Collezioni

ALBERTO FERRARI

Le collezioni di oggetti

Una collezione pud memorizzare un numero arbitrario di oggetti

Il numero di elementi di una collezione é variabile:
> E possibile inserire nuovi oggetti

> E possibile eliminare oggetti

Librerie di classi

Una delle catatteristiche dei linguaggi object oriented che li rende molto potenti e |la presenza di
librerie di classi

Le librerie tipicamente contengono decine o centinaia di classi utili per gli sviluppatori e
utilizzabili in un ampio insieme di applicazioni

In Java le librerie vengono definite packages

Il package java.util contiene classi per la gestione di collezioni di oggetti

JavaZ2 collection

Le collection di Java 2 consistono di:

o interfacce: tipi di dati astratti che rappresentano collezioni,
o List, Queue, Set, Map

o parziali implementazioni di interfacce facilmente riadattabili

o implementazioni concrete: classi basilari che implementano le interfacce
fondamentali

o algoritmi: implementazioni di funzioni basilari (ordinamento, ricerca)
applicabili a tutte le collezioni

Caratteristiche comuni alle collezioni

Possibilita di aumentare la capacita (se necessario)

Mantenere un contatore privato del numero di oggetti presenti
o |l valore & accessibile mediante il metodo size()

Mantenere l'ordine di inserimento degli elementi

Ogni elemento ha un indice
° |l valore dell’indice puo cambiare a causa di operazioni di inserimento o eliminazione

| dettagli implementativi sono «nascosti»
> E importante?
o Questo ci permette ugualmente di utilizzare le classi?

Collection

Collection e la radice della gerarchia delle collection
(https://docs.oracle.com/javase/9/docs/api/java/util/Collection.html)

° rappresenta gruppi di oggetti

o gli oggetti (elementi) possono essere o non essere duplicati

o gli oggetti possono essere o non essere ordinati

esistono implementazioni concrete di sottointerfacce
o (List, Set)

https://docs.oracle.com/javase/9/docs/api/java/util/Collection.html

Java Collection Framework

«interface» Interfaces cinterface» «interface»
Collection Map Iterator
x =
| |] T
«interface» «interface» «interface» «interface» «interface»
List Set SortedSet SortediMap Listlterator
7 = x
—_—— e e e e e - - = S . o
; [(I [W—
1
Concrete
HashSet TreeSet HashMap| | Treemap Classes
ArrayList — —I—*:’__""' =5 = _
P < AbstractSequentialList AbstractSet AbstractMap -
r
P Abstract Classes

[
AbstractList I{AbstractCollection

List

List definisce il concetto di lista ordinata (o sequenza)
° insieme di elementi posti in un certo ordine
> ogni elemento & accessibile attraverso un indice (0-based index)
o gli elementi possono essere inseriti in testa, in coda o in qualsiasi altra posizione

o implementazioni: ArrayList, LinkedList e Vector
Adding an
element

Adding an Adding an
element element

ArrayList - LinkedList

ArraylList

o ottimizzato l'accesso casuale (basato su array)

o non ottimizzati I'inserimento e 'eliminazione all’interno della lista

LinkedList
o ottimizzato l'accesso sequenziale, per I'inserimento e I'eliminazione
° indicato per implementare pile (LIFO) e code (FIFO)

o contiene i metodi:
c addFirst (), addLast(), getFirst(),

o getLast (), removeFirst(), removelast ()

ArrayList methods

add (value) appends value at end of list

add (index, value) inserts given value just before the given index, shifting
subsequent values to the right

clear () removes all elements of the list

indexOf (value) returns first index where given value is found in list (-1 if
not found)

get (index) returns the value at given index

remove (index) removes/returns value at given index, shifting subsequent
values to the left

set (index, value) replaces value at given index with given value

size () returns the number of elements in list

toString () returns a string representation of the list

suchas "[3, 42, -7, 15]"

