈ RN is
the vector of the joint generalized variables, the following
requirements must be fulfilled:

q̇− ≤ q̇ ≤ q̇+, (1)
q̈− ≤ q̈ ≤ q̈+, (2)

where q̇−, q̈− ∈ (R−)N , and q̇+, q̈+ ∈ (R+)N represent
proper bounds for joint velocities and accelerations. The given
limits can be assumed variable thus permitting, as shown in
Section V, the possible management of torque constraints.

The fulfillment of (1) and (2) is obtained by modifying
the standard planning scheme according to Fig. 1. In par-
ticular, while the position signals are sent unchanged to the
inverse kinematics block, the orientation signals are prepro-
cessed by the SAS which slightly modifies the tool frame
orientation in order to preserve the feasibility. The basic
assumption that is made for the synthesis of the system is
that trajectory equations are unknown to the SAS: Reference

Nominal

trajectory

Singularity

detector

Orientation

synthesizer

Orientation

modifier

Nonlinear

filtering

system

Equivalent

bound

evaluator

Inverse

kinematics

TR(t)

wT (t)

aT (t)

0

pT (t), vT (t), aT (t)

TR(t), wT (t), aT (t)
0~ ~ ~

FT,T (t) 

FT,T (t)

FT,T (t)

^

^

^

.

..

FT,T (t) 

FT,T (t)

FT,T (t)

.

..
~

~

~

F+, F-, F+, F-. . .. ..

q(t)

q(t)

q(t)

.

..

Singularity

avoidance

system

Fig. 1. A schematic representation of the singularity avoidance system: The
orientation signals are not directly sent to the inverse kinematic block but,
conversely, they are processed by the SAS.

signals 0
TR(t),ωT (t),αT (t),pT (t),vT (t),aT (t) are acquired

and processed by the SAS at each sample time in order to
promptly react to unforeseen singularities, thus permitting the
real-time management of trajectories in the operational space.

The first block of the SAS is the Singularity Detector
(SD). It detects possible singular configurations along the
nominal trajectory and consequently raises an alarm in order to
activate the SAS. Such alarm is then read by the Orientation
Modifier (OM), which specifies, through an auxiliary frame
T̂ , a new candidate orientation for the tool frame in order
to skip the singularity. The orientation displacement between
nominal reference frame T and T̂ is described through vector
ΦT̂ ,T := [α β γ]T , which corresponds to a Roll-Pitch-
Yaw (RPY) minimal notation. Since only minor trajectory
modifications are admitted, ΦT̂ ,T is generally close to zero:
As shown later in the paper this eliminates the appearance of
singularity problems deriving from the adopted notation. The
SD and the OM blocks are described in Section III.

The trajectory of frame T̂ can still be unfeasible. In fact,
the avoidance of singular points, by itself, is not sufficient
to guarantee that the modified trajectory is feasible w.r.t.
(1) and (2). On the contrary, any trajectory change that is
made in configurations which are close to singularities could
potentially require additional joint velocities and accelerations,
thus worsening an already critical situation. For this reason, the
OM is followed by a Nonlinear Filtering System (NFS) which
constrains the dynamics of ΦT̂ ,T between proper bounds. The
NSF is made by three independent scalar filters, each of them
acting on a single component of ΦT̂ ,T . The NFS returns a
signal ΦT̃ ,T which represents the best possible approximation
of ΦT̂ ,T satisfying the following inequalities

Φ̇− ≤ Φ̇T̃ ,T ≤ Φ̇+, (3)

Φ̈− ≤ Φ̈T̃ ,T ≤ Φ̈+, (4)

where Φ̇−, Φ̈− ∈ (R−)3 and Φ̇+, Φ̈+ ∈ (R+)3 are proper
limits that are devised by the Equivalent Bound Evaluator
(EBE) starting from the actual constraints of the actuators and
from the manipulator status of motion. As shown in Section V,
if (3) and (4) are satisfied, then (1) and (2) hold with certainty
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Fig. 2. Signal |q5| (solid line) and |q̇5| (dotted line) that are used for the
evaluation of alarm signal SD(q5) (dashed line).

and the trajectory is feasible. The internal structure of the NFS
filters has been extensively described in [33], so that interested
readers can refer to that paper for details.

The last block shown in Fig. 1, i.e., the Orientation Synthe-
sizer (OS), returns 0

T̃
R(t), ωT̃ (t), and αT̃ (t) of the modified

trajectory, which are obtained, according to the procedure
described in Section IV, from 0

TR(t), ωT (t), and αT (t) and
from the knowledge of ΦT̃ ,T , Φ̇T̃ ,T , and Φ̈T̃ ,T .

