UNIVERSITY OF PARMA

Department of Engineering and Architecture
Degree course in Computer, Electronic and Communications Engineering

PRACTICAL TEST IN COMPUTER SCIENCE & PROGRAMMING LABORATORY February 20^{th} , 2025

Surname: Matr: Workstation:

Write a program using the C language (name the project with your student <id< b="">></id<>	>) that behaves as
described below. The available time is 120 minutes. At the end of the time, the sa	ved files on U: \
are going to be automatically collected. Additional documents, files are availab	le in T:∖Bertozzi ,
it is recommended to use WordPad to read text files.	
A digital image can be seen as a matrix of points. In black and white images,	
these points can be represented with a single byte that will take values from	
0 (black) to 255 (white). There are different formats in which an image can be	

In the case of the **Compuserve RLE format**, the "binary" files that contain an image have a 3-byte header with the values: 27 (ESC), 'G', and then 'M' for images with a resolution of 128×96 (width × height in points) or 'H' for images with a resolution of 256×192. The following bytes, **decremented by 32**, indicate **alternately** how many points are black and white, always starting with black. For example, if the first value after 'M'/'H' is 57, it means that in my image, starting from the top left, the first row will contain 57-32=25 consecutive black points. The file ends with 3 bytes with values 27, 'G', and 'N'.

In the case of the **PGM format**, the binary files that contain the image points start with an **ASCII header** that contains: in the first line "P5", in the second line the dimensions of the image (width and height in order) separated by a space, in the third line "255". These three lines end with a newline. Following this are all the bytes of the image matrix row by row. Develop a program that:

- 1. (2) asks the user for the name of an RLE file
- 2. (3-5) opens the specified file for reading, verifies that the header is correct for the RLE format (otherwise terminates the program), and calculates the resolution
- 3. (9-14) dynamically allocates an appropriate data structure to store the RLE image points and reads them from the file
- 4. (3-4) verifies that the RLE file ends correctly (otherwise terminates the program)
- 5. (2) asks the user for the name of a PGM file
- 6. (4-6) opens the file specified in the previous step for writing and saves the image read in step #3 in PGM format

The definition and use of functions for points 2, 3, 4, and 6 allows for additional points (the numbers in parentheses indicate the maximum score obtainable without and with the use of functions respectively).

Hints:

saved to a file.

- I/O functions seen for ASCII files like fprintf() and others can also be used with binary files
- On lab PCs, to view image files you can use Open with \rightarrow IrfanView

The code should be developed following the proposed order. The correction stops at the first incorrectly implemented step.