ArrayList methods

addall (list) adds all elements from the given list to this list
addAll (index, list) (at the end of the list, or inserts them at the given index)
contains (value) returns true if given value is found somewhere in this list
containsAll (list) returns true if this list contains every element from given list
equals (list) returns true if given other list contains the same elements
iterator () returns an object used to examine the contents of the list (seen
listIterator () later)
lastIndexOf (value) returns last index value is found in list (-1 if not found)
remove (value) finds and removes the given value from this list
removeAll (list) removes any elements found in the given list from this list
retainAll (list) removes any elements not found in given list from this list
subList (from, to) returns the sub-portion of the list between

indexes from (inclusive) and to (exclusive)
toArray () returns the elements in this list as an array

ArrayList vs Array

ARRAY ARRAYLIST
costruttori costruttori
o String[] names = new String[5]; o ArrayList<String> list = new ArrayList<String>();
inserimento valori inserimento valori
° names[0] = "Jessica"; o list.add("Jessica");
accesso ai valori accesso ai valori
o String s = names[0]; o String s = list.get(0);

ArrayList vs Array

ARRAY ARRAYLIST
ricercare i valori che iniziano per "It" ricercare i valori che iniziano per "It"
for (inti=0; i< names.length; i++) { for (inti=0;i< list.size(); i++) {

if (namesJi].startsWith("It")) { ... } if (list.get(i).startsWith("It")) { ... }
} }
ricercare se e presente il valore "Italia" ricercare se e presente il valore "Italia"
for (inti=0; i< names.length; i++) { if (list.contains("Italia")) { ... }

if (names[i].equals("ltalia")) { ... }

ArrayList e tipl primitivi

il tipo degli elementi diun ArrayList deve essere un object type
° non puo essere un tipo primitivo

// illegal -- int cannot be a type parameter
ArrayList<int> list = new ArrayList<int>();

possiamo utilizzare le classi wrapper

// creates a list of ints
ArraylList<Integer> list = new ArraylList<Integer>();

Classi wrapper

Primitive Type | Wrapper Type
int Integer
double Double
char Character
boolean Boolean

ArrayList<Double> voti = new ArraylList<Double> () ;
voti.add(7.5);
voti.add(4.5);

aéﬁble mioVoto = voti.get (0);

Set

Set definisce il concetto di insieme
o gruppo di elementi non duplicati

° (non contiene el e e2 se el.equals(e2).

implementazioni: HashSet

Insieme

Classi «generiche»

Le collezioni sono un esempio di classi «parametrizzate» (generic classes)

Quando utilizziamo una collezione dobbiamo specificare due tipi:
o |l tipo della collezione

° |l tipo degli elementi

Esempio:
° ArrayList<Persona>
° ArrayList<Cerchio>
° ArrayList<String>

ArrayList e una classe della libreria java.util che fornisce una semplice implementazione di un raggruppamento
non ordinato di oggetti (https://docs.oracle.com/javase/9/docs/api/java/util/ArrayList.html)

Implementa le funzionalita di una lista, ha i metodi:
° add

o get
° sjze

o

https://docs.oracle.com/javase/9/docs/api/java/util/ArrayList.html

Esemplo: GestoreMusica

La classe GestoreMusica gestisce semplicemente i nomi dei file dei brani
Non gestisce informazioni relative al titolo, all’artista, alla durata ecc.

Contiene un ArrayList di stringhe che rappresentano i nomi dei file

Delega
° La classe delega la responsabilita della gestione delle operazioni alla collezione

GestoreMusica: Parte del codice

import java.util.ArrayList;

public class GestoreMusica {

// ArrayList per memorizzare i nomi dei file dei brani musicali

private ArrayList<String> brani;

public GestoreMusica () {

brani = new ArrayList<String>();

Alcuni metod;

/**
[** * Visualizza un brano
. . * @param indice indice del brano

* aggiunge un brano alla collezione ny

* . . .

