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Abstract— The paper considers a minimum-time feedforward
motion control problem for an open container carrying a liquid.
The proposed solution is a time-continuous acceleration planning
that avoids liquid spilling and satisfies amplitude constraints on
jerk, acceleration, and velocity of the container moving on a
linear guide of an automation line. This solution is based on
linear programming and can provide rest-to-rest liquid motion
planning or, alternatively, a rest-to-disequilibrium planning with
bounded post-motion liquid oscillations. Experimental results on
a test bench prototype show the effectiveness of the presented
approach.

I. INTRODUCTION

In the packaging industry, a typical problem is the transfer

of an open container or package from the filling station to

the sealing station of an automated packaging line [1]. When

the container is partially filled with a liquid, the automated

transfer may be critical due to the liquid slosh induced by the

container motion. Indeed, a faster transfer may improve the

line productivity but it could cause a splash out of liquid that

is unacceptable. Hence, it arises the practical need of achieving

a fast container transfer while controlling and keeping limited

the resulting liquid slosh.

An in-depth investigation of liquid sloshing in moving

containers was carried out by NASA research [2], [3] with

the aim of studying the fuel sloshing in the motion control

of rockets. For various container geometries, this research

provided the basic equations governing the motion of the free

liquid surface inside the container and the deduction of natural

frequencies of the oscillatory liquid modes. Many subsequent

researches on liquid sloshing dynamics have been reported in

[4], [5] also covering nonlinear and multimodal modeling.

This sloshing modeling has been the starting point of many

control methods addressing the transfer of an open liquid

container. A class of methods uses feedback control with

some sensing of the liquid surface displacement. Relevant

works include: sliding mode control [6], [7]; H∞ control

with optimal command input [8], [9]; control based on a

hybrid shape approach [10]; generalized PI control based on

differential flatness [11].

However, as Grundelius and Bernhardsson [12] pointed out,

feedforward control of the open liquid container may be a

better approach for the packaging industry. This corrisponds

to design a kinematic motion planning for the open container

and then to implement it without the need of a feedback

sensor measuring the displacement of the free liquid surface.

A feedforward control based on an infinite impulse response

filter is presented in [13]. Approaches using the input shaping

command idea are reported in [14], [15]. A minimum-time

acceleration profile for the container motion is presented in [1]

with constraints on maximum acceleration and elevation of the

liquid surface. In this work, the structure of the time-optimal

acceleration profile is deduced from process experience and

the profile parameters are determined with an a search numer-

ical procedure. A common assumption of these feedforward

approaches is to model the slosh dynamics as a linear second-

order system.

In this paper, still using a simple second-order slosh model,

we propose a minimum-time feedforward control of the con-

tainer by exploiting the idea of generalized bang-bang control

proposed in [16]. The method is to plan a minimum-time

continuous acceleration profile with a bounded jerk (i.e., the

acceleration derivative) and amplitude constraints on the liquid

elevation as well as on the velocity and acceleration of the

container. This approach can allow a rest-to-rest motion for

the liquid inside the container or a rest-to-disequilibrium

motion with an amplitude constraint on the post-motion liquid

oscillations. The latter case may be acceptable when the

residual liquid oscillations do not interfere with the closing

of the container in the automation line and it can be preferred

because it further reduces the optimal transfer time.

The paper is organized as follows. Section II briefly de-

scribes the slosh dynamics inside a moving cilindrical con-

tainer. The formulation of the minimum-time feedforward

control problem and its solution based on linear programming

are reported in Section III. Experimental results using a test

bench prototype are presented in Section IV. Section V ends

the paper with concluding remarks.

Notation (piecewise-continuity): A function f : R →
R, t → f(t) has PC0 continuity, and we say f ∈
PC0 if f ∈ C0(R − {t1, t2, . . . }) and there exist

limt→t
−

i
f(t) , limt→t

+

i
f(t) , i = 1, 2, . . . . Here {t1, t2, . . . }

is a set of discontinuos time-instants. Function f has PC1

continuity and we say f ∈ PC1 if f ∈ C0(R) and its

derivative function Df has PC0 continuity.
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Fig. 1. Liquid sloshing inside a moving cylindric container.
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Fig. 2. Cart-pendulum system representing the dynamics of the first
asymmetric sloshing mode.