III. SINGULARITY DETECTOR AND ORIENTATION
MODIFIER BLOCKS

As specified in Section II, the SD detects the insurgence
of singular configurations and raises an alarm that activates
the OM. Several techniques have been tested for the im-
plementation of the SD and the OM blocks. The method
described in the following was finally chosen because of its
very light computational burden, but it is worth to mention
that techniques based on the use of the manipulability index
have shown similar performances.

The alarm signal must be raised sufficiently in advance in
order to have enough time to smoothly modify the tool orien-
tation. Since the focus of this paper is on wrist singularities,
the SD constantly controls the fifth joint variable, i.e., q5. In
particular, good results have been achieved by adopting the
following alarm function

SD(q5) :=

 true if
{

[|q5| ≤ a1] and
[
|q̇5| ≥ b

]}
or [|q5| ≤ a2] ,

false otherwise ,
(5)

where a1 > a2 and b represent appropriate thresholds. In
particular, a1 is a “far” threshold which announces that the
robot is approaching a singularity. It activates the alarm only if
the q̇5 is higher than threshold b: If the velocity is not too high
the alarm can be delayed. Conversely, closer to the singularity,
i.e., when |q5| ≤ a2, the alarm is raised independently from
q̇5. Fig. 2 shows an example case taken from one of the test
trajectories proposed in Section VII.

Once the alarm has been raised, the OM block syn-
thesizes the new candidate orientation for the tool frame,
which is expressed through an auxiliary frame T̂ . The ori-
entation displacement between nominal reference frame T
and modified reference frame T̂ is represented by means
of vector ΦT̂ ,T (q) which is associated to an RPY notation.

Vector ΦT̂ ,T (q) is obtained by performing a sort of local
search in the surroundings of neutral configuration Φ0 :=
[0 0 0]T . In particular, by defining the search space as follows{
σ := [σ1 σ2 σ3]T ∈ {−1, 0, 1}3 \ [0 0 0]T

}
, it is possible to

associate to each one of the resulting 26 vectors σ an angular
displacement according to the following equation

Φ̂T̂ ,T :=

[
σ1r

‖σ‖
σ2r

‖σ‖
σ3r

‖σ‖

]T
, (6)

where r = 10−3 defines the radius of the search space.
Then, named Φ̂∗

T̂ ,T
the displacement which causes the highest

increment of |q5| w.r.t. the value detected for Φ0, ΦT̂ ,T (q) is
obtained as follows

ΦT̂ ,T (q) := c(q) Φ̂∗
T̂ ,T

, (7)

where c(q) is given by the following scalar

c(q) :=
c1 ‖vT (q)‖+ c2

c3 + |q5|
. (8)

Practically, c(q) is chosen such as to guarantee higher angular
displacements when close to critical configurations and for
higher speeds of the tool-frame. Coefficient c1, c2, and c3 can
be selected on the basis of some simple considerations. It is
possible to impose, for example, that close to the singularity,
i.e., when q5 ' 0, the maximum and the minimum angular
deviations w.r.t. the nominal trajectory do not exceed some
given value. To this purpose, the following equations can be
used

cmax =
c1 ‖vTmax

‖+ c2
c3

, (9)

cmin =
c2
c3
, (10)

where vTmax is the maximum Cartesian velocity for the appli-
cation considered, cmax establishes the maximum deviation at
full speed, and cmin fixes the minimum deviation for speeds
close to zero.

The choice of c3 determines which term in (8), among ‖vT ‖
and |q5|, has more influence on c(q). Close to singularity |q5|
is very small so that, for large values of c3, the variability of
c(q) mainly depends on ‖vT ‖, i.e., the tool-frame orientation
basically changes on the basis of the Cartesian velocity.
Conversely, for small values of c3, the variability of c(q) is
mainly function of |q5|, i.e., it depends on the closeness to
singular points. With a few iterations on c3, it is possible to
devise an appropriate tuning for the system since c1 and c2
can be evaluated through (9) and (10).

IV. THE ORIENTATION SYNTHESIZER BLOCK

The OS is the SAS output block which combines the
orientation of the nominal trajectory with ΦT̃ ,T := [α β γ]T ,
Φ̇T̃ ,T := [α̇ β̇ γ̇]T , and Φ̈T̃ ,T := [α̈ β̈ γ̈]T , i.e., with the
signals that are provided by the NFS and whose synthesis will
be later discussed in Section V. Changes only affect the tool
frame orientation and, consequently, its angular velocity and
acceleration while, according to the premises, signals pT (t),
vT (t), and aT (t) are left unchanged in order to preserve the
geometry of the Cartesian path.
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The modified orientation of the tool frame can be evaluated
according to the following expression

