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Abstract: Since one of the main requirements for PRASS Project is the robust detedion of obstades on the path
of amovingroba, adee analysis of the performance of Obstade Detedion isimperative.

This paper presents a aiticd analysis of the obstade detedion functionality developed by the research urit of the
University of Parma, whose main charaderistics are its low cost and the use of visual information only.

This paper surveys the sets of results obtained so far, highlights its charaderistics, and discusses the main

advantages and problems of such a solution.

Keywords: outdoar environment, obstade detedion, computer vision

INTRODUCTION

For an autonamous roba, a robust Obstacle
Detection functionality is mandatory in order to
deted potential hazards on its path. Therefore, this
functiondlity is essntial even for the Path
Following functionality, namely the automatic
movement of an intelligent agent along a
predefined path.

The aiteria used for the detedion d obstades
depend onthe definition o what an obstacle is. In
some systems determining obstades is limited to
the locdization d a particular kind d targets,
which is then based on a seach for spedfic
patterns, possbly supported by other feaures, such
as dape, symmetry, or the use of a boundng box.
In this case, the processng can be based on the
analysis of a single till i mage, bu the gpproad is
not succesgul when an obstade does not match the
model.

A more general definition d obstacle, which
obviously leads to more mplex algorithmic
solutions, identifies as an olstade any objed that
can obstruct the robd's driving path or, in aher
words, anything rising out significantly from the
road surface In this case, Obstade Detedion is
reduced to identifying free-space (the aea in
which the roba can safely move) instead o
recognizing spedfic patterns.

Due to the general applicability of this definition,
the problem is dedt with using more complex
techniques; the most common ores are based on
the processng of two or more images, such as
analysis of the optical flow field, and processng of
non-monocular images.

Figure 1: The stereo vision system used for the test.

In the first case more than ore image is aquired
by the same sensor in dff erent time instants, whil st
in the second ore, different cameras aquire
images smultaneously, bu from diff erent points of
view. Besides their intrinsic higher computational
complexity, caused by significant increment in the
amourt of datato be processed, being based onthe
processng of multiple images, these techniques
must also be robust enough to tolerate noise caised
by vision system movements and difts in the
cdibration d the multi ple caneras' setup.

The optical flow-based [7] technique requires the
analysis of a sequence of two or more images. a
2D vedor is computed in the image domain,
encoding the horizontal and vertica comporents of
the velocity of eat pixel. Theresult can be used to
compute ego-motion [4], which in some systemsis
diredly extraded from odametry [6]; obstades can
be deteded by analyzing difference between the
expeded andred velocity fields.

On the other hand, the procesing of non-
monocular image sets requires identifying
corresponcences between pixels in the different
images: two images, in the cae of stereo vision,
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Figure 2: The aquisition of an ided homogeneous
square obstade: (a) 3D sceng; (b) left image; (c) right
image; (d) left remapped image; (€) right remapped
image; (f) difference image in which the grey are¢
represents the region of the road unseen by both
cameras; (g) locaion of the projedions of the two
cameras; (h) location of the focus; (i) polar histogram
and binarization threshold.

and threeimages, in the cae of trinocular vision.
The alvantage of analyzing stereo images insteal
of a monacular sequence lies in the posshility of
diredly deteding the presence of obstades, which,
in the cae of an opicd flow-based approacd,
indiredly derives from analysis of the velocity
field. Moreover, in a limit condtion where both

roba and olstades have small or null spedls, the
opticd flow-based approach fails while the other
can still deted obstades. Furthermore, to deaease
the intrinsic complexity of stereo vision, some
domain spedfic constraints are generaly adopted.

A very promising approach to these problems is
based on the removal of the perspedive dfed,
which is naturaly induwced by the aquisition
conditions. Such atedchnigue has been successully
used for the cmputation d the opticd flow field,
the detedion d obstades in a structured
environment, or in the aitomotive field using
standard camera[8] or using linea cameras[10,9].
Similar techniques[5,2] (Image Warping) have
bee largely used in the processing of stereo
images and wed for Obstade Detedion.

This paper is organized as follows: sedion 2
briefly summarizes the daraderistics of the
approach for obstade detedion developed by the
reseach unt of the University of Parma[3], and
presents the dgorithm; sedion 3 describes the test-
bed o this experiment; sedion 4 pesents the
results obtained; finally section 5 discusss the
results and concludes the paper.

1 VISION-BASED OBSTACLE

DETECTION

The obstade detedion system considered in this
work has been designed with the following
charaderisticsin mind:

Low-Cost: the first design requirement was to
kee the msts at a minimum. These @sts include
both production costs (which must be kept low to
adlow a widespread use of these devices) and
operative sts, which must not exceal a cetain
threshald in order not to interfere with the roba
performance

Real-Time performance: a basic requirement for
ITS apparata is the posshility to work in red-time;
namely it must be éle to produce the results in a
extremely reduced time slot to all ow afast recover
in dangerous stuations.

