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Abstract

This paper presents the complex environment that was built to ease the prototyping of real-time applications on the
PAPRICA-3 massively parallel system. Applications are developed in C++ using high level data types and the cor-
responding Assembly code is automatically created by a code generator. A stochastic code optimizer takes the assembly
code and improves it according to a genetic approach; due to the high computational power required by this approach,
the stochastic code optimizer was implemented with MPI and runs in parallel on a cluster of workstations. The
availability of this complex environment allowed to test the performance of the system and to tune it according to some
target applications before the actual development of the hardware. For this purpose a system-level simulator was also
built to determine the number of clock cycles required to run a specific segment of code. The whole environment has
been used to validate possible solutions for the hardware system and to develop, test, and tune several real-time image
processing applications. The hardware system is now completely defined. © 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Real-time image processing applications require powerful engines. A lot of general-purpose processors
nowadays can deliver sufficient computational power, but when specific requirements (such as a low power
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consumption, a small physical size, and a low production cost %) must be met, a special-purpose system with
a deep match between the architecture and the application becomes mandatory.

A lot of special-purpose architectures have been conceived, designed, and implemented [9], but not
always the design of new systems has been accompanied with the development of proper environments to
ease the prototyping and tuning of applications. In general, complex hardware systems require either a
specialized skill for its programming or highly optimizing compilers and environments: in the first case the
user must be aware of all internal details of the machine to be able to exploit its sophisticated character-
istics, while in the latter the user programs with high level languages, thus leaving to an optimizing compiler
or code generator the hard task of writing efficient code. Obviously this complex task becomes even harder
when the target of the project is to reach real-time performance on a custom system.

With the continuously growing possibilities offered by hardware today, words such as pipeline, branch
prediction, dynamic scheduling, and superscalar architectures are no more restricted to a small specialists
elite but are spreading also in a standard and general environment; even low-cost special-purpose pro-
cessors are designed focusing on these techniques [11]. Thus, code optimization by-hand is not only difficult
and time-consuming, but generally produces code with an efficiency lower than what could be achievable
using automatic tools.

This work presents the programming environment that was developed to ease the prototyping of real-
time applications on the PAPRICA-3 system, a special-purpose coprocessor designed to run real-time
image processing tasks developed in cooperation with the Polytechnic of Turin, Italy. To exploit the natural
parallelism of low-level processing of images, PAPRICA-3 is composed of a high number of processors
working in SIMD fashion. Moreover, the internal structure of each single processor features a complex
pipeline which allows to take advantage of the intrinsic parallelism of a generic program [24]. Thus, both
Spatial Parallelism and Instruction-Level Parallelism [21] are used to boost performance, and must be taken
into account when writing Assembly code.

The PAPRICA-3 programming environment has thus been structured to hide these two instances of
parallelism. Spatial parallelism, namely the distribution of the data over the set of processing elements, is
automatically handled by a high level language, which allows the user to describe the application employing
abstract data types; a code generator then builds the corresponding assembly program using a set of pa-
rameterized libraries. Conversely the exploitation of instruction-level parallelism, namely the simultaneous
execution of portions of each single assembly instruction, is handled by a code optimizer, which modifies
the assembly code produced by the previous tool in order to minimize the number of clock cycles required
to run the code.

Pipelining techniques were first addressed at least 25 years ago [20], and in this period a great variety of
algorithms has been studied and implemented to improve code efficiency. Almost all of them rely on de-
terministic approaches, which lead to NP-complete problems [10]. Conversely in this work a stochastic
approach is considered: unlikely other optimization processes, a “population” of modified versions of the
original program evolves according to a genetic methodology. This approach allows to achieve higher
optimization levels, but unfortunately it requires a higher computational power (in terms of both memory

2 For example for the development of a vision-based system for the automatic driving of vehicles or robots [3].
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size and CPU time). To face this requirements the optimizer has been implemented on a cluster of
workstations using standard MPI (Message Passing Interface [19]) libraries.

This work is organized as follows: Section 2 briefly introduces the PAPRICA-3 system; Section 3 pre-
sents the programming environment and the C++ classes that model the new data types and introduces the
code optimization tool; Sections 4 and 5 describe how the stochastic optimizer works and how perfor-
mances are evaluated in absence of the real hardware; Section 6 describes the implementation of each
logical part of the environment and Section 7 presents a case study and describes possible future extensions
of the environment; Section 8 ends the paper with some conclusive remarks.

2. Brief overview of the {,,///gﬁl[ 0;7/ system

PAPRICA-3 [7] is a massively parallel system dedicated to run real-time image processing tasks. The
system specifications are now completely defined, and the ICs are currently under fabrication; the hardware
system, a PCI board that will be connected to a standard PC, will be available in early 1998.

2.1. Internal architecture

As shown in Fig. 1(a), the core of the processor is a dedicated SIMD cellular architecture based on a
linear array of Q identical single-bit Processing Elements (PEs); a single chip contains 32 processors, and
the architecture is modular. The array is connected to an external Image Memory via a bidirectional Q-bit
data bus; therefore each memory access transfers a complete vector of Q pixels at once, 1 bit per pixel. The
rationale behind this system is that the size of the Processor Array (PA) matches exactly the width of the
input image, thus avoiding the PE virtualization problem, which has been proven to be a critical design
issue in 2D arrays [8]. The PEs contain a fairly complex pipeline [11]; since the PE clock cycle is twice as fast

Morphological Registers

Internal Registers

Fig. 1. (a) structure of a 256 PEs version of PAPRICA-3; (b) enhanced 3 x 3 neighborhood.
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as a memory access, the instruction fetching process loads two adjacent instructions at once from the
program memory.