0
T̃
R = 0

TR T
T̃
R(ΦT̃ ,T ) ,

where T
T̃
R(ΦT̃ ,T ) is the rotation matrix corresponding to

ΦT̃ ,T .
As known, the relative angular velocity between frame T̃

and frame T can always be expressed as follows

TωT̃ ,T = T(ΦT̃ ,T ) Φ̇T̃ ,T , (11)

where T(ΦT̃ ,T ) is a proper matrix which correlates angular
velocities to Φ̇T̃ ,T . The structure of T(ΦT̃ ,T ) depends on the
minimal notation. For the RPY notation, it can be easily proved
that it is given by

T(ΦT̃ ,T ) =

 1 0 sin(β)
0 cos(α) − sin(α) cos(β)
0 sin(α) cos(α) cos(β)

 . (12)

In the following, the argument of T(·) will be omitted for
conciseness.

Bearing in mind (11) and assuming the compact notation
for vectors described w.r.t. frame 0, it is immediately possible
to derive the angular velocity of frame T̃ by means of the
following equation

ωT̃ = ωT + ωT̃ ,T = ωT + 0
TR TωT̃ ,T = ωT + 0

TR T Φ̇T̃ ,T .
(13)

The angular acceleration of T̃ can be evidently obtained
by deriving (13). A few algebraic manipulations lead to the
following expression

αT̃ = αT + 0
T Ṙ T Φ̇T̃ ,T + 0

TR Ṫ Φ̇T̃ ,T + 0
TR T Φ̈T̃ ,T

= αT + ωT × 0
TR T Φ̇T̃ ,T + 0

TR
[
Ṫ Φ̇T̃ ,T + T Φ̈T̃ ,T

]
,

(14)

where Φ̇T̃ ,T := [α̇β̇ γ̇α̇ β̇γ̇]T and

Ṫ :=

 0 0 cos(β)
− sin(α) − cos(α) cos(β) sin(α) sin(β)
cos(α) − sin(α) cos(β) − cos(α) sin(β)

 .
V. THE EQUIVALENT BOUNDS EVALUATOR BLOCK

As specified in Section II, the SAS scheme requires that
bounds q̇−, q̇+, q̈−, and q̈+ must be converted into equivalent
bounds on Φ̇−, Φ̈−, Φ̇+, and Φ̈+. Such conversion depends
on the current position of tool frame T̃ , assumed to coincide
with that of T (i.e., pT̃ = pT ), and on its current orientation,
assumed to be given by 0

T̃
R. The solution of the inverse

kinematic problem for 0
T̃
R and pT̃ returns the current value of

q, which can be used for the evaluation of the Jacobian matrix
JT̃ . For this reason, from now on, JT̃ will be supposed to be
known.

In non-singular configurations – recall that the proposed
approach makes it possible to avoid such configurations – it
is possible to write

q̇ = J−1

T̃
vT̃ , (15)

where vT̃ := [vT
T̃
ωT
T̃

]T represents the generalized velocity of
T̃ . It is always possible to partition J−1

T̃
into two 6x3 sub-

matrices respectively named JvT̃ and JωT̃
and defined such

that the following equality applies

J−1

T̃
=:
[
JvT̃ | JωT̃

]
, (16)

By virtue of (16), it is possible to rewrite (15) as follows

q̇ = JvT̃ vT̃ + JωT̃
ωT̃ .

Velocity vT̃ coincides with vT , while ωT̃ is given by (13), so
that constraint (1) can be posed in the following form

q̇− ≤ JvT̃ vT + JωT̃

[
ωT + 0

TR T Φ̇T̃ ,T

]
≤ q̇+ ,

or, analogously,

˙̃q
−
≤ JωT̃

0
TR T Φ̇T̃ ,T ≤ ˙̃q

+
, (17)

where

˙̃q
−

:= q̇− − J−1

T̃
vT , (18)

˙̃q
+

:= q̇+ − J−1

T̃
vT . (19)

Any feasible Φ̇T̃ ,T must fulfill (17). All the terms in (18) and
(19) are known: q̇− and q̇+ are user-defined bounds, J−1

T̃
is

the inverse Jacobian associated to the modified tool frame T̃ ,
vT is the generalized velocity of frame T . In the same way,
many of the terms in (17) are known: JωT̃

derives from (16),
0
TR is the rotation matrix of frame T , and T is given by (12).

