
STEREO-VISION SYSTEM PERFORMANCE ANALYSIS 
 

M. Bertozzi, A. Broggi, G. Conte, and A. Fascioli 
 

Dipartimento di Ingegneria dell 'Informazione, Università di Parma 
Parco area delle Scienze, 181A 

I-43100, Parma, Italy 
Phone +39 0521905800, Fax +39 0521905723, E-mail: bertozzi,broggi,conte,fascal@ce.unipr.it 

 
 

Abstract: Since one of the main requirements for PRASSI Project is the robust detection of obstacles on the path 
of a moving robot, a deep analysis of the performance of Obstacle Detection is imperative.  
This paper presents a critical analysis of the obstacle detection functionality developed by the research unit of the 
University of Parma, whose main characteristics are its low cost and the use of visual information only.  
This paper surveys the sets of results obtained so far, highlights its characteristics, and discusses the main 
advantages and problems of such a solution.  
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INTRODUCTION 
For an autonomous robot, a robust Obstacle 
Detection functionality is mandatory in order to 
detect potential hazards on its path. Therefore, this 
functionality is essential even for the Path 
Following functionality, namely the automatic 
movement of an intelli gent agent along a 
predefined path.  
The criteria used for the detection of obstacles 
depend on the definition of what an obstacle is. In 
some systems determining obstacles is limited to 
the localization of a particular kind of targets, 
which is then based on a search for specific 
patterns, possibly supported by other features, such 
as shape, symmetry, or the use of a bounding box. 
In this case, the processing can be based on the 
analysis of a single still i mage, but the approach is 
not successful when an obstacle does not match the 
model.  
A more general definition of obstacle, which 
obviously leads to more complex algorithmic 
solutions, identifies as an obstacle any object that 
can obstruct the robot's driving path or, in other 
words, anything rising out significantly from the 
road surface. In this case, Obstacle Detection is 
reduced to identifying free-space (the area in 
which the robot can safely move) instead of 
recognizing specific patterns.  
Due to the general applicabilit y of this definition, 
the problem is dealt with using more complex 
techniques; the most common ones are based on 
the processing of two or more images, such as  
analysis of the optical flow field, and processing of 
non-monocular images.  

In the first case more than one image is acquired 
by the same sensor in different time instants, whilst 
in the second one, different cameras acquire 
images simultaneously, but from different points of 
view. Besides their intrinsic higher computational 
complexity, caused by significant increment in the 
amount of data to be processed, being based on the 
processing of multiple images, these techniques 
must also be robust enough to tolerate noise caused 
by vision system movements and drifts in the 
calibration of the multiple cameras' setup.  
The optical flow-based [7] technique requires the 
analysis of a sequence of two or more images: a 
2D vector is computed in the image domain, 
encoding the horizontal and vertical components of 
the velocity of each pixel. The result can be used to 
compute ego-motion [4], which in some systems is 
directly extracted from odometry [6]; obstacles can 
be detected by analyzing difference between the 
expected and real velocity fields.  
On the other hand, the processing of non-
monocular image sets requires identifying 
correspondences between pixels in the different 
images: two images, in the case of stereo vision,  

 

Figure 1: The stereo vision system used for the test. 



and three images, in the case of trinocular vision. 
The advantage of analyzing stereo images instead 
of a monocular sequence lies in the possibilit y of 
directly detecting the presence of obstacles, which, 
in the case of an optical flow-based approach, 
indirectly derives from analysis of the velocity 
field. Moreover, in a limit condition where both 

robot and obstacles have small or null speeds, the 
optical flow-based approach fails while the other 
can still detect obstacles. Furthermore, to decrease 
the intrinsic complexity of stereo vision, some 
domain specific constraints are generally adopted.  
A very promising approach to these problems is 
based on the removal of the perspective effect, 
which is naturally induced by the acquisition 
conditions. Such a technique has been successfully 
used for the computation of the optical flow field, 
the detection of obstacles in a structured 
environment, or in the automotive field using 
standard camera [8] or using linear cameras [10,9]. 
Similar techniques [5,2] (Image Warping) have 
been largely used in the processing of stereo 
images and used for Obstacle Detection.  
This paper is organized as follows: section 2 
briefly summarizes the characteristics of the 
approach for obstacle detection developed by the 
research unit of the University of Parma [3], and 
presents the algorithm; section 3 describes the test-
bed of this experiment; section 4 presents the 
results obtained; finally section 5 discusses the 
results and concludes the paper.  

