
Collezioni
ALBERTO FERRARI

Le collezioni di oggetti
Una collezione può memorizzare un numero arbitrario di oggetti

Il numero di elementi di una collezione è variabile:
◦ È possibile inserire nuovi oggetti

◦ È possibile eliminare oggetti

Librerie di classi
Una delle catatteristiche dei linguaggi object oriented che li rende molto potenti è la presenza di
librerie di classi

Le librerie tipicamente contengono decine o centinaia di classi utili per gli sviluppatori e
utilizzabili in un ampio insieme di applicazioni

In Java le librerie vengono definite packages

Il package java.util contiene classi per la gestione di collezioni di oggetti

Java2 collection
Le collection di Java 2 consistono di:
◦ interfacce: tipi di dati astratti che rappresentano collezioni,

◦ List, Queue, Set, Map

◦ parziali implementazioni di interfacce facilmente riadattabili

◦ implementazioni concrete: classi basilari che implementano le interfacce
fondamentali

◦ algoritmi: implementazioni di funzioni basilari (ordinamento, ricerca)
applicabili a tutte le collezioni

Caratteristiche comuni alle collezioni
Possibilità di aumentare la capacità (se necessario)

Mantenere un contatore privato del numero di oggetti presenti
◦ Il valore è accessibile mediante il metodo size()

Mantenere l’ordine di inserimento degli elementi

Ogni elemento ha un indice
◦ Il valore dell’indice può cambiare a causa di operazioni di inserimento o eliminazione

I dettagli implementativi sono «nascosti»
◦ È importante?

◦ Questo ci permette ugualmente di utilizzare le classi?

Collection
Collection è la radice della gerarchia delle collection
(https://docs.oracle.com/javase/9/docs/api/java/util/Collection.html)

◦ rappresenta gruppi di oggetti
◦ gli oggetti (elementi) possono essere o non essere duplicati

◦ gli oggetti possono essere o non essere ordinati

esistono implementazioni concrete di sottointerfacce
◦ (List, Set)

https://docs.oracle.com/javase/9/docs/api/java/util/Collection.html

Java Collection Framework

List
List definisce il concetto di lista ordinata (o sequenza)
◦ insieme di elementi posti in un certo ordine

◦ ogni elemento è accessibile attraverso un indice (0-based index)

◦ gli elementi possono essere inseriti in testa, in coda o in qualsiasi altra posizione

◦ implementazioni: ArrayList, LinkedList e Vector

ArrayList - LinkedList
ArrayList
◦ ottimizzato l’accesso casuale (basato su array)

◦ non ottimizzati l’inserimento e l’eliminazione all’interno della lista

LinkedList
◦ ottimizzato l’accesso sequenziale, per l’inserimento e l’eliminazione

◦ indicato per implementare pile (LIFO) e code (FIFO)

◦ contiene i metodi:
◦ addFirst(), addLast(), getFirst(),

◦ getLast(), removeFirst(), removeLast()

ArrayListmethods
add(value) appends value at end of list

add(index, value) inserts given value just before the given index, shifting
subsequent values to the right

clear() removes all elements of the list

indexOf(value) returns first index where given value is found in list (-1 if
not found)

get(index) returns the value at given index

remove(index) removes/returns value at given index, shifting subsequent
values to the left

set(index, value) replaces value at given index with given value

size() returns the number of elements in list

toString() returns a string representation of the list
such as "[3, 42, -7, 15]"

ArrayListmethods
addAll(list)
addAll(index, list)

adds all elements from the given list to this list
(at the end of the list, or inserts them at the given index)

contains(value) returns true if given value is found somewhere in this list

containsAll(list) returns true if this list contains every element from given list

equals(list) returns true if given other list contains the same elements

iterator()

listIterator()

returns an object used to examine the contents of the list (seen
later)

lastIndexOf(value) returns last index value is found in list (-1 if not found)

remove(value) finds and removes the given value from this list

removeAll(list) removes any elements found in the given list from this list

retainAll(list) removes any elements not found in given list from this list

subList(from, to) returns the sub-portion of the list between
indexes from (inclusive) and to (exclusive)

toArray() returns the elements in this list as an array

ArrayList vs Array
ARRAY

costruttori
◦ String[] names = new String[5];

inserimento valori
◦ names[0] = "Jessica";

accesso ai valori
◦ String s = names[0];