The acceleration constraints can be similarly handled. It is
known that

aT̃ = J̇T̃ q̇ + JT̃ q̈ ,

which can be solved for q̈, thus leading to

q̈ = J−1

T̃

[
aT̃ − J̇T̃ q̇

]
= J−1

T̃

[
aT̃ − J̇T̃ J−1

T̃
vT̃

]
. (20)

By using the partitioning scheme suggested in (16), it is
possible to rewrite (20) as follows

q̈ = JvT̃ aT̃ + JωT̃
αT̃ − J−1

T̃
J̇T̃ J−1

T̃
vT̃ ,

which, in turn, can be written, because of (14) and since aT̃ =
aT , as follows

q̈ = JvT̃ aT + JωT̃

{
αT + ωT × 0

TR T Φ̇T̃ ,T

+0
TR

[
Ṫ Φ̇T̃ ,T + T Φ̈T̃ ,T

]}
− J−1

T̃
J̇T̃ J−1

T̃
vT̃ . (21)

By substituting (21) into (2), after a few manipulations it is
possible to obtain

¨̃q
−
≤ JωT̃

0
TR T Φ̈T̃ ,T ≤ ¨̃q

+
, (22)

where

¨̃q
−

:= q̈− − J−1

T̃

[
aT − J̇T̃ J−1

T̃
vT̃

]
− JωT̃

{
ωT × 0

TR T Φ̇T̃ ,T + 0
TR Ṫ Φ̇T̃ ,T

}
,

¨̃q
+

:= q̈+ − J−1

T̃

[
aT − J̇T̃ J−1

T̃
vT̃

]
− JωT̃

{
ωT × 0

TR T Φ̇T̃ ,T + 0
TR Ṫ Φ̇T̃ ,T

}
.
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Vectors ¨̃q
−

and ¨̃q
+

can be evaluated from the knowledge
of the nominal trajectory, of the current values of ΦT̃ ,T and
Φ̇T̃ ,T , and of the user-defined acceleration bounds, i.e., q̈−

and q̈+. Evidently, any feasible Φ̈T̃ ,T must fulfill (22).
It is worth to mention that in this paper q̈− and q̈+ are

assumed to be constant for the sake of simplicity, but the whole
approach does not actually require such assumption. This
potentiality can be used, e.g., to manage the torque constraints.
To this purpose, given proper torque bounds τ− ∈ (R−)N and
τ+ ∈ (R+)N it is possible to convert them into the following
equivalent acceleration bounds

q̈+ = M−1(q)[τ+ −C(q, q̇) q̇− g(q)− f(q, q̇)], (23)

q̈− = M−1(q)[τ− −C(q, q̇) q̇− g(q)− f(q, q̇)], (24)

which clearly depend on q and q̇. Equations (23) and (24)
directly descend from the usual manipulator model

τ = M(q) q̈ + C(q, q̇) q̇ + g(q) + f(q, q̇) ,

where M(q) is the inertia matrix, C(q, q̇) is the matrix of
Coriolis and centripetal terms, g(q) is the vector of gravita-
tional terms, and f(q, q̇) is the vector associated to friction.
Similarly, the actuators’ dynamics can be accounted for by
means of techniques analogous to those derived for [34].

Equations (17) and (22) represent the starting point for
converting the original bounds on q̇ and on q̈ into equivalent
bounds on Φ̇T̃ ,T and on Φ̈T̃ ,T . However, such conversion
is not straightforward since q and ΦT̃ ,T are dimensionally
different. More in details, (17) and (22) represent a set of
2N independent constraints on q̇ and on q̈ that must be
converted into 6 equivalent constraint equations on Φ̇T̃ ,T

and on Φ̈T̃ ,T . The conversion clearly admits some degrees
of freedom that can be used to obtain the best possible
performances from the trajectory modification strategy. This is
the reason why the equivalent bounds are obtained by solving a
linear programming (LP) problem which returns a set of proper
equivalent limits Φ̇− := [α̇− β̇− γ̇−]T , Φ̈− := [α̈− β̈− γ̈−]T

and Φ̇+ := [α̇+ β̇+ γ̇+]T , Φ̈+ := [α̈+ β̈+ γ̈+]T for Φ̇T̃ ,T

and Φ̈T̃ ,T such that if (3) and (4) hold, then (17) and (22) –
and, in turn, (1) and (2) – are certainly satisfied.

The best SAS performances can clearly be obtained when
bounds on Φ̇T̃ ,T and Φ̈T̃ ,T are kept wide: In fact, this permits
a good reactivity of the trajectory modifier which can rapidly
react to critical situations. As a consequence, by defining A :=
JωT̃

0
TR T and bearing in mind (17) and (22), the optimal

bounds can be obtained by solving the following semi-infinite
minimax problem

max
Φ̇+, Φ̈+ ∈ (R+)3

Φ̇−, Φ̈− ∈ (R−)3

min
i=1,...,6

{Γ+
i − Γ−

i } (25)

subject to

˙̃q
−
≤ A Φ̇T̃ ,T ≤ ˙̃q

+
∀Φ̇T̃ ,T ∈ [Φ̇−, Φ̇+], (26)