II. SLOSH MODELING

In this section, we briefly discuss the slosh dynamics inside

an open container carring a liquid substance. Figure 1 illus-

trates a cylindric liquid container, whose center is at position

p on a longitudinal axis, subject to an external acceleration,

a. The cylinder contains a liquid, which oscillates during the

motion of the container. A mathematically rigorous description

of the liquid sloshing dynamics is based on the Navier-Stokes

equations, a set of nonlinear, partial differential equations. The

resulting motion of the liquid is described by the superpo-

sition of various sloshing modes, characterized by different

oscillation frequencies. For sloshing control purposes (see for

instance [9] or [17]), it is generally sufficient to take into

account only the first asymmetric mode (i.e. the asymmetric

mode with the lowest frequency). With this approximation, the

slosh dynamics is equivalent to that of a cart-pendulum (see

figure 2).

The generalized coordinates of the cart-pendulum system

are the position p of the cart center of mass, which corresponds

to the position of the container, and the pendulum angle θ,

which represents the angle between the horizontal line and

the liquid surface (assumed to be a plane). The system control

input is given by the cart acceleration a = p̈ and the output y is

defined as the vertical displacement of the free liquid surface

with respect to the rest level at the left side of the container.

This output is related to the pendulum angle by expression

y = R tan θ. The equations of motion can be obtained by

considering the equation of the pendulum angular momentum:

{

θ̈(t) = − g
l
sin θ(t) + a(t)

l
cos θ(t)− cθ̇(t)

y = R tan θ(t)
(1)

where l is the pendulum length, c is a viscous friction

coefficient and g is the gravity acceleration.

Assuming that the angle θ is small, we can linearize (1) on

the equilibrium θ = θ̇ = 0, obtaining the linear model
{

θ̈(t) = − g

l
θ(t) + a(t)

l
− cθ̇(t)

y(t) = Rθ(t) .
(2)

In system (2), the transfer function T (s) between the

acceleration input u and the liquid vertical displacement y

is given by

T (s) =
R

g

1

1 + lc
g
s+ l

g
s2

. (3)

It is convenient to rewrite T (s) as

T (s) = K
ω2
n

s2 + 2δωns+ ω2
n

(4)

where K = R
g

is the static gain, ωn =
√

g

l
is the natural

frequency and δ = c
2

√

l
g

is the damping ratio. Since K is

known, T (s) is fully determined by parameters ωn and δ.

According to [4] the natural frequency of oscillation ωn of

the first asymmetric mode of a liquid contained in a cylinder

is given by

ωn =

√

g · ξ
R

tanh

(

ξ · h
R

)

(5)

where R is the tank radius, h is the liquid depth, g is the

gravity acceleration and ξ ≃ 1.841 is a constant specific to

this mode. In [2], the damping coefficient is approximated by:

δ = 0.79
√
Re

[

1 +
0.318

sinh
(

1.84h
R

)

(

1 +
1− h

R

cosh
(

1.84h
R

)

)]

(6)

where Re is the reverse Reynolds number

Re =
ν

√

g · (2 · R)3
(7)

and ν is the kinematic viscosity of the liquid.

III. MINIMUM-TIME CONSTRAINED

FEEDFORWARD CONTROL

In this section, we formulate the minimum-time constrained

feedforward control problem and present an approximate so-

lution based on time-discretization and linear programming.

A. Problem formulation

Consider a state-space realization of transfer function (4):
{

ẋ(t) = Ax(t) + ba(t)
y(t) = cx(t) ,

(8)

with

A =

[

0 1
−ω2

n −2δωn

]

, b =

[

0
1

]

,

c =
[

Kω2
n 0

]

.
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The minimum-time constrained feedforward control prob-

lem addressed in this paper can be introduced in two versions

as follows (Problem 1 and Problem 2 below).

Let pf > 0 be the final desired position of the container,

vM , aM , jM be the assigned maximum values of the container

velocity, acceleration and jerk, and yM be the assigned max-

imum value of the liquid surface vertical displacement from

the equilibrium (liquid) surface. The container velocity and

position can be defined according to v(t) :=
∫ t

0
a(ξ)dξ and

p(t) :=
∫ t

0 v(ξ)dξ).

Problem 1: Find the minimum transition time tf and the

time-optimal acceleration function a(t) ∈ PC1 such that

model equations (8) and conditions below are satisfied.

