The concept of sharing electric vehicles (renting them for one or several hours or a fraction of an hour) has been around for a while. Examples of previous EV trials include the Praxitele in France, City Car in Matini, Switzerland, and various station car projects in the US. (Station cars are EVs that mass-transit riders drive to and from transit stations.) The

Daihatsu Motor Company, in conjunction with the Japan Electric Vehicle Association, also carried out a small-scale EV demonstration in Japan some 20 years ago.

In recent years, Japanese corporations and researchers have conducted a succession of demonstrations of shared small EVs. Leading the way was Honda’s field trial of its Intelligent Community Vehicle System in 1998 at its Motegi recreational complex, which features a couple of racing circuits. Demonstrations in 1999 included

- trial operation of the Toyota Crayon system of compact electric commuter cars,
- an ITS/EV project that a group affiliated with the Ministry of International Trade and Industry (MITI) organized at Yokohama and Inagi, a Tokyo suburb,
- a commercial EV demonstration in Osaka, and
- a trial of the Nissan Hypermini EV in Ebina, near Tokyo.

More demonstrations are planned for Kyoto and other cities.

This recent spate of Japanese EV proj-
ects has two major causes. One is the development of compact, next-generation EVs for in-town use powered by high-performance batteries; the other is that several Japanese automakers have announced various systems for sharing these new EVs.

In this installment of Intelligent Transportation Systems, I describe the ongoing ITS/EV Yokohama project, which is demonstrating an EV sharing system for business use. The project’s goal is to find real customers at the demonstration site and to develop ways to minimize operating costs.

The sharing system

The Yokohama project started in October 1999 with 30 EVs; it added 20 Nissan Hyperminis in January 2000. The Hypermini is a two-seat, 2.6-meter-long, lithium-ion-battery-powered EV recently developed and marketed for inner-city use and sold to the general public (see Figure 1). The Association of Electronic Technology for Automobile Traffic and Driving (JSK) is organizing the overall ITS/EV project, which groups of participating companies are implementing. Concurrent with the Yokohama project, JSK organized another EV-sharing event, demonstrating the use of EVs as a second car in a residential area of Inagi.

The project’s EV sharing system has been developed largely by the Nissan Motor Company and NEC. A mobile communications network links the communications equipment in each EV to the host computer at the operations center (see Figure 2). Users must register in advance to use the system. Each user receives a modified keyless entry fob that stores his or her identification information, which it can transmit to an EV.

Users can reserve an EV by telephone or at a Web site. At the reserved time, the user goes to the EV sharing station and presses a button on the fob while standing in front of an EV. The onboard communications system receives a signal carrying the person’s ID and relays it to the operations center. The center compares it with the reservation information and transmits sharing permission to the vehicle. The vehicle then flashes its hazard warning lights and unlocks its doors. The user enters the vehicle and starts it with the ignition key, stored in a holder in the glove compartment. Upon returning the vehicle to the sharing station, the user puts the ignition key back in the holder. At that moment, the onboard communications system judges that the vehicle’s use is completed and transmits the vehicle’s position and other information to the operations center. The center calculates the sharing fee on the basis of the length of use and mileage and sends that information for display on the in-vehicle monitor. (Because no sharing fee is being charged during the demonstration, billing information is not displayed.) After exiting the EV, the user locks the doors with the fob.

It pays to communicate

During EV operation, the onboard navigation system sends longitudinal and latitudinal information obtained from GPS satellites and information on the remaining battery charge to the operations center at set intervals. Because EVs still have a short driving range and virtually no charging ports are in place at present, people worry about running out of battery power en route. So, the EVs in this demonstration have a return advisory function. This feature constantly monitors the remaining battery charge and the distance from the present location to the vehicle return station, and warns drivers before they exceed the returnable range.

The EVs also have a call button that lets users make a voice call to an operator at the operations center. Users can easily obtain operator support in a variety of situations, such as if they do not know how to operate something, the vehicle suffers some trouble, or they are likely to return the vehicle late.

In urban areas, securing sufficient space for EV stations can be especially difficult. Requiring large auxiliary facilities can pose an obstacle to obtaining station sites. However, because these EVs have communications capabilities, no special facilities are required for vehicle rental or return, except for the battery-charging equipment at EV stations.

The system uses a data communications network intended for ordinary cellular phones. Anywhere data communications service is available, one operations center can provide centralized management of the EV sharing system, even in remote regions.

Taking it to the streets (and parking lots)

Yokohama’s Minato Mirai 21 area—the demonstration’s location—is a former shipyard that is being redeveloped into a commercial center with rows of high-rise buildings. Covering an area of approximately 10,000 square kilometers, MM21 is home to the offices and stores of 800 companies, having a combined workforce of approximately 50,000 people. On weekends and holidays, sightseers throng the area. The cost of owning a vehicle in MM21 is extremely high, with parking places renting for more than $500 a month. Moreover, to ensure ample visitor parking, building managers have

Continued inside back cover
After being temporarily suspended at the end of March, the demonstration resumed in late May and is scheduled to run through September. During this period, the project will implement measures to reduce operating costs, such as unmanned operation of the operations center at certain business hours. JSK intends to continue the demonstration with the goal of improving the system to a commercially feasible level by 2002. Among other improvements, the project aims to enhance the in-vehicle equipment’s reliability, reduce costs, and develop a billing function.

Kayoko Hara is a researcher at the Nissan Research Center’s Vehicle Research Laboratory, where she studies methods to design customer-oriented specifications. While at the laboratory, she previously developed concepts for future city transportation systems. She received her bachelor’s in social sciences from Chiba University. Contact her at the Vehicle Research Laboratory, Nissan Motor Co., Ltd., Natsushima-cho 1, Yokosuka-shi, Kanagawa 237-8523, Japan; k-hara@mail.nissan.co.jp.

...