¨̃q
−
≤ A Φ̈T̃ ,T ≤ ¨̃q

+
∀Φ̈T̃ ,T ∈ [Φ̈−, Φ̈+], (27)

where Γ+
i and Γ−

i are, respectively, the components of vec-
tors Γ+ := [k α̇+ k β̇+ k γ̇+ α̈+ β̈+ γ̈+]T and Γ− :=

[k α̇− k β̇− k γ̇− α̈− β̈− γ̈−]T which contain the desired
bounds, while k is used to correctly weight the velocity and
acceleration bounds. For the problem at hand, in particular,
k = 10 guarantees acceleration bounds 10 times larger than
velocity bounds.

Matrix A is certainly full-rank. As stated in Section III,
indeed, ΦT̃ ,T is always kept close to zero, so that T(ΦT̃ ,T ),
owing to (12), is almost an identity matrix. Furthermore,
the avoidance of singular configurations also guarantees that
JωT̃
∈ RN×3, i.e., the rightmost part of the inverse Jacobian,

is certainly full rank. Finally, since 0
TR ∈ R3×3 is always

non-singular, it is possible to conclude that A is a full rank
N × 3 real matrix.

Equations (26) and (27) are clearly linear. This property can
be used to convert both semi-infinite constraints into a set of
finite constraints. For example, the feasibility of (26) can be
checked by ignoring the interior points of box [Φ̇−, Φ̇+] and
by only inspecting its vertexes. More precisely, the feasibility
of (26) is guaranteed if the following vertex points are feasible

Φ̇1 := [α̇− β̇− γ̇−]T , Φ̇2 := [α̇− β̇− γ̇+]T ,

Φ̇3 := [α̇− β̇+ γ̇−]T , Φ̇4 := [α̇− β̇+ γ̇+]T ,

Φ̇5 := [α̇+ β̇− γ̇−]T , Φ̇6 := [α̇+ β̇− γ̇+]T ,

Φ̇7 := [α̇+ β̇+ γ̇−]T , Φ̇8 := [α̇+ β̇+ γ̇+]T .

The same concept applies for (27), so that (25) can be easily
reconverted into the following LP problem

max
λ, Φ̇+,Φ̈+,Φ̇−,Φ̈−

{λ}

subject to

λ ≤ Γ+
i − Γ−

i i = 1, 2, . . . , 6 (28)

Φ̇+, Φ̈+ ≥ 0 (29)

Φ̇−, Φ̈− ≤ 0 (30)

˙̃q
−
≤ A Φ̇i ≤ ˙̃q

+
i = 1, 2, . . . , 8, (31)

¨̃q
−
≤ A Φ̈i ≤ ¨̃q

+
i = 1, 2, . . . , 8. (32)

For the application at hand, each linear problem must be solved
within the sampling time of the process, i.e., in less than one
millisecond. Existing LP solvers, like CPLEX are extremely
fast but waste a considerable amount of time – at least,
compatibly with the sampling time – for the preparation of
their environment. For this reason, instead of CPLEX, a custom
LP solver has been implemented by posing a great care in
choosing the right strategies in order to reduce computational
times. The proposed solution is based on the well known
simplex algorithm (see, e.g., [35]). While such algorithm has
an exponential worst-case complexity, it works very well in
practice. It has been observed that the number of iterations
required by the simplex algorithm is of the same order of
magnitude of the number of constraints of the problem.
Problem (28)-(32) has more than 200 constraints but only 13
variables. Thus, rather than applying the simplex algorithm
to (28)-(32), it is convenient to apply it to its dual, where
the number of constraints is equal to 13, i.e., the number of
variables of problem (28)-(32). As known, the optimal value
of the original problem is equal to the optimal value of the
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dual problem, while the solution of the original problem can
be derived from the dual solution, e.g., by the complementarity
conditions (please, refer again to [35] for details).

An important feature of the simplex algorithm, which has
been specifically exploited, is the so-called “warm-start”, i.e.,
the possibility of solving an LP problem by starting from the
solution of another LP problem, when this latter is just a slight
perturbation of the former one. This is indeed our case: Each
new LP problem (28)-(32) differs from the preceding one for
what concerns matrix A and vectors ˙̃q