The PA is composed of two different kind of internal registers: Morphological Registers (MOR) and
Logical Registers (LOR). The MOR consist of 5-bit south-to-north shift-registers whose southernmost
position is loaded one image line at a time by the data bus. The presence of the 5-bit shift-registers allows to
perform morphological operations on an enhanced 3 X 3 neighborhood, which is shown in Fig. 1(b). The
LOR are used as a temporary storage and to perform logical operations.

2.2. Instruction set

In a generic Assembly instruction (called morphological instruction) two operations, a morphological one
applied to a given MOR and a logical one applied to the previous result and to a second given register
(MOR or LOR), can be performed in sequence. The result (1-bit) is placed in a third register:

R(25) = MATCH R(12) OR R(7) ; Agiven match is performed on R(12); the
; result is ORed with R(7) and stored in R(25)

The Assembly instructions are coded into fixed-length 32-bit words, where the first 5 bits are reserved for
the operation code. Anyway, some instructions may need a number of operands whose total length exceeds
27 bits; this is the case of morphological instructions (where the complete matching template, the logical
operation, the destination, and the two source registers must be specified) and conditional jumps (where
both the condition and the new memory location must be expressed). These cases are handled by two
separate instructions. In the former, a first TEMPLATE instruction is used to set the matching template
[22,12] which is used by each following morphological operation. The template used in the following ex-
ample corresponds to a 4-neighbors morphological erosion:

TEMPLATE—,—-,1,—,—,1,1,1,—, —, 1, —, — ; sets the 13 values corresponding to
; the enhanced 3 X 3 matchingtemplate
R(18) = MATCH R(5) ; performs the match on register R(5)

In the second case, conditional jumps are split into two adjacent instructions: the former evaluates the
condition and sets a specific flag. In case the flag is evaluated true, the latter is executed; otherwise the latter
is treated as a NOP (No OPeration) instruction.

ONM > 5 ; evaluates the condition and sets the flag
BRC < address > ; jumps if the condition was evaluated true;
; otherwise BRC is treated as a NOP instruction

This solution is particularly efficient for the conditional execution of any other instruction without using
conditional jumps: for example,
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ONM <=7 ; the morphological instruction is executed

R(6) = MATCH R(5) AND R(8) ; only when M <=7

This approach allows to test easily also the combination of two or more conditions, as shown in the fol-
lowing example:

ON < Conditionl > ; tests condition 1
ON < ConditionZ2 > ; tests condition 2
< INSTR > ; execute instruction

Instruction INSTR is executed when both Conditionl and ConditionZ2 are evaluated true and when
Conditionl is evaluated false, namely (C; N C;) U C).

Although loops can be implemented with conditional jumps, when the number of iterations is known at
assembly time, the FOR-J construct can be used. * It has been introduced both to improve performance and
to shorten the code.

FORJ=0TO 7D0 2 ; Repeat the following < 2> instructions with
R(7) =R(7) OR R(9 + J) ; counter J running from O to 7
R(20+J) =R(9 + J) AND R(3) ;

PAPRICA-3 features many other Assembly instructions, ranging from the communication among PEs
not directly connected [6] to the direct acquisition and output of images from a camera and to a monitor via
a dedicated I/O bus. Nevertheless, the detailed description of these instructions is not presented here since it
is not relevant to the following discussion and can be found in http: //www. CE. UniPR. IT/papri-
cad.

3. The programming environment

The intrinsic complexity of Assembly language, especially when combined with the SIMD computa-
tional model, produces a low programming efficiency; a high level programming language, together with a
software tool for the generation of its corresponding Assembly code, are then needed to ease the devel-
opment of software applications. This section gives an overview of the approach, describes the classes
available to the user and discusses the optimization problems that must be faced.

3.1. The P3Lib code generator

Two different solutions were considered for the generation of the Assembly code:

3 A single counter “J” can be used, thus no nested constructs are allowed.
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1. a compiler-based solution, where a new high level language is compiled and its corresponding PAPRI-

CA-3 Assembly code is generated; and
2. a code generator-based solution, where an existing high level language is enhanced by a library of func-

tions that parametrically build segments of PAPRICA-3 Assembly code.

The main disadvantage of the first solution lays in the need for a complete definition of a new language,
which must be able to handle not only parallel statements, but also some other sequential functions (such as
serial operations, data I/O, input of data from the user, memory management, etc.) which are of basic
importance although not dealing with the specific SIMD extension. Conversely, a code generator inherits
these capabilities from the chosen high level language and thus its implementation is considerably less
complex than the former. Moreover, in this second case the efficiency in the development of applications is
sensibly increased, since the programmer does not have to learn a new language but only its parallel ex-
tensions. Moreover, the use of an object oriented language eases the programmer task since the operands
acting on the new objects can be used intuitively by the application programmer thanks to the possibility of
overloading known operators.