• Liquid equilibrium at the initial time:

x(0) = 0. (9)

• Kinematic constraints on the container motion:

a(0) = 0, (10)

0 ≤ v(t) ≤ vM , ∀t ∈ [0, tf ], (11)

|a(t)| ≤ aM , ∀t ∈ [0, tf ], (12)

|ȧ(t)| ≤ jM , ∀t ∈ [0, tf ], (13)

p(tf ) = pf , v(tf ) = 0, a(tf ) = 0. (14)

• Amplitude constraint on the liquid oscillations:

|y(t)| ≤ yM , ∀t ∈ [0, tf ]. (15)

• Liquid equilibrium at the final time:

x(tf ) = 0 . (16)

Problem 2: Find the minimum transition time tf and the

time-optimal acceleration function a(t) ∈ PC1 such that

model equations (8) and conditions below are satisfied.

• Conditions (9)-(14) as in Problem 1.

• Amplitude constraint on the liquid oscillations during and

after the container motion:

|y(t)| ≤ yM , ∀t ∈ [0, tf + ts] (17)

where ts is a settling time that can be fixed to 2π
ωn

.

Solutions of problems 1 and 2, i.e, the optimal transfer time

and corrisponding time-optimal acceleration, are denoted by

t∗f and a∗(t).
Note that in Problem 1 and 2 it necessary to impose both

conditions y(t) ≤ yM and y(t) ≥ −yM to prevent liquid

overspilling at the left and right container walls. This is correct

due the assumption that the free liquid surface is a plane during

the liquid oscillations.

Remark 1: Removing the constraint of final liquid equilib-

rium as it has been done in Problem 2 allows a faster container

transfer, at the expenses of post-final output oscillations that,

anyway, do not cause liquid spilling due to the extended

constraint (17). This can be useful to improve productivity in

applications in which the sealing process to close the container

is undisturbed by the residual liquid oscillations.

B. Reduction to linear programming

Problems 1 and 2 can be conveniently reformulated by in-

troducing the following augmented system whose state vector

x̂ is defined as (x, p, v, a) and control input u(t) is ȧ(t), i.e.,

the jerk of the container motion:

{

˙̂x(t) = Âx̂(t) + b̂u(t)
y(t) = ĉx̂(t) ,

(18)

with

Â =









A 0 0 b

0 0 1 0
0 0 0 1
0 0 0 0









, b̂ =









0

0
0
1









,

ĉ =
[

c 0 0 0
]

.

Problems 1 and 2 are then equivalent to optimizations

min
u(t)∈PC0

tf (19)

such that

|u(t)| ≤ jM , 0 ≤ v(t) ≤ vM , |a(t)| ≤ aM , ∀t ∈ [0, tf ],
(20)

x̂(0) = 0, (21)

and (for problem 1)

|y(t)| ≤ yM , ∀t ∈ [0, tf ], (22)

x̂(tf ) = [0 pf 0 0]
T , (23)

or (for problem 2)

|y(t)| ≤ yM , ∀t ∈ [0, tf + ts], (24)

[0 I3]x̂(tf ) = [pf 0 0]
T . (25)

We now assume that the input signal u is obtained from a

discrete-time signal ũ(k), k ∈ Z applied to a first-order hold

filter, i.e.

u(t) = ũ(⌊ t
T
⌋) ,

where T > 0 is the sampling time and ⌊x⌋ = maxk∈Z{k ≤ x}
is the integer part of the real number x.

The sampled state z(k) = x̂(kT ) and the sampled output

ỹ(k) = y(kT ), for k ∈ Z, are the solution of the discretized

system
{

z(k + 1) = Adz(k) + bdũ(k)
ỹ(k) = cdz(k) ,

(26)

where Ad = eÂT , bd =
∫ T

0 eÂξ
b̂dξ, cd = ĉ.

For a given integer number k, we denote by Nk ∈ R
5·k×k

the Toeplitz matrix

N
k =













bd 0 . . . 0

Adbd bd

. . .
...

...
. . .

. . . 0

A
k−1
d bd . . . Adbd bd













.
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Then, introduce

M
k
y := diag(cd, . . . , cd)N

k, (27)

M
k
v := diag(cv, . . . , cv)N

k, (28)

M
k
a := diag(ca, . . . , ca)N

k, (29)

where cv = [0 0 0 1 0] and ca = [0 0 0 0 1].
With this notation in mind, we define the following discrete-

time counterparts of problems 1 and 2.