+
, ˙̃q

−
, ¨̃q

+
, ¨̃q

−
, but the

new entries are just slight perturbations of the old ones. Let B∗
i

be the optimal basis for problem (28)-(32) at the ith sampling
instant, from which we can easily derive the primal and dual
optimal solutions and their common optimal value (see again
[35] for the details). In most cases (99.56% in our experiments)
B∗
i is still an optimal basis at sampling instant i + 1. In few

cases (0.40% in our experiments) B∗
i is still primal or dual

feasible at sampling instant i+ 1, so that it can be used as a
warm starting point for the primal or dual simplex algorithm,
respectively. In very few cases (0.04% in our experiments) B∗

i

is neither primal nor dual feasible at sampling instant i+1, so
that we need to apply the two-phase simplex method, in order
to recover (dual) feasibility and start with the (dual) simplex
algorithm (notice that this is also needed at the first iteration).
Test experiments executed on a Intel Core2 Duo PC running
at 3.0GHz have shown that the computational times for the
LP problems are in the range 6.5 · 10−5 s up to 5.2 · 10−4 s,
with an average time of 7.0 · 10−5 s, i.e., they are perfectly
compatible with the sample time of the SAS which is equal
to 2 · 10−3 s.

Equivalent bounds Φ̇−, Φ̈−, Φ̇+, and Φ̈+, once evaluated
by the custom LP solver, are sent to the NFS for the generation
of the smooth signals that are used to change the tool orien-
tation. The description of the NFS is omitted for brevity, but
its structure and behavior have been proposed and extensively
discussed in [33].

VI. SIMULATION RESULTS

The SAS has been simulated by considering the kine-
matics of a Comau Smart SiX 6-1.4 manipulator. In the
following, the MKS system of units is adopted any time
units are not explicitly specified. The components of con-
straint vectors q̇−, q̇+, q̈−, and q̈+ have been posed equal
to (i = 1, 2, . . . , N ): q̇−i = −10 rad s−1, q̇+i = 10 rad s−1,
q̈−i = −100 rad s−2 and q̈+i = 100 rad s−2. Velocity limits
coincide with those of the actual robot, while acceleration
bounds, since the dynamic model of the manipulator was
not available, have been tentatively chosen such as to obtain
smooth transients. Thresholds in (5) and coefficients of (8)
have been respectively posed equal to a1 = 0.25, a2 = 0.16,
b = 0.65, c1 = 7/450, c2 = 2/4500, and c3 = 17/1000.
Constants have been tuned such as to guarantee orientation
changes in the range ±10 deg at the maximum Cartesian
speed considered for the experiments (‖vT ‖ = 0.4 ms−1).
The above settings have been adopted for all the experi-
ments. The same tests have been also repeated by considering
the Comau Singularity Avoidance System (CSAS), i.e., the
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Fig. 3. (a) Velocities and (b) accelerations of joint 4 obtained with the SAS
(solid lines) compared with those obtained without the SAS (dashed lines)
and with the CSAS (dash-dotted lines). Dotted lines highlight the assigned
bounds.

algorithm for the singularity avoidance implemented in the
Comau controllers. Simulations have been executed on the
Comau ROBOSim, a software environment which is used by
the Comau Robotics for the simulation of its manipulators.
When the user indicates that a trajectory is critical the CSAS,
which does not automatically detect singularities, plans three
feasible point-to-point joint trajectories for the wrist axes such
that initial and final orientations of the tool-frame coincide
with those assigned, but intermediate orientations are left free.
Then, the trajectories of the first three axes are planned such
as to guarantee the accurate path tracking and the fulfillment
of the time-law. Practically, similarly to what happens with the
strategy proposed in this paper, the feasibility is preserved by
modifying the tool-frame orientation.

In the first test case proposed here, the trajectory is given
by a straight line from pA = [0.65 0.83 1.12]T to pB =
[−0.2 0.83 1.12]T . The nominal orientation of the tool-frame
is kept constant and equal to ΦT,0 = [π/2 0 π/2]T (the RPY
notation has been assumed). The trajectory passes close to
a wrist singularity located at pT = [0 0.83 1.077]T with
‖vT ‖ = 0.4 ms−1: If the SAS is not used, velocities and
accelerations of joints 4 and 6 become unfeasible. Fig. 3
shows the behavior of joint 4: Without the SAS (dashed
lines) the velocity and the acceleration limits are violated
while, conversely, feasibility is preserved when the SAS is
active (solid lines). The same figure also shows what happens
when the CSAS is used (dash-dotted lines): Velocities and
accelerations are evidently lower, but this result is achieved
by modifying the tool orientation far from the singularity, i.e.,
when it is not necessary. Similar transients are obtained for
joint 6. According to the theory, the SAS achieves this result
with the aid of the nonlinear filters which keep the first and
the second time derivatives of ΦT̃ ,T between the equivalent
bounds evaluated by the EBE. This assertion can be verified
through Figs. 4–6, which compare components α, β, and γ
of ΦT̃ ,T (solid lines) with the homologous components α̂, β̂,
and γ̂ of ΦT̂ ,T (dashed lines) generated by the OM block. In
non critical regions, ΦT̂ ,T is kept equal to zero, so that the
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manipulator is driven by the nominal trajectory. Notice that,
for the considered path, the OM block always imposes γ = 0.
When a singularity is detected, the OM block modifies the tool
orientation by generating a proper signal ΦT̂ ,T . Such signal
is generally discontinuous and unfeasible w.r.t. the given joint
limits. For this reason, it is filtered by the NFS which generates
a smooth signal ΦT̃ ,T which first and second time derivatives
fulfill equivalent bounds Φ̇−, Φ̈− and Φ̇+, Φ̈+ (dotted lines),
thus preserving the trajectory feasibility. The same Figs. 4–
6 also show the values of α, β, and γ which are obtained
with the CSAS (dash-dotted lines): Orientation changes are
evidently higher – especially for α – and last longer, thus
possibly worsening the process quality.