These considerations led to the choice of a Code Generator based on the C++ object oriented language.
The only drawbacks of this solution are (i) the low level of optimization achievable in a single pass
(generally compilers and assemblers use two passes), and (ii) the impossibility to determine a mapping
between a single C++ statement and its corresponding sequence of PAPRICA-3 Assembly instructions,
thus not allowing the step-by-step execution of the C++ high level program for debugging purposes.

The complete sequence of operations required to build a PAPRICA-3 Assembly program is depicted in
Fig. 2: first the C++ code is written and compiled; then the executable obtained is run and the PAPRICA-3
Assembly code is generated. Note that the generation of Assembly code was preferred with respect to the
generation of binary machine code, thus requiring a further processing step (PAPRICA-3 Assembler) to get
the final binary code. This choice allows a faster and more efficient debugging of the code-generation
functions, as well as a simpler implementation of the following global optimization step, since in the Assem-
bly code also comments are automatically included to ease the program comprehension. Moreover, since
PAPRICA-3 has been conceived as a real-time image processor, a code optimizer can be used to fur-
thermore improve the generated code. Finally the PAPRICA-3 Assembler is used to produce the binary
machine code.

3.2. C++ classes

Two different C++ classes have been considered, corresponding to two different levels of abstraction:

Optimized

opg‘:;er PAPRICA-3
Cos program PAPRICA-3 Assembly code PAPRICA-3
Compiler Assembly code Assembler binary code

Code Generation Optional Code Optimization Machine Code Generation

Fig. 2. The complete sequence of operations required to build a PAPRICA-3 executable.
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e a generic image, thus not matching the system architecture (high level of abstraction like in the Khoros
system [18]) and
e an image line, thus matching the system architecture (low level of abstraction like in the Connection Ma-

chine C* [15]).

In the former the user has no visibility at all over the hardware system and consequently the code generator
must manage all data transfers and register allocation required by the virtualization of the PA (namely the
iteration of the process over all the lines of the image), exploiting in the best way the architectural capa-
bilities and hardware characteristics of the machine. Thus, the high level solution featuring extremely
general image-wise primitives (such as gradient-based filters, convolutions, pattern-matchings, neural
functions, etc.) offers a simple way of programming, but unfortunately the automatic generation of an
optimized Assembly code is extremely complex due to the generality of the user primitives.

Conversely the low level solution matches the architecture of the system and gives to the user visibility
over the hardware architecture, anyway hiding the details of processor virtualization. This last solution has
been chosen for the PAPRICA-3 programming environment: the user can then focus on the application
rather than on the implementation details.

3.2.1. The P3_reg class

The most important elementary class available to the user is the P3_reg class, representing a set of binary
internal registers (Q-bit wide) of the PA. The following C++ program shows an example of high level
programming of PAPRICA-3 using the P3_reg class. The following C++ code

P3_reg a(8); //Definition of 3 registers with different depth: 8, 8,
P3_reg b(8);

P3_reg c(9); //and 9 bits respectively

c=a-+b; //c is assigned the result of the sum between a and b

generates the following PAPRICA-3 Assembly code

; [39 —47] =[56 — 63] + [48 — 55] automatically generated comment
R(39) =R(56) + R(48) + 0 sum between less significant bits (no carry is used)
FOR J =0 TO 6 DO loop over the remaining 7 bits
R(40+7J)=R(57+J) +R(49 + J) + ACC add with carry
NEXT J
R(47) =R(0) + NOT R(0) + NOT ACC copies in R(47) the status of the carry flag

where register a is automatically allocated in registers R(56)\XiR(63), b in R(48)\XiR(55), and ¢
in R(39)+R(47).

3.2.2. The P3_menm class
In the same way, the P3_mem class is defined representing a multi-bit image (Q-bit wide) in the Image
Memory.
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3.3. Code generation problems

PAPRICA-3 is a 3 address machine [16,17], namely in each Assembly instruction a maximum of 3
operands can be specified (two sources and one destination), as specified in Section 2.2. Thus for the
complete code generation all 3 operands must be known. Unfortunately the C++ code generation approach
[3] provides only two parameters to the member function in charge of the parametrical code generation and
thus only a partial generation is possible. As an example, let us consider the two following C++ statements:

a=(b]|o);
a=(b|c) & q;

In both cases the overloaded C++ “operator |’ is the first function that is called: the two objects b and ¢
are the only operands accessible by this function, and thus the complete code generation can be performed
only when also the third object (the destination) is known. In the first case the destination object is a, while
in the second case a new temporary object tmp must be allocated and used as destination. In fact, the
second case can only be handled as two separate steps:

tmp =D | c;
a=tmp & 4;

To overcome this ambiguity, the new class P3_regTmp, transparent to the user, has been introduced. It is

composed of 3 fields (two P3_reg objects and an operand) and used when the complete code generation is

impossible. The following example presents the sequence of functions called by the C++ compiler for the

following C++ statement: a = (b | ¢) & d;

e b | cin this case (only two operands are specified) no generation is performed. A new P3_regTmp object
(called tmpl), whose 3 fields are {b; c; oper_or}, is returned.

e tmpl & da new temporary P3_reg (called t) is allocated and the Assembly code corresponding to
t=tmpl (namely t =D | c) is generated. The return value is a new P3_regTmp (called tmp2) whose
3 fields are {t; d; oper_and}.

e a=tmp2the Assembly code corresponding to a = tmp2 (namely a =t & d) is generated and the tempo-
rary P3_reg t is deallocated.