Find the smallest number of discrete-time steps kf for which

there exists a vector u := [ũ(0) . . . ũ(kf−1)] ∈ R
kf such that

the following linear programming problem admits a solution

(corrisponding to an approximate solution of problem 1)






























−jM1kf
≤ u ≤ jM1kf

0kf
≤ M

kf
v u ≤ vM1kf

−aM1kf
≤ M

kf
a u ≤ aM1kf

−yM1kf
≤ M

kf
y u ≤ yM1kf

[

A
kf−1
d bd,A

kf−2
d bd, . . . ,bd

]

u = [0 pf 0 0]
T

(30)

or (corrisponding to an approximate solution of problem 2)






























−jM1kf
≤ u ≤ jM1kf

0kf
≤ M

kf
v u ≤ vM1kf

−aM1kf
≤ M

kf
a u ≤ aM1kf

−yM1kf+ks
≤ M

kf+ks

y [u0ks
]T ≤ yM1kf+ks

[0 I3]
[

A
kf−1
d bd,A

kf−2
d bd, . . . ,bd

]

u = [pf 0 0]
T

(31)

where ks := ⌊ 2π
ωnT

⌋. Here, notation x ≤ y for vectors x, y ∈
R

n denotes the element-wise inequality (i.e. xi ≤ y1, i =
1, . . . , n) and 0k, 1k denote the k-dimensional vectors whose

components are all equal to 0 and 1 respectively.

The optimal solution k∗f and corresponding u
∗ for prob-

lems (30) and (31) can be found by solving a sequence

of linear programming tests. This sequence can be simply

generated by a bisection algorithm (cf. [16] for details).

IV. EXPERIMENTS

A. Experimental setup

Figure 3 is a schematic representation of the key elements of

the test bench prototype. The cylindrical container is inserted

into a rigid frame, which is connected to a pulley actuated by

a brushless electric motor. The liquid vertical displacement at

the container wall is measured by a laser range sensor. Figure 4

shows the actual prototype, that was provided by Zanelli S.r.l.,

a company based in Parma, specialized in the production of

machines and plants for the production and the packaging of

coatings , sealants, padding and pastes. This prototype allows

a container transfer till to the total distance of 0.38 m. The

brushless motor is an Omron Accurax G5, with a rated torque

of 2.39 Nm, a rated speed of 3000 turns/min and a rated

power output of 750 W. The motor is equipped with a 20-bit

incremental encoder. The motion is controlled by an Omron

Sysmac 501-1500 PLC, configured with a sampling time of 1
ms.

Laser range sensor

Moving frame

Actuated wheel

Fig. 3. Basic scheme of the prototype.

Fig. 4. Picture of the test bench prototype.

The cylindric container has a radius R = 0.108 m. The

height of the liquid at rest is h = 0.149 m. We have

considered liquids of different dynamic viscosities: water (1
cP), lubricant oil (3000 cP), paint (5000 cP). The laser range

sensor is a Sick OD-250W150I, with a response time of 1
ms and an accuracy of 1.2 mm. This sensor allows a very

fast and precise measurement of the height of liquid at the

container wall. However, it operates correctly only on liquids

with a sufficiently high reflection coefficient. For this reason,

iron oxide has been added to water and oil to increase its

reflectivity. This has not been necessary for paint. Note that

this sensor is not used for feedback control, but only for system

identification and performance evaluation.

B. Direct parameter identification

For each liquid, we have performed 5 identification ex-

periments with different container acceleration profiles. The

corrisponding liquid vertical displacement, that is the output

y of system (4), has been recorded to obtain the natural

frequency ωn and the damping ratio δ by standard system

identification methods.