ARRAYLIST

costruttori
◦ ArrayList<String> list = new ArrayList<String>();

inserimento valori
◦ list.add("Jessica");

accesso ai valori
◦ String s = list.get(0);

ArrayList vs Array
ARRAY

ricercare i valori che iniziano per "It"

for (int i = 0; i < names.length; i++) {

if (names[i].startsWith("It")) { ... }

}

ricercare se è presente il valore "Italia"

for (int i = 0; i < names.length; i++) {

if (names[i].equals("Italia")) { ... }

}

ARRAYLIST

ricercare i valori che iniziano per "It"

for (int i = 0; i < list.size(); i++) {

if (list.get(i).startsWith("It")) { ... }

}

ricercare se è presente il valore "Italia"

if (list.contains("Italia")) { ... }

ArrayList e tipi primitivi
il tipo degli elementi di un ArrayList deve essere un object type

◦ non può essere un tipo primitivo

// illegal -- int cannot be a type parameter

ArrayList<int> list = new ArrayList<int>();

possiamo utilizzare le classi wrapper

// creates a list of ints

ArrayList<Integer> list = new ArrayList<Integer>();

Classi wrapper

ArrayList<Double> voti = new ArrayList<Double>();
voti.add(7.5);
voti.add(4.5);
...
double mioVoto = voti.get(0);

Set
Set definisce il concetto di insieme
◦ gruppo di elementi non duplicati

◦ (non contiene e1 e e2 se e1.equals(e2).

implementazioni: HashSet

Classi «generiche»
Le collezioni sono un esempio di classi «parametrizzate» (generic classes)

Quando utilizziamo una collezione dobbiamo specificare due tipi:
◦ Il tipo della collezione
◦ Il tipo degli elementi

Esempio:
◦ ArrayList<Persona>

◦ ArrayList<Cerchio>

◦ ArrayList<String>

ArrayList è una classe della libreria java.util che fornisce una semplice implementazione di un raggruppamento
non ordinato di oggetti (https://docs.oracle.com/javase/9/docs/api/java/util/ArrayList.html)

Implementa le funzionalità di una lista, ha i metodi:
◦ add
◦ get
◦ size
◦ …

https://docs.oracle.com/javase/9/docs/api/java/util/ArrayList.html

Esempio: GestoreMusica
La classe GestoreMusica gestisce semplicemente i nomi dei file dei brani

Non gestisce informazioni relative al titolo, all’artista, alla durata ecc.

Contiene un ArrayList di stringhe che rappresentano i nomi dei file

Delega
◦ La classe delega la responsabilità della gestione delle operazioni alla collezione

GestoreMusica: Parte del codice
import java.util.ArrayList;

public class GestoreMusica {

// ArrayList per memorizzare i nomi dei file dei brani musicali

private ArrayList<String> brani;

public GestoreMusica () {

brani = new ArrayList<String>();

}

...

/**

* aggiunge un brano alla collezione

* @param nomeFile il brano da aggiungere

*/

public void aggiungiBrano(String nomeFile)

{

brani.add(nomeFile);

}

/**

* Numero di brani presenti nella collezione

* @return il numero di brani della collezione

*/

public int getNumeroBrani()

{

return brani.size();

}

/**

* Visualizza un brano

* @param indice indice del brano

*/

public void visualizzaBrano(int indice)

{

if(indice >= 0 && indice < brani.size()) {

String nomeFile = brani.get(indice);

System.out.println(nomeFile);

}

}

/**

* Elimina un brano dalla collezione

* @param indice indice del brano

*/

public void eliminaBrano(int indice)

{

if(indice >= 0 && indice < brani.size()) {

brani.remove(indice);

}

}

Alcuni metodi

Indice degli elementi
Il primo elemento aggiunto alla collezione ha indice 0, il secondo indice 1 …