A red-time system must be based on a powerful
processng engine but -acwrding to the previous
requirement of keeping the system's cost low- the
current architedure is based on a simple
commercia PC: al the tests have been performed
using a Pentium 200MHz with MM X Techndogy.
Althowgh this is not the top d avalable
commercial systems, it adlows to deliver
sufficiently high performance, when the dgorithms
are properly designed.

Based on Vision only: only the use of pasdve
sensors, such as cameras, has been considered.
Althowgh very efficient in some fields of
applicaion, adive sensors -besides pall uting the



4.1
Figure 3: Average values of the sensitivity for the test-
bed.

environment- feaure some spedfic problems due
to inter-roba interference anongst the same type
of sensors, and diwe to the wide variation in
refledion ratios caused by many different reasons,
such as obstades' shape or material. Moreover, the
maximum signal level must comply with safety
rules and must be lower than a safety threshold.

Therefore, athouwgh being extremely complex and
highly demanding, thanks to the grea ded of
information that it can deliver, computer vision
represents a powerful means for sensing the
environment, and it is widely employed in many
different projeds worldwide. The main
charaderistics of the system currently inisthat it is
based on stereo vision (see figure 1) and the
distance between the two cameras is relatively
high, in order to also deted small objeds far away.

1.1 The Algorithm

The dgorithm which implements the Obstade
Detedion modue[3] has the following
charaderistics:

it is based on bnocular vision, the two biw
cameras lie & abou 120cm and have a focd
length of 6 mm;

it is based onthe removal of the perspedive dfed
from both images;

it does nat rely onthe flat road assumption, sinceit
can dynamicdly adapt the remapping parameters
acording to the road slope [1];

it can deted any obstade withou constraints about
shape, color, or pasition, since it considers as
obstade aything which dces not belong to the
road surface

After removing the perspedive dfea from both
images, a difference is computed, which contains
the disparities between the two remapped images
in the road damain. The differenceis followed by
threshdding and morphdogicd filters which tend
to emphasize the red disparities and deaease the
influence of noise. Noise can be caised by a non

optimal cameras cdibration and ly roba
movements.

Figure 2.a shows a mmputer generated scene: a
planar surface(which has been gridded for clarity
purposes) and an ided homogeneous gjuare
obstade. Two stereo cameras aajuire two views of
the scene (seefigures 2.b and 2.c); bath images are
remapped with the am of extrading the texture of
the road surface(seefigures 2.d and 2.€). Then the
diff erence between the two images is computed in
order to determine passble dispariti es representing
deviations from the asumed shape of the road.

As down in figure 2.f, an ided obstade produces
two triangles in the difference image,
correspondng to its two vertica edges. Obviously
-due to ocdusions, non homogeneous color and
shape, and aher artifads- red obstades produce
clusters of pixels of anon perfed triangular shape.
The following step is based onthe locdization d
pairs of triangles.
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Figure 4. The test-bed; bladk circles indicae the
pasitions where obstad es have been placeal
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Figure 5: Measured sensitivity in a 0-100 scde for three different kind of obstades: (a) small and short obstade
(b) large and tall obstade (c) human shape; dark grey represents higher sensitivity.

Therefore, the analysis of the binary difference
image is performed thanks to a polar histogram,
whose focus is located between the projedions of
the two cameras onto the road pane (see
figure 2.g). The polar histogram is used to court
the number of overthreshod pixels; its maxima
represent the position d the obstade's edges.
Figures 2.h an 2.i show the focus and the computed
podar histogram, in which two clea pedks are
visible. Figure 2.i also shows the threshald which
is used to distinguish between peeks and ndse: an
overthreshold peek is considered generated by an
obstade alge, while peaks with lower amplitude
are onsidered asdue to ndse.

It is important to nde that the image aea
considered when bulding the poar histogram is
not uniform along the scanning angle: figure 2.h
shows that under small angles, the mnsidered
sedor is dort, while for angles close to 900,it gets
longer. Therefore, two solutions are passble: (i)
normalize the polar histogram and then apply a
constant threshdd; (ii) apply a non-constant
threshdd, whaose function is given by the analysis
of the aeaof the sedor for ead angle of the pdar
histogram. The latter has been employed here.

This choice implies a higher sensitivity to ndse
and olstadesin the lateral regions.

Once the agular position d ead olstade's edge
has been determined, it is possble to compute the
obstade's distance thanks to a further analysis of
the difference image dong the diredions pointed
out by the palar histogram's maxima|3].

2 THE TEST-BED

Due to its fundamental importance, the obstade
detedion modue must be etremely robust and
must deted reliably objeds in a given distance
range.

In oder to evaluate the performance of the
algorithm and determine posdble enhancements,
the extensive tests discussed in this paragraph have
been caried ou.