3.3.1. Code optimization

Four different optimization levels have been considered: the first two can be handled by the code gen-
erator and are discussed in this section. conversely, the other two cannot be handled by the code generator
because of it produce code in a single pass; thus they are performed by another tool (the Assembly code
optimizer) and addressed in the next section.

1. Local (or function-wise) optimization: it is performed by each code generator function, which, instead
of calling general-purpose procedures (in precompiled libraries), creates a segment of code optimized for
the special set of parameters. Memory management and register allocation is performed at this stage.

2. Look-behind (or non-backward) optimization. in the generation of a sequence of instructions with no
data-dependent points of divergence or merging of the program flow (hereinafter defined as a block), the
knowledge of the code previously created can be exploited to drive specific optimizations. For example the
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second of two morphological operations based on the same template will not generate a TEMPLATE in-
struction, since it has already been set by the former.

3. Blocky (or block-wise) optimization: it is performed by the stochastic code optimizer presented in
Section 4.2, and it is required because of the lack of a second pass in the code generation. Optimizations
like instruction scheduling, useless code removal, loop fusion and breaking, loop unrolling and rolling, etc.
at the block level are performed at this stage through a stochastic approach, preceded by a deterministic
preprocessing of the code.

4. Global (or program-wise) optimization. this kind of optimization requires the handling of more than
one block at the same time; it is the only step in which data-dependent control flow constructs must be
considered. In the literature [4] it is still addressed as an open problem currently under study.

Local optimizations: The first optimization level (local optimization) is performed during the code
generation process: 3 operands are provided to each member function, as mentioned in Section 3.3, and the
appropriate procedure is called to produce the corresponding Assembly code. A specific set of parameters
selected from the 3 operands (the 3 P3_reg objects) is passed to the code generation function and used to
drive specific optimizations. As an example, let us consider the following C++ statement:

a=(b&ec)|d;

where a, ¢, and d are 8-bit deep P3_reg objects, while b is only 4-bit deep. The depth (number of bits) of
the temporary P3_reg object tmp used in tmp =D & c (see Section 3.3) depends on the depth of the two
operands (b and c) and on the specific function performed (logical and). In this case a 4-bit temporary
P3_reg is sufficient since b (which is 4-bit deep) is considered padded with zeros and thus the number of
significative bits of the result of a logical and between b and any other deeper P3_reg is 4. Assuming a
allocated in R(56)+R(63), b in R(52)+R(55), ¢ in R(44)+R(51), and d in R(36)+R(43), the
corresponding Assembly code automatically generated is in fact:

Allocating registers [32 — 35] Allocating the temporary P3_reg tmp (4-bit deep)
; [32 — 35] = [62 — 55] & [44 — 51] Performs a logical AND between b and the 4
FOR J =0 TO 3 DO less significant bits of ¢ and  stores the

R(32+J) =R(62+ J) AND R(44 +J) result into the 4-bit deep temporary P3_reg
NEXT J
; [66 — 63] =[32 — 35] | [36 — 43] Performs a logical OR between the previous
FOR J =0 TO 3 DO result and the less significant bits of d
R(56 +J) = R(32 4 J) OR R(36 + J)
NEXT J
FORJ =0 TO 3 DO Copies the 4 more significant bits of d in the
R(60 + J) =R(40 +J) 4 more significant bits of the result a
NEXT J

; Deallocating registers[32 — 35]

This corresponds to the execution of 4 logical AND, 4 logical OR, and 4 assignments. On the other hand,
this optimization cannot be exploited in the following case:
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a=(b&c)|d;

where a bitwise inversion causes b to be considered padded with ones. The code generated in this case is in
fact:

; Allocating registers [28 — 35] Allocating the temporary P3_reg tmp (8-bit deep)
; [28 — 35] =7[62 — 55| & [44 — 51 Performs a logical AND between “b and the
FORJ =0 TO 3 DO 4 less significant bits of ¢ and stores the
R(32+ J) = NOTR(52 + J) AND R(44 + J) result into the 4 less significant bits of the
NEXT J temporarty P3_reg
FOR J =0 TO 3 DO Copies the 4 more significant bits of c in the
R(32 4+ J) =R(48+7J) more significant bits of the temporary P3_reg
NEXT J
; [66 —63] =[28 — 35] | [36 — 43] performs a logical OR between the temporary
FOR J =0 TO 7 DO P3_regand d
R(56 + J) = R(28 + J) or R(36 + J)
NEXT J

Deallocating registers [28 — 35|

This corresponds to the execution of 4 logical AND, 8 logical OR, and 4 assignments.

Look-behind optimizations: Since the generation process implemented here can only add Assembly lines
to the final PAPRICA-3 code (no backward generation or editing is in fact possible), the code segments
which do not include control flow statements (FOR-NEXT, REPEAT-UNTIL, IF-ELSE-ENDIF con-
structs) can be furthermore optimized.