1 VISION-BASED OBSTACLE 
DETECTION  
The obstacle detection system considered in this 
work has been designed with the following 
characteristics in mind:  
Low-Cost: the first design requirement was to 
keep the costs at a minimum. These costs include 
both production costs (which must be kept low to 
allow a widespread use of these devices) and 
operative costs, which must not exceed a certain 
threshold in order not to interfere with the robot 
performance.  
Real-Time performance: a basic requirement for 
ITS apparata is the possibilit y to work in real-time; 
namely it must be able to produce the results in a 
extremely reduced time slot to allow a fast recover 
in dangerous situations.  
A real-time system must be based on a powerful 
processing engine but -according to the previous 
requirement of keeping the system's cost low- the 
current architecture is based on a simple 
commercial PC: all the tests have been performed 
using a Pentium 200 MHz with MMX Technology. 
Although this is not the top of available 
commercial systems, it allows to deliver 
suff iciently high performance, when the algorithms 
are properly designed.  
Based on Vision only: only the use of passive 
sensors, such as cameras, has been considered. 
Although very eff icient in some fields of 
application, active sensors -besides polluting the  

 
Figure 2: The acquisition of an ideal homogeneous 
square obstacle: (a) 3D scene; (b) left image; (c) right 
image; (d) left remapped image; (e) right remapped 
image; (f) difference image in which the grey area 
represents the region of the road unseen by both 
cameras; (g) location of the projections of the two 
cameras; (h) location of the focus; (i) polar histogram 
and binarization threshold. 



environment- feature some specific problems due 
to inter-robot interference amongst the same type 
of sensors, and due to the wide variation in 
reflection ratios caused by many different reasons, 
such as obstacles' shape or material. Moreover, the 
maximum signal level must comply with safety 
rules and must be lower than a safety threshold.  
Therefore, although being extremely complex and 
highly demanding, thanks to the great deal of 
information that it can deliver, computer vision 
represents a powerful means for sensing the 
environment, and it is widely employed in many 
different projects worldwide. The main 
characteristics of the system currently in is that it is 
based on stereo vision (see figure 1) and the 
distance between the two cameras is relatively 
high, in order to also detect small objects far away. 

1.1 The Algorithm  
The algorithm which implements the Obstacle 
Detection module [3] has the following 
characteristics:  
it is based on binocular vision; the two b/w 
cameras lie at about 120 cm and have a focal 
length of 6 mm;  
it is based on the removal of the perspective effect 
from both images;  
it does not rely on the flat road assumption, since it 
can dynamically adapt the remapping parameters 
according to the road slope [1];  
it can detect any obstacle without constraints about 
shape, color, or position, since it considers as 
obstacle anything which does not belong to the 
road surface.  
After removing the perspective effect from both 
images, a difference is computed, which contains 
the disparities between the two remapped images 
in the road domain. The difference is followed by 
thresholding and morphological filters which tend 
to emphasize the real disparities and decrease the 
influence of noise. Noise can be caused by a non-

optimal cameras calibration and by robot 
movements.  
Figure 2.a shows a computer generated scene: a 
planar surface (which has been gridded for clarity 
purposes) and an ideal homogeneous square 
obstacle. Two stereo cameras acquire two views of 
the scene (see figures 2.b and 2.c); both images are 
remapped with the aim of extracting the texture of 
the road surface (see figures 2.d and 2.e). Then the 
difference between the two images is computed in 
order to determine possible disparities representing 
deviations from the assumed shape of the road.  
As shown in figure 2.f, an ideal obstacle produces 
two triangles in the difference image, 
corresponding to its two vertical edges. Obviously 
-due to occlusions, non homogeneous color and 
shape, and other artifacts- real obstacles produce 
clusters of pixels of a non perfect triangular shape. 
The following step is based on the localization of 
pairs of triangles.  