The following table shows a comparison of the values for

ωn and δ given by the theoretical formulas (5), (6) with the

values obtained by the identification procedures, for the three

different used types of liquid.
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Liquid
Theoretical Identification

ωn

(

rad
s

)

δ ωn

(

rad
s

)

δ

water 12.8888 0.0014 12.5687 0.01252

oil 12.8888 0.0866 12.6072 0.04211

paint 12.8888 0.1000 13.5030 0.1913

In the case of water and oil, the values of the natural

frequency obtained with identification methods are very close

to the theoretical values given by (5). Paint exhibits a larger

difference, perhaps due to the fact that this liquid, with a

very high viscosity and a non-Newtonian behavior, presents

sloshing dynamics influenced by significant nonlinear effects,

not taken into account by (5). The identified values of the

damping ratio exhibit large differences from the theoretical

ones prescribed by (6). In the case of oil or paint, this is

probably related to the intrinsic difficulty of measuring a single

value of viscosity for non-Newtonian fluids. In the case of

water, the difference can be due to the presence of iron oxide

in the water, added to increase its refraction coefficient to

facilitate the correct measurements of the laser range sensor.

C. Experimental Results

In the planning of the time-optimum feedforward control we

have considered a container transfer given by distance pf =
0.35m. Kinemetics constraints on velocity and acceleration

are given by vM = 0.62 m
s

and aM = 5 m
s2

. To prevent

liquid from spilling, the constraint on liquid elevation is yM =
0.035m. The time-discretization is set with sampling time

T = 0.004 s and the model parameters are those obtained by

system identification. The time-optimal jerk profiles have been

then determinated by standard linear programming routines.

1) Experiment 1 (Water): We have set the the input jerk

bound as jM = 10m
s3

. The obtained minimum-times are t∗f =
1.176 s and t∗f = 1.144 s for Problem 1 (rest-to-rest planning)

and 2 (rest-to-disequilibrium planning) respectively. For the

rest-to-rest planning Figure 5, Figure 6, and Figure 7 show the

time-optimal jerk and acceleration profiles, the corresponding

command velocity profile, and the simulated and measured

liquid dispacement respectively.

From these figures, it is possible to see that the prescribed

bounds and the final rest condition are essentially satisfied. It

is significant to note that, despite the modeling simplifications

made, there is a strong similarity between the measured and

the expected simulated output. The spikes appearing in figure 7

are due to occasionally incorrect measurements of the laser

range sensor. These are caused by the low reflectivity of water,

despite the addition of iron oxide.

2) Experiment 2 (Oil): In this case, the input jerk bound is

chosen as jM = 30m
s3

. The obtained minimum-times are t∗f =
1.024 s and t∗f = 0.920 s for Problem 1 and 2 respectively.

For the rest-to-disequilibrium planning, Figure 8, Figure 9,

and Figure 10 show the time-optimal jerk and acceleration

profiles, the corresponding command velocity profile, and the

simulated and measured liquid dispacement respectively.

3) Experiment 3 (Paint): The input jerk bound is again

chosen as jM = 30m
s3

. The obtained minimum-times are t∗f =

0 0.2 0.4 0.6 0.8 1
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(a) Jerk profile.
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2
]

(b) Acceleration profile.

Fig. 5. Experiment 1: time-optimal planned motion.
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Fig. 6. Experiment 1: time-optimal velocity profile command and imple-
mentation error.
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Fig. 7. Experiment 1: measured and simulated liquid elevation (output signal
y(t)).

0 0.2 0.4 0.6 0.8
−30

−20

−10

0

10

20

30

Time [s]

J
e
rk

 [
m

/s
3
]

(a) Jerk profile.

0 0.2 0.4 0.6 0.8

−5

0

5

Time [s]

A
c
c
e
le

ra
ti
o
n
 [
m

/s
2
]

(b) Acceleration profile.

Fig. 8. Experiment 2: time-optimal planned motion.
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Fig. 9. Experiment 2: time-optimal velocity profile command and imple-
mentation error.
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Fig. 10. Experiment 2: measured and simulated liquid elevation (output
signal (y(t)).

1.004 s and t∗f = 0.892 s for Problem 1 and 2 respectively. To

save space the time-optimal plottings are not displayed.

V. CONCLUSIONS

In this paper we have proposed a new approach for the

minumum-time feedforward control of an open liquid con-

tainer. All the relevant possible constraints are considered

also comprising a selectable bound on the maximal allowed

container jerk. The presented solution is based on linear

programming and can provide rest-to-rest liquid motion plan-

ning or, alternatively, a rest-to-disequilibrium planning with

bounded post-motion liquid oscillations. This latter case is

interesting to further reduce the transfer times of open liquid

containers and may be adopted in automation lines of the

packaging industry.
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