As an example, let us consider two adjacent morphological operations using the same matching tem-
plate: the following C++ code

P3_reg a(8), b(8); // Allocates two P3_reg objects
a = a.match(P3_NMOV); // Shifts a to the North
b = b.match(P3_NMOV); // Shifts b to the North

generates two loops (corresponding to the two morphological operations), but only one TEMPLATE in-
struction is generated since both operations make use of the same matching template:

; Allocating registers [66 — 63] allocates registers for object a

; Allocating registers [48 — 55] allocates registers for object b

; [66 — 63] = [66 — 63], match = P3_NMOV corresponds to a=a. match(P3_NMOV)
TEMPLATE = —, —, —, —, —, —, —, —, —, — 1,—, —

) ) ) ) ) ) ) ) )

FOR J =0 TO 7 DO
R(56 4 J) = MATCH R(56 + J)
NEXT J
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; [48 — 55] =[48 — 55], match = P3_NMOV corresponds to b="b. match(P3_NMOV)
FOR J =0 TO 7 DO
R(48 + J) = MATCH R(48 + J)

NEXT J
; Deallocating registers [48 — 55| deallocates b
; Deallocating registers [66 — 63] deallocates a

In other words, this optimization aims to remove all the instructions that do not modify the status of the
Finite State Machine implementing the PA.

4. Assembly code optimization

Since the code generator produces the assembly code in a single pass, a backward optimization is not
possible. Thus a tool for the optimization of the assembly code has been developed.

The efficient use of a pipelined processor is mainly based on a specific ordering of the program in-
structions (known as instruction scheduling), aimed to the maximization of the number of the elementary
operations executed simultaneously by the different pipeline stages. A lot of different approaches have been
conceived and implemented to solve the instruction scheduling problem: although in Ref. [10] it is dem-
onstrated that instruction scheduling is a NP-complete problem, some polynomial solutions have been
proposed, such as list scheduling [2,4]. But unfortunately, deterministic solutions become even more
complex when, in addition to instruction scheduling, other optimization criteria are combined.

Conversely, in the development of the PAPRICA-3 environment a stochastic approach has been fol-
lowed for the complete optimization (instruction scheduling, instruction alignment, loop fusion and
breaking, loop unrolling and rolling, etc.) of Assembly code. It is based on an evolutionary technique in
which genetic rules iteratively modify a population of programs. The set of rules include both well-known
traditional optimization criteria [1] (instruction scheduling, useless code removal, loop fusion and breaking,
loop unrolling and rolling, etc.) and rules specifically designed to optimize the Assembly language of the
PAPRICA-3 system.

The optimization process is divided into two main steps: a deterministic one, performed on the initial
assembly code, and a stochastic one, iterated on the result of the previous step. The first step is fully de-
terministic and reduces both execution time and code size; on the other hand, the stochastic step tends to
improve the efficiency of the Assembly code exploiting the characteristics of the pipeline structure, the
specific instruction set encoding, and other hardware features. The stochastic process is driven by the user
choice about the optimization target: execution time, code size, or a given combination of both.

4.1. Deterministic optimization

As described above, PAPRICA-3 assembly code is produced by a “C++ to Assembly” code generator.
Since C++ statements are consecutively and independently processed, code generation is performed in a
single pass, namely the optimization during code generation can only exploit the knowledge of the already
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created code. For this reason the generated Assembly code features some redundancies, whose removal is

performed by a deterministic optimization step. The techniques used are discussed in the following.

o [nvariant code motion: The single pass-based generation does not allow to know whether the body of a
loop will contain invariant code prior to the complete generation of the loop itself. As a result, the loop
body may comprise some instructions which are independent of the loop index and independent of the
other loop instructions. These instructions can be pulled out of the loop body, thus reducing the execu-
tion time.

o Removal of Jumps: Conditions expressed in C++ are rendered by the code generator using a sequence of
ON and BRC instructions. In case the statement executed when the condition is evaluated true is com-
posed of a single assembly instruction (see Section 2.2), the BRC and its corresponding label can be re-
moved and the condition in the ON instruction complemented, thus reducing both execution time and
code size. Nevertheless, the most important benefit is the removal of a label and a branch, which identify
points of flow merging and divergence respectively. In this way the number of blocks is reduced, thus
helping the following optimization.

4.2. Stochastic optimization

Since in the optimization phase no data are available, data-dependent branches cannot be solved. For
this reason, the code is divided into blocks, which are defined as code segments without data-dependent
conditional control-flow constructs. Each block is optimized independently of the others: a first module
splits the code into blocks, and sends them to independent processes in charged of the optimization, as
shown in Fig. 3. Finally the optimized blocks are re-assembled and the final program is generated.

Each block is optimized following an iterative stochastic approach: at the ith iteration, N(i) new pro-
grams are generated by the consecutive application of R(i) rules (drawn randomly from a given set) to each
program of the (i-1)th generation. The ones performing better than a given threshold 7'(i) are kept and will
form the ith generation, while the other are discarded. The timing performance of each new program is
determined using the PiPE tool (see Section 5).

Since the population at the first iteration is composed by only the original block, at the beginning of the
process (when 7 is small) the number of rules applied, R(), is high, thus allowing a large spreading of the

Set of
Rules

Optim.
. Lo | Block
[_';_' \
- Iarative process
a = Final :
. C\?de Assembly Code Code > progran}
Splitter - a Stochastic Optimizer Assembler

L» o
Performance

Evaluation
and Threshold

Fig. 3. Block diagram of the stochastic code optimization.
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Performance of _
the initial program

(@) (b)

Fig. 4. Qualitative behavior of (a) the number of rules applied consecutively to a single block; (b) the threshold 7(i) as a function of the
iteration number i.

initial population. As soon as i becomes large, the number of rules applied to the same block decreases * to

1, for a fine tuning of the solution (see Fig. 4(a).