Obstacles with dfferent size and shape have been
positioned in front of the vision system at given
distances (see figure 4) and the sensitivity of the
agorithm has been measured. The obstade's
charaderistics

that have been varied duing the tests were the
foll owing:

obstade's position: ahead dstance ad latera
offset, ranging from 10.6 to 27.1 meters for the
distance perpendicular to the cameras dereo rig
and from -4.1to 4.1meters for the lateral off set;
obstade's sze: the tests included small obstades
(25%x60 cm) and larger ones (50x90 cm);

obstade's height: the range varied from 60 to
180cmin height.

Moreover, the sensitivity to human shapes have
been tested.

During the tests the following set-up and
asaumptions were used.

The vision system was standing still . Sincenoiseis
generaly due to drifts in the caneras cdibration
(generated by movements), this assumption



Figure 6: Right view of asmall obstade in different paositions with resped to the vision system.

permitted to remove the noise caused by
movements.

The obstade's color has been seleded to be
homogeneous and dff erent from the badkground.
Althowgh many experiments were performed, this
paper reports on the tests made with the foll owing
deted small objedsfar away. 3 olstades:

Small obstade: 25x60 cm

Large obstade: 50x90 cm

Human shape: 40x180cm

The obstades have been pasitioned on the points
of agrid, showninfigure 6.

3RESULTS

In order to determine the sensitivity to olstades,
the height of the polar histogram is analyzed and
compared to the threshold used for the dedsion
whether the ped is due to an olstade or noise. In
the cae of the presence of two pe&ks in the pdar
histogram, the highest is considered.

Since different ill umination condtions can slightly
affea the final result, several images have been
aqquired and processed for ead olstade's position
on the grid shown in figure4 and their average
value has been computed.

Figure5 shows the results for three different
obstades: (a) asmall sized olstade, (b) alarge and
tall obstade, and (c) a small and tall obstade. For
eahv olstade the vaues representing the
sensitivity are scded between 0 and 100, therefore
they are not diredly comparable.

However, in oder to give an overview of the
system's behavior, figure 3 graphicdly summarizes
al the measurements: it has been computed as an
average of all the tests performed onthe different
obstades. It is clealy visible that the sensitivity to
the presence of obstades is high in the aearight
aheal o the vision system (the cameras angular
aperture is nealy 18°), and deaeases -amost
linealy- with the distance The lateral regions have
alower sensitivity.

4 DISCUSSON

The results obtained during the tests highlighted
some interesting charaderistics of the obstade
detedion modue. The two most important
charaderizations are relative to sensitivity to (i)
obstade size and (ii) obstade pasition.
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Figure 7: 3D scene and projedion of the obstade on a linea profile of the image: (a) a small obstade far from the
camera; (b) a high obstade far from the canera; (c) a small obstade nea the canera; (d) a small obstade nea the

camera but locaed on the right of the viewing region

4.1 Sensitivity to Obstade Size

First of all, it is of basic importanceto nde that tall
obstades lying far from the canera share the same
charaderistics of short ones: this is due to the
reduced region analyzed by the system, asit can be
seen comparing figures 7.a and 7.b.

Therefore, the obstade's height influences the
result only when the obstade is ort enouwgh to be
fully visible by the caneras, as sown infigure 7.c.
In this case, the sensitivity to olstade's height is
linea with the distance This is clealy shown in
figure 5: the doser the obstade to the canera, the
more reliable its detedion.

On the other hand, the obstade's width is
uninfluential for the detedion, sinceit only affeds
the distance between the two pe&ks in the podar
histogram. This feaure bemmes important when
the computation o the free space is considered.

4.2 Sensitivity to Obstade Position

Due to the variable threshod along the polar
histogram's <anning angle, the system is much
more sensitive to small obstades when they lie on
the sides of the viewing region. This behavior is
explained by figure 7.d, which shows that in case
of lateral obstades, the cnsidered area(sedor) of
the image is dhorter than for the in-front analysis.
Therefore, since the image profile is dorter, the
projedion d an olstade mversalarger percentage
of it, and thus the sensitivity to obstades -and
unfortunately also to ndse- is higher in the
peripheral (lateral) region.Figure 5.a wnfirmsthis
behavior: asmall obstade is deteced more reliably
when it lies onthe side of the viewing area

5 CONCLUSIONS

In this paper a performance eadluation and a
criticd analysis of a visionbased Obstade



Detection algorithm has been presented, with the
am of determining the main bottlenecks and
devising possible enhancements.

Since the detection has a low sensitivity to
obstacles (and therefore the presence of noise
becomes significant) in some areas, such as the
lateral ones and the region far away ahead of the
vision system, a new module is required to gain a
better reliability of the detection in these areas.
The ideas that are currently under evaluation are
based on a first coarse detection using the
algorithm discussed in this paper together with a
low threshold, in order to detect clearly obstacles
(or, rather, the directions where obstacleslye) and -
unfortunately- also noise. Then, a fine tuning of
this guess will be performed by a new module,
relying on other information like shape or position.
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