/@param nomeFile il brano da aggiungere public void visualizzaBrano (int indice)

*

{
public void aggiungiBrano (String nomeFile) if (indice >= 0 && indice < brani.size()) ({
{ String nomeFile = brani.get(indice) ;
brani.add (nomeFile) ; System.out.println (nomeFile) ;
}

I }

/** /**

* Numero di brani presenti nella collezione * Elimina un brano dalla collezione

* @return il numero di brani della collezione * @param indice indice del brano

*/ */
public int getNumeroBrani() 1{>ub1:|.c void eliminaBrano(int indice)

{ o if (indice >= 0 && indice < brani.size()) {

return brani.size(); brani.remove (indice) ;

} }
}

Indice degli elementi

Il primo elemento aggiunto alla collezione ha indice O, il secondo indice 1 ...
Il metodo get(indice) permette di accedere direttamente ad un elemento della collezione
'utilizzo di un indice errato genera un messaggio di errore (indiceOutOfBoundsException)

Il metodo remove(indice) elimina un elemento dalla collezione
° La rimozione causa la modifica degli indici degli altri elementi della collezione

Oltre che come ultimo € possibile inserire un elemento in una posizione specifica

Accedere a tutti gli
elementi di una collezione

Il ciclo foreach permette di accedere sequenzialmente a tutti gli elementi di una collezione

for (KtipoElemento> elemento : <collezione>) ({
<corpo del ciclo>

}

Esempio: visualizza tutti | brani

public void wvisualizzaBrani () {
for (String nomeBrano : brani) {

System.out.println (nomeBrano) ;

Esercizio

Aggiungere alla classe GestoreMusica il metodo void cerca(String stringaRicerca) che visualizza
tutti i brani che contengono stringaRicerca

o Utilizzare il metodo java.lang.String.contains()

° Se non si trova nessun brano visualizzare un messaggio di errore
Aggiungere il metodo void visualizzaTutti() che visualizza tutti | brani

Aggiungere il metodo void visualizzaPrimo(String stringaRicerca) che visualizza il primo brano
che contiene la stringa di ricerca

o for-each o while?

> while(boolean condition) {
loop body

}

Ricerca in una collezione

La ricerca puo aver successo dopo un int indice = 0;
indefinito numero di iterazioni boolean trovato = false;
La ricerca fallisce dopo aver esaurito ogni while(indice < miaColl.size() && !trovato) {
possibilita elemento = miaColl.get (indice) ;
if (elemento ...) {

trovato = true;

}

indice++;

GestoreMusica (v2)

Si vogliono memorizzare piu informazioni per ogni brano:
o Artista

o Titolo

> Nome del file

Realizzare la classe Brano che permette di gestire queste informazioni
o Attributi

o Costruttori
o Setter e getter
° Metodi

o String getinformazioni()

o Restituisce una stringa formata da Artista + Titolo + Nome del file

GestoreMusica (v2)

Modificare la classe GestoreMusica in modo che 'arrayList contenga i Brani e non piu stringhe

Inserire il metodo visualizzaBrani() che visualizza tutti i brani presenti nella collezione
public void visualizzaBrani () {
for (Brano brano : brani) {

System.out.println (brano.getInformazioni())

}

Questo € un esempio di responsibility-driven design (si delega alla classe la sua gestione)

iterator!

Un iteratore € un oggetto che fornisce le funzionalita per iterare su tutti gli elementi di una
collezione

Il metodo iterator() di ogni collezione restituisce un oggetto iteratore
lterator<ElementType> it = myCollection.iterator();
while(it.hasNext()) {

// utilizzare it.next() per ottenere I'elemento successivo

// utilizzare questo elemento

}

Esemplo iteratore

import java.util.Arraylist;

import java.util.Iterator;

public void wvisualizzaBrani () ({
Iterator<Brano> it = brani.iterator();
while (it.hasNext()) {

Brano b = it.next();

System.out.println(b.getInformazioni()) ;

Rimozione di un elemento

Per cercare e quindi rimuovere un elemento non e possibile utilizzare un cicle for-each

Si otterrebbe il seguente messaggio di errore: ConcurrentModificationException

Iterator<Brano> it = brani.iterator();
while (it.hasNext()) {

Brano b = it.next();

String artista = b.getArtista();

if (artista.equals (artistaDaEliminare)) ({

it.remove () ;

}

Utilizzare il metodo remove() dell’iteratore e non quello della collezione!

Esercizl

Implementare il metodo void rimuoviTitolo(String titoloDaRimuovere) che elimina dalla
collezione tutti i brani con il titolo specificato

Implementare il metodo void cambiaTitolo(String vecchioTitolo, String nuovoTitolo) che
rinomina tutti i brani con vecchioTitolo in nuovoTitolo