Fig. 4(b) shows a qualitative behavior of threshold 7'(i), which, starting from a value twice as large as
the performance index featured by the initial program, decreases linearly > with i. This implies that at the
beginning of the iterative process (i small), solutions with performance lower than the initial can be kept
(this is of basic importance to escape from local minima), while in the following iterations a threshold limits
the number of candidates and keeps only the best solutions. At each iteration the block used to generate the
new population is also included in the evaluation process, in order to avoid jittering from the optimal
solution that may have been eventually detected. The number of iterations of the stochastic process and the
slope of T'(i) is a function of the length of the block to be optimized: in the first version its dependence is
linear.

Each rule is drawn randomly, according to a given probability. In the current version, the probability is
fixed, but in future versions it will be modified run-time to allow a faster convergence to the optimal so-
lution. Each rule can move, modify, add, or remove instructions. Every action is fully reversible, thus al-
lowing to return to the originating state. The list of elementary rules is described in the following.

o [Instruction scheduling: For this purpose the concept of independence between instructions is used. Two
instructions are said to be independent when their swapping does not alter the result of program execution
for every input. This happens both when the data modified by the first instruction are not used neither by
the latter nor by the instructions between the two, and when the data used as source in the former are not
modified neither by the latter nor by any of the instructions in between. Obviously, the data modified or
used by a general instruction are both registers directly specified in the opcode and data intrinsically in-
volved in the processing (such as flags and the accumulator). The application of this technique is based
on the swapping of two independent instructions, and produces new versions of the code leading to a
different execution time without changing the code length. This rule is auto-reversible.

e [nstruction alignment. In this case the optimization can take advantage from the specific fetch policy of
PAPRICA-3. In order to increment the working frequency of the processor, bounded by the memory
cycle time, PAPRICA-3 fetches two instructions (placed at an even and odd adjacent memory locations)

4 The linear slope of R(i) (resembling a simulated annealing approach) was chosen to simplify the development of the tool, but more
complex functions are under evaluation.
> The slope of T'(i) determines the convergence speed.
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every two processor cycles. Unfortunately when a branch to an odd address occurs, PAPRICA-3 must
fetch and ignore the instruction at the previous even address. The addition (or removal) of an instruction
(i.e. a NOP) can transform an odd address into an even one and vice versa.

o Loop fusion and breaking: Two different adjacent FOR cycles can be joined when their counter J ranges
into the same interval and all the instructions of one loop body are independent of all instruction of the
other loop body for each value of J. The dual operation, making the rule reversible, is based on the cre-
ation of two disjoint loops when both the body of the original one has more than one instruction and all
the requirements on independence described above are met.

o Loop unrolling and rolling: In pipelined processor execution time is bounded especially by control flow
instructions [13]. In order to fully exploit the instruction scheduling and to avoid control hazards, loops
can be unrolled. Unfortunately, the main drawback of the loop unrolling technique is the significant in-
crement in code size. The final measurement of the performance of a given block is performed as a
weighted average between the number of clock cycles and the length of the code, according to the user
choice (speed vs. code size, or a given mix of the two).

o [nstruction fusion and breaking: PAPRICA-3 morphological instructions are a concatenation of a mor-
phological operator and a logical one. Therefore such instructions can be split in two adjacent ones,
performing the two operations independently. This optimization is obviously specific to the PAPRI-
CA-3 system. Although this operation increases code size, two instructions that use different source
data can take advantage from the instruction scheduling technique. Since this rule is reversible, two
instruction can be fused, thus decreasing code size and, in case of no data hazards, also execution
time.

o Multiple assignment removal: When two adjacent instructions perform an assignment to the same desti-
nation (i.e. the same internal register, the same memory location, etc.) and the latter does not involve the
destination as source, the former is useless and can be removed. This condition can be produced by the
application of other rules, such as the instruction breaking or fusion. The dual operation, making this rule
reversible, is based on the insertion of a generic assignment that has the same destination as the following
instruction.

e Removal of temporary registers: The code generator allocates temporary registers for storing intermediate
results; moreover programmers themselves do the same with temporary variables. Due to the possibility
to execute a morphological and a logical operation in the same PAPRICA-3 instruction, there are cases
in which there is no need to use temporary registers. In the following example R(6) is a temporary reg-
ister: the first instruction could be removed only if R(6) is not used in the following part of the program
(i.e., if R(6) is a temporary register).