Il metodo get(indice) permette di accedere direttamente ad un elemento della collezione

L’utilizzo di un indice errato genera un messaggio di errore (indiceOutOfBoundsException)

Il metodo remove(indice) elimina un elemento dalla collezione
◦ La rimozione causa la modifica degli indici degli altri elementi della collezione

Oltre che come ultimo è possibile inserire un elemento in una posizione specifica

Accedere a tutti gli
elementi di una collezione
Il ciclo foreach permette di accedere sequenzialmente a tutti gli elementi di una collezione

for(<tipoElemento> elemento : <collezione>) {

<corpo del ciclo>

}

Esempio: visualizza tutti I brani

public void visualizzaBrani() {

for(String nomeBrano : brani) {

System.out.println(nomeBrano);

}

}

Esercizio
Aggiungere alla classe GestoreMusica il metodo void cerca(String stringaRicerca) che visualizza
tutti i brani che contengono stringaRicerca

◦ Utilizzare il metodo java.lang.String.contains()

◦ Se non si trova nessun brano visualizzare un messaggio di errore

Aggiungere il metodo void visualizzaTutti() che visualizza tutti I brani

Aggiungere il metodo void visualizzaPrimo(String stringaRicerca) che visualizza il primo brano
che contiene la stringa di ricerca

◦ for-each o while?

◦ while(boolean condition) {
loop body

}

Ricerca in una collezione
La ricerca può aver successo dopo un
indefinito numero di iterazioni

La ricerca fallisce dopo aver esaurito ogni
possibilità

int indice = 0;

boolean trovato = false;

while(indice < miaColl.size() && !trovato) {

elemento = miaColl.get(indice);

if (elemento ...) {

trovato = true;

...

}

indice++;

}

GestoreMusica (v2)
Si vogliono memorizzare più informazioni per ogni brano:

◦ Artista

◦ Titolo

◦ Nome del file

Realizzare la classe Brano che permette di gestire queste informazioni
◦ Attributi

◦ Costruttori

◦ Setter e getter

◦ Metodi
◦ String getInformazioni()

◦ Restituisce una stringa formata da Artista + Titolo + Nome del file

GestoreMusica (v2)
Modificare la classe GestoreMusica in modo che l’arrayList contenga i Brani e non più stringhe

Inserire il metodo visualizzaBrani() che visualizza tutti i brani presenti nella collezione

public void visualizzaBrani() {

for(Brano brano : brani) {

System.out.println(brano.getInformazioni());

}

}

Questo è un esempio di responsibility-driven design (si delega alla classe la sua gestione)

iteratori
Un iteratore è un oggetto che fornisce le funzionalità per iterare su tutti gli elementi di una
collezione

Il metodo iterator() di ogni collezione restituisce un oggetto iteratore

Iterator<ElementType> it = myCollection.iterator();

while(it.hasNext()) {

// utilizzare it.next() per ottenere l’elemento successivo

// utilizzare questo elemento

}

Esempio iteratore
import java.util.ArrayList;

import java.util.Iterator;

...

public void visualizzaBrani() {

Iterator<Brano> it = brani.iterator();

while(it.hasNext()) {

Brano b = it.next();

System.out.println(b.getInformazioni());

}

}

Rimozione di un elemento
Per cercare e quindi rimuovere un elemento non è possibile utilizzare un cicle for-each

Si otterrebbe il seguente messaggio di errore: ConcurrentModificationException

Iterator<Brano> it = brani.iterator();

while(it.hasNext()) {

Brano b = it.next();

String artista = b.getArtista();

if(artista.equals(artistaDaEliminare)) {

it.remove();

}

}

Utilizzare il metodo remove() dell’iteratore e non quello della collezione!

Esercizi
Implementare il metodo void rimuoviTitolo(String titoloDaRimuovere) che elimina dalla
collezione tutti i brani con il titolo specificato

Implementare il metodo void cambiaTitolo(String vecchioTitolo, String nuovoTitolo) che
rinomina tutti i brani con vecchioTitolo in nuovoTitolo