 
Figure 3: Average values of the sensitivity for the test-
bed. 

 
Figure 4: The test-bed; black circles indicate the 
positions where obstacles have been placed 



Therefore, the analysis of the binary difference 
image is performed thanks to a polar histogram, 
whose focus is located between the projections of 
the two cameras onto the road plane (see 
figure 2.g). The polar histogram is used to count 
the number of overthreshold pixels; its maxima 
represent the position of the obstacle's edges.  
Figures 2.h an 2.i show the focus and the computed 
polar histogram, in which two clear peaks are 
visible. Figure 2.i also shows the threshold which 
is used to distinguish between peaks and noise: an 
overthreshold peak is considered generated by an 
obstacle edge, while peaks with lower amplitude 
are considered as due to noise.  
It is important to note that the image area 
considered when building the polar histogram is 
not uniform along the scanning angle: figure 2.h 
shows that under small angles, the considered 
sector is short, while for angles close to 90o, it gets 
longer. Therefore, two solutions are possible: (i) 
normalize the polar histogram and then apply a 
constant threshold; (ii ) apply a non-constant 
threshold, whose function is given by the analysis 
of the area of the sector for each angle of the polar 
histogram. The latter has been employed here.  
This choice implies a higher sensiti vity to noise 
and obstacles in the lateral regions.  
Once the angular position of each obstacle's edge 
has been determined, it is possible to compute the 
obstacle's distance thanks to a further analysis of 
the difference image along the directions pointed 
out by the polar histogram's maxima [3].  

2 THE TEST-BED  
Due to its fundamental importance, the obstacle 
detection module must be extremely robust and 
must detect reliably objects in a given distance 
range.  
In order to evaluate the performance of the 
algorithm and determine possible enhancements, 
the extensive tests discussed in this paragraph have 
been carried out.  
Obstacles with different size and shape have been 
positioned in front of the vision system at given 
distances (see figure 4) and the sensiti vity of the 
algorithm has been measured. The obstacle's 
characteristics  
that have been varied during the tests were the 
following:  
obstacle's position: ahead distance and lateral 
offset, ranging from 10.6 to 27.1 meters for the 
distance perpendicular to the camera's stereo rig 
and from -4.1 to 4.1 meters for the lateral offset;  
obstacle's size: the tests included small obstacles 
(25×60 cm) and larger ones (50×90 cm);  
obstacle's height: the range varied from 60 to 
180 cm in height.  
Moreover, the sensiti vity to human shapes have 
been tested.  
During the tests the following set-up and 
assumptions were used.  
The vision system was standing still . Since noise is 
generally due to drifts in the cameras' calibration 
(generated by movements), this assumption 

 

Figure 5: Measured sensitivity in a 0-100 scale for three different kind of obstacles: (a) small and short obstacle 
(b) large and tall obstacle (c) human shape; dark grey represents higher sensitivity. 



permitted to remove the noise caused by 
movements.  
The obstacle's color has been selected to be 
homogeneous and different from the background.  
Although many experiments were performed, this 
paper reports on the tests made with the following 
detect small objects far away. 3 obstacles:  
Small obstacle: 25×60 cm  
Large obstacle: 50×90 cm  
Human shape: 40×180 cm  
The obstacles have been positioned on the points 
of a grid, shown in figure 6.  

3 RESULTS  
In order to determine the sensiti vity to obstacles, 
the height of the polar histogram is analyzed and 
compared to the threshold used for the decision 
whether the peak is due to an obstacle or noise. In 
the case of the presence of two peaks in the polar 
histogram, the highest is considered.  
Since different ill umination conditions can slightly 
affect the final result, several images have been 
acquired and processed for each obstacle's position 
on the grid shown in figure 4 and their average 
value has been computed.  

 
Figure 5 shows the results for three different 
obstacles: (a) a small sized obstacle, (b) a large and 
tall obstacle, and (c) a small and tall obstacle. For 
each obstacle the values representing the 
sensiti vity are scaled between 0 and 100, therefore 
they are not directly comparable.  
However, in order to give an overview of the 
system's behavior, figure 3 graphically summarizes 
all the measurements: it has been computed as an 
average of all the tests performed on the different 
obstacles. It is clearly visible that the sensiti vity to 
the presence of obstacles is high in the area right 
ahead of the vision system (the cameras' angular 
aperture is nearly 18o), and decreases -almost 
linearly- with the distance. The lateral regions have 
a lower sensiti vity.  

4 DISCUSSION  
The results obtained during the tests highlighted 
some interesting characteristics of the obstacle 
detection module. The two most important 
characterizations are relative to sensiti vity to (i) 
obstacle size and (ii ) obstacle position.  

 
Figure 6: Right view of a small obstacle in different positions with respect to the vision system. 



4.1 Sensitivity to Obstacle Size  
First of all , it is of basic importance to note that tall 
obstacles lying far from the camera share the same 
characteristics of short ones: this is due to the 
reduced region analyzed by the system, as it can be 
seen comparing figures 7.a and 7.b.  
Therefore, the obstacle's height influences the 
result only when the obstacle is short enough to be 
fully visible by the cameras, as shown in figure 7.c. 
In this case, the sensiti vity to obstacle's height is 
linear with the distance. This is clearly shown in 
figure 5: the closer the obstacle to the camera, the 
more reliable its detection.  
On the other hand, the obstacle's width is 
uninfluential for the detection, since it only affects 
the distance between the two peaks in the polar 
histogram. This feature becomes important when 
the computation of the free space is considered.  

4.2 Sensitivity to Obstacle Position  
Due to the variable threshold along the polar 
histogram's scanning angle, the system is much 
more sensiti ve to small obstacles when they lie on 
the sides of the viewing region. This behavior is 
explained by figure 7.d, which shows that in case 
of lateral obstacles, the considered area (sector) of 
the image is shorter than for the in-front analysis. 
Therefore, since the image profile is shorter, the 
projection of an obstacle covers a larger percentage 
of it, and thus the sensiti vity to obstacles -and 
unfortunately also to noise- is higher in the 
peripheral (lateral) region. Figure  5.a confirms this 
behavior: a small obstacle is detected more reliably 
when it li es on the side of the viewing area.  

5 CONCLUSIONS  
In this paper a performance evaluation and a 
criti cal analysis of a vision-based Obstacle 

 
Figure 7: 3D scene and projection of the obstacle on a linear profile of the image: (a) a small obstacle far from the 
camera; (b) a high obstacle far from the camera; (c) a small obstacle near the camera; (d) a small obstacle near the 
camera but located on the right of the viewing region 



Detection algorithm has been presented, with the 
aim of determining the main bottlenecks and 
devising possible enhancements.  
Since the detection has a low sensitivity to 
obstacles (and therefore the presence of noise 
becomes significant) in some areas, such as the 
lateral ones and the region far away ahead of the 
vision system, a new module is required to gain a 
better reliability of the detection in these areas.  
The ideas that are currently under evaluation are 
based on a first coarse detection using the 
algorithm discussed in this paper together with a 
low threshold, in order to detect clearly obstacles 
(or, rather, the directions where obstacles lye) and -
unfortunately- also noise. Then, a fine tuning of 
this guess will be performed by a new module, 
relying on other information like shape or position.  
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