First case Second case
R(6) = NOT R(7) R(6) = NOT R(7)
R(5) = MATCHR(S) & R(6) R(5) = MATCHR(8) & NOTR(V)

The reversible rule is anyway straightforward. Unfortunately, at assembly level, it is difficult to de- termine
the scope of a register; moreover the choice of optimizing the code block by block makes it impracticable.
Thus it is impossible to remove the assignment to R(6) since it is not known if its value will be used again.
Conversely PAPRICA-3 code generator knows the scope of every register and can generate the dummy
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instruction FREE that signals when the scope of a register is over. Obviously the FREE instruction is ignored
both during the evaluation phase and by the compiler, thus not affecting both performance evaluation and
program execution; FREE R(6) is treated as an assignment to register R(6). The use of the dummy in-
struction FREE together with the multiple assignment removal and instruction scheduling rules allows to
improve sensibly the code, as in

First case Second case

R(6) = NOT R(7) R(5) = MATCH R(8) & NOT R(7)
R(5) = MATCH R(8) & R(6) FREE R(6)

FREE R(6)

o Registers Reallocation: The policy of register allocation used by the PAPRICA-3 code generator is aimed
to minimize data hazards: the registers allocated are chosen among the available ones that has been idle
for the longest period of time. Unfortunately, the random application of optimization rules (especially
instruction scheduling, instruction breaking, or removal of temporary registers) can affect the idle time of
the registers, thus modifying the compile-time situation. This rule provides a way of reallocating tempo-
rary registers to decrease data hazards, provided that another register is available for temporary storage.
A register can be reallocated as in the following example.

First case Second case

FREE R(15) FREE R(15)

R(6) = NOT R(’?) R(15) = NOT R(’?)

R(5) = MATCH R(8) & R(G) R(5) = MATCH R(8) & R(l5)
FREERE R(6) FREER R(15)

5. Performance evaluation

Due to the complex internal structure of each PE, the determination of the execution time of a given
program is unpredictable [13,14] without a simulation or a real run. Since the hardware system is not yet
available, a tool for performance evaluation of a general pipelined processor was developed: PiPE, Pipeline
Performance Evaluator. The development of a simulator of a general pipelined processor allowed to dy-
namically modify the internal architecture of the system and to test and evaluate different possible solu-
tions. Success in developing such a tool is tightly coupled to its flexibility and its effectiveness in modeling
different pipelined architectures, since a generic pipeline can be composed of any number of stages, each one
with different functionalities.

The PiPE tool allows to model different behaviors, such as:

e different functional units;
e multiple functional units of the same type;
e data, structural, and control hazards;
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e multiple or conditional data paths;
e interrupts or external signals.

The customization of the PiPE tool for the description of a specific processor involves the definition of

the following informations:

e how the instructions are coded;

e a description of the pipeline topology;

e the data-path followed by each instruction;
e hazard conditions;

e all the specific I/O mechanism.

Moreover since the target is the development of a fully general performance evaluation tool based only
on a behavioral simulation (i.e. not a functional simulator), some implementation-specific problems and
data-dependent events must be faced; for example the handling of:

o different instruction fetching methods (multiple fetches as in super scalar architectures),
e registers values and counters,

e external synchronizations and interrupts,

e evaluation of conditions.

6. Implementation

This section describes the implementation issues that have been addressed in the development of the
whole environment.

For portability purposes the entire code has been written using standard programming languages and
tools, such as ANSI C, C++, LEX, YACC, and MPI libraries, and runs both on UNIX based machines
(SunOS and Linux) and in DOS based environments (MsDos and Windows).

6.1. The FPE software simulator

Currently the whole PAPRICA-3 system is simulated on serial machines. The software simulation al-
lowed to test the effectiveness of the instruction set, the choice of the PE neighborhood, the logical orga-
nization of the Image Memory, the internal structure of the processor, as well as the performance of the
whole system prior to the hardware availability. In fact the implementation and simulation of some basic
image processing functions led to some architectural improvements, mainly focused on the tuning of the
instruction set and on the redesign of the pipeline topology.

Starting from the experience gained in the development of the first PAPRICA prototype [8], two dif-
ferent simulators were originally planned:

e a system-level simulator, capable of emulating the hardware behavior, thus allowing the exact determi-
nation of the number of clock cycles and memory accesses required by the application; and

e a functional simulator, aimed to the simulation of the algorithms rather than the hardware system, start-
ing directly from the C++ source.

These two simulators had to interface directly to the C++ application, giving to the programmer the

possibility to choose the desired simulation engine: the functional simulator, for the development and
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debugging of the application, while the system-level simulator, for the its final tuning and performance
evaluation.

6.1.1. The System-level simulator

Due to the simple operations of PAPRICA-3 instruction set (single-bit operations), an extremely effi-
cient simulation can be obtained by exploiting the word parallelism w of the single processor of the serial
system running the simulation [23]. The Q bits of the PA registers (see Section 2.1) are grouped into [ Q/w |
clusters of w bits each, and processed simultaneously by the serial processor. In the current implementation
it is Q=64 and w =32 and thus 2 (=64/32) cycles are required to accomplish the whole processing of a
single binary image line. This leads to a sort of parallelization in the software simulator based on a general-
purpose serial processor. A real parallel version was considered but not developed, due both to the ex-
tremely high communication requirements and to the satisfying performance of the current serial imple-
mentation: the ratio between the simulation time and the processing time computed by PiPE ranges from
450:1 (on a SUN Sparc20 with a 50 MHz SuperSPARC) to 300:1 (on a PC equipped with a 100 MHz Intel
Pentium).