The effectiveness of the method proposed in this paper
depends on the distance between the trajectory and the singular
point. Consequently, the second set of tests has been conceived
to verify the system performances for trajectories passing at
different distances from pT . To this purpose a set of linear
paths from pA = [0.65 0.83 z]T to pB = [−0.2 0.83 z]T

for z ∈ [1.05, 1.12] has been generated and executed with
‖vT ‖ = 0.4 ms−1. Fig. 7 shows the shapes for α, β, and γ
achieved with the SAS (solid lines) and with the CSAS (dash-
dotted lines). As expected, the SAS changes the orientation
only when the tool is close to the singularity. Moreover,
the deviation depends on the distance between the path and
pT : Higher changes are introduced when the path passes
closer to the singularity. For the considered vT , interval
z ∈ [1.065, 1.092] is still precluded (remember that singularity
occurs at z = 1.077) but for lower velocities (0.1 ms−1)
pT can even be crossed. The CSAS performances are totally
different: The orientation is modified when the tool is far
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from the singularity, changes are more relevant (see, e.g.,
the maximum amplitude for α) and they are less affected
by the distance between path and singular point. These are
clearly undesired behaviors, since modifications of the nominal
trajectory should be kept at minimum.

The last set of tests verify the SAS performances for tra-
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jectories approaching pT from different directions, according
to the procedure schematically shown in Fig. 8 and in Video1
of the graphical abstract. In particular, for each direction i, a
sequence of parallel trajectories lying in the plane y = 0.83
and converging toward pT has been executed. The distance
between two of them is equal to 10−3 m (in Video 1 such
distance has been posed equal to 10−2 m in order to shorten
its length). The scanning process ends when feasibility is
lost: The minimum distance di from pT of the last feasible
trajectory is stored and the scanning process is then repeated
for the (i+ 1)-th direction. Four different velocities vT have
been considered and, for each of them, 20 scanning approaches
have been performed for a total of 103 trajectories.

Distances di are compared in Fig. 9 with those obtained
through an homologous scanning process executed without the
SAS aid. The results highlight that the SAS permits, in any
case, closer approaches to pT . Improvements are especially
evident for vertical (m =∞) and horizontal trajectories (m =
0) since at the lowest velocities pT can even be crossed.

VII. EXPERIMENTAL RESULTS

The SAS performances have been further checked by repli-
cating the same experiments of Section VI on a real Comau
Smart SiX 6-1.4 manipulator. The experimental setup is shown
in Fig. 10 and it is composed by the manipulator itself, its
control system, and a Personal Computer (PC) which processor
is an Intel Core2 Duo @3.0GHz, running an Ubuntu operative
system with an RTAI patched kernel. Some functions of the
Comau control unit can be disabled and demanded to the
external PC: For the experiments proposed in the following,
the manipulator is driven by the SAS algorithm which runs
on the PC. The communication between PC and controller is

singular point

d1 d2

minimum distance

feasible trajectories scanning

direction

scanning

direction

trajectories

Fig. 8. Scanning procedure: The singular point is approached from several
directions by means of parallel trajectories. For each direction, minimum
distance di corresponding to the last feasible segment is stored.
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Fig. 10. The experimental setup.
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obtained through a dedicated, real-time, Ethernet connection.
The computational time for the whole algorithm spans in the
interval from 9.2 · 10−5 s to 7.0 · 10−4 s, and it is on average
equal to 1.3 · 10−5 s, i.e., it is perfectly compatible with the
process sample time which is equal to 2 · 10−3 s.

The number of experimental results described in this section
is limited for space reasons, but many other experiments have
been executed. For example, as shown in Video 1 of the
graphical abstract, the last set of tests proposed in Section VI
has also been replicated on the real manipulator, pointing out a
perfect agreement between simulated and experimental results.

The validation tests proposed in the following concern the
execution of vertical and horizontal trajectories lying in the
plane y = 0.83 and passing close to a wrist singularity. In
particular, vertical trajectories pass 5·10−3 m far from the
singularity, while horizontal ones pass at 3.5·10−3 m: Both
trajectories are the closest ones to the singularity that can be
safely executed with the SAS assistance for ‖vT ‖ = 0.4 ms−1.
Performances are evaluated on the basis of the path tracking
errors and results are also documented by Video 2 of the
graphical abstract. In Experiment 1 a vertical trajectory is
executed by disabling the SAS and by assuming ‖vT ‖ =
0.07 ms−1, which is the maximum velocity that can be feasibly
maintained without the SAS or the CSAS assistance. Due to
the extremely low velocities, dynamic errors are negligible, as
can be evinced form Fig. 11 which shows that the maximum
path tracking errors, as calculated from the motors’ encoders
through the forward kinematics, are roughly equal to 10−4 m.
Then, in Experiment 2, still keeping the SAS and the CSAS

disabled, speed is increased to 0.1 ms−1: Joint velocities
become unfeasible, so that the manipulator is stopped by the
controller. In Experiments 3, 4, and 5 the SAS has been
activated. For each experiment two alternative sets of bounds
have been considered (i = 1, 2, . . . , 6):

B1) q̇−i = −8, q̇+i = 8, q̈−i = −40 and q̈+i = 40;
B2) q̇−i = −10, q̇+i = 10, q̈−i = −25 and q̈+i = 25.

Specifically, B2 is characterized by higher velocity constraints
and lower acceleration limits. The use of two alternative sets of
bounds makes it possible to point out that the controller track-
ing performances can be improved through a proper choice of
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TABLE I
EXPERIMENTALLY MEASURED MAXIMUM PATH TRACKING ERRORS AND

MAXIMUM ANGULAR DEVIATIONS FROM THE NOMINAL PATH.

vertical trajectories horizontal trajectories
max max max max

‖vT ‖ error |α|, |β|, ‖vT ‖ error |α|, |β|,
Exp. ×10−4 |γ| Exp. ×10−4 |γ|

[ms−1] [m] [deg] [ms−1] [m] [deg]
SAS 1 0.07 1.31 – 7 0.02 1.32 –
off 2 0.1 2.76 – 8 0.03 1.93 –

3-B1 0.1 2.99 1.04 9-B1 0.03 4.65 0.391
3-B2 0.1 1.93 1.04 9-B2 0.03 5.28 0.391

SAS 4-B1 0.2 6.28 3.00 10-B1 0.2 13.5 2.86
on 4-B2 0.2 5.26 2.99 10-B2 0.2 10.6 3.02

5-B1 0.4 15.9 6.58 11-B1 0.4 21.9 4.57
5-B2 0.4 10.5 6.22 11-B2 0.4 16.4 5.07

CSAS
on 6 0.4 4.23 15.61 12 0.4 2.54 17.33

the SAS constraints. Practically, when B2 is used, trajectories
require lower torques, so that closed-loop controllers are less
solicited and tracking errors reduce. This characteristic is
particularly evident at high speeds as shown in Fig. 12 and
by the data reported in Table I. It is worth to mention that
the feasibility has been preserved in all the experiments. In
Experiment 6, the singularity has been managed through the
CSAS. Path tracking errors are lower than those achieved in
Experiment 5 because joint speeds are kept lower by admitting
much higher orientation errors (see also Table I and Video 2).

Similar performances, as can be evinced from Table I and
from Video 2, have been obtained for Experiments 7–12 which
concern the horizontal trajectories.
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VIII. CONCLUSIONS AND FUTURE WORKS.
The approach proposed in this paper for the automatic

handling of kinematic singularity can be used any time a slight
modification of the tool orientation can be reasonably admitted
in order to preserve an accurate tracking of the Cartesian
trajectory. The achievable distances from singular points are
evidently influenced by the longitudinal velocity, but they are
also correlated to the approaching direction. For this reason,
the research activity is currently concentrated on the study of
strategies which could modify the SAS behavior depending on
the motion direction. Another research direction concerns the
combination of the SAS with the trajectory scaling system
proposed in [22]: The hybrid implementation of the two
methods could potentially preserve the feasibility even with
trajectories passing closer to singular points. Obviously, such
combined strategy is only meaningful for applications in which
the Cartesian speed of the tool frame can be modified. Finally,
as stated in the paper, preliminary tests have shown that the
manipulability index can validly be used in the SD and in
the OM blocks at the cost of a higher computational burden.
This possibility opens new perspectives since, in some cases,
small changes of the tool frame orientation can also be used
to manage the shoulder singularities, provided that they could
be detected by means of a general purpose method.
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