6.1.2. The functional simulator

Beside the system-level simulator described above, also a functional simulator was planned, but never
developed. Some simple considerations on computational efficiency in fact showed that the functional
simulator would perform worse than the system-level simulator. As an example, let us consider the sim-
ulation of the following common operation:

a=b]|c;

namely a logical operation between two 8-bit deep (64 bit wide) image lines on a serial processor with 32-bit
word parallelism. The system-level simulator requires 16 (corresponding to & cycles of 8 operations each)
32-bit operations, while the functional simulator requires 64 (one for each pixel) 8-bit logical operations.
The high hardware efficiency (which corresponds to a high computational efficiency) obtained in the first
case suggested the development of the system-level simulator only.

6.2. The [ylBPICF ] 100

The PiPE system has been developed in C++ because an object-oriented language allows to hide im-
plementation details behind different classes, which can be used to model different pipeline stages.

Any pipeline can be completely defined with the description of:
o the list of stages composing the system;
e the interconnection topology which links the stages;
e and the flow of instructions between the stages.
In the PiPE tool the hardware details are encoded in two plain ASCII files which describe the routing of
each instruction into the pipeline, and the instructions encoding; from these information also the pipeline
topology and hazards conditions are deduced. The possibility to configure the PiPE tool acting only on
external customization files allows a fine and efficient tuning of the hardware system according to a
standard hardware-software codesign methodology.
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6.3. The code optimizer

Since the major drawback of a stochastic approach to code optimization is the high computational
power (in terms of both memory usage and CPU time), a parallel version of the optimizer has been de-
veloped. The development of the parallel version started with the analysis of the system requirements and
performance on a preliminary serial version of the optimizer:

e the CPU time spent in the performance evaluation phase by the PiPE tool is up to 90% of the overall

CPU time;

o the larger the number of iterations, the better the quality of the result, but also the larger the amount of
memory required.

Fig. 5 shows that the complete process involves the repeated execution of some different steps, which can
be distributed among different processors, leading to a different granularity of the distribution. Different
approaches for the development of the parallel version of the optimizer were considered, each based on the
distribution of different processing steps: the whole optimization of each single block, the genetic process,
the performance evaluation step, or a given mix of them. The elementary processing steps and their re-
quirements are summarized in Table 1; code splitting and assembling are anyway serial steps which are
performed by a single master processor.

Fig. 6 shows three different solutions to the parallelization problem, whose characteristics are de- scribed
in Table 2.

The approach followed in the development of the first distributed version is based on the distribution of
the performance evaluation step only (solution (c)): a master processor splits the code into blocks and
generates the new blocks to be evaluated. The new blocks are queued and sent to different processors for the
evaluation of their performance. When a processor completes the evaluation phase, it returns the number of
clock cycles to the master node and signals its availability to evaluate a new code segment. Due to the

(Common to the whole optimization process)
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of rules ! linstruction set encoding!
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Fig. 5. Different steps of the processing.
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The elementary processing
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steps and their requirements
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Code assembler

Code splitter Stochastic engine Application of  Performance Threshold
rules evaluation
CPU usage(%) Negligible 6 3 90 1
Requirements  Executed only = Requires a lot of Reads the Reads the Reads the threshold
once for each  memory to handle probabilities of  pipeline structure value (changes at
run large populations;  each rule and instruction  each iteration) and
updates the thresh- set encoding modifies the rules
old, number of rules, (fixed for each probabilities
number of itera- run)
tions,. ..

Negligible

Executed only
once for each
run

()

Code Code
Splitter Assembler

Stochastic
Engine

population iterative process

Code
Spitter

(b)

Code
. Assembler

Application
of rules

Stochastic
Engine

population iterative process

© Code Code
Splitter Assembler

Fig. 6. Three different solutions to the parallelization problem: the gray areas represent the portion of the processing which is assigned
to a single processor of the cluster; the remaining white blocks are assigned to the master processor.

different computational power required by (i) the evaluation phase (90%) and (ii) the rest of the processing
(10%), this approach balances the load even in the case of a non-homogeneous cluster of processing nodes.

The rules that are currently operative in the first version of the tool and that have been used in the
example described in the following section are: Invariant Code Motion, Removal of Jumps, Instruction
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Table 2

Characteristics of the three solutions described in Fig. 6

M. Bertozzi, A. Broggi | Journal of Systems Architecture 45 (1998) 519-542

Parallelization

Load balancing

Communications

Memory usage

busy time/transfer time

(a) Each single block is
optimized independently
of the others; each block
is assigned to a single
processor

(b) Each processor applies
a set of rules to each
block it receives,
evaluates its performance,
and compares it with the
threshold

(c) Each processor
receives a block and
evaluates its
performance

Load balancing cannot
be guaranteed: it
depends on the number
and length of the blocks
in a program

Well balanced: as soon
as a processor finishes
its task, it receives a
new block from the
master processor

Well balanced: as soon
as a processor finishes
its task, it receives a
new block from the

Very low: only the
original and optimized
blocks are transferred

High: besides the
original and optimized
blocks each processor
reads and modifies a set
of parameters allocated
in the master node

High, but better than

in the previous case since
each processor receives

a block and outputs a

Normal; well balanced

Low amount for each
node, but high amount
for the master node,
which has to manage
the whole population

Low amount for each
node, but high amount
for the master node,
which has to manage

Extremely high

High

High, but lower than
in the previous case

master processor single number the whole population

Scheduling, Instruction Alignment, Loop Fusion and Breaking, Loop Unrolling and Rolling, while In-
struction Fusion and Breaking, Multiple Assignment Removal, Removal of Temporary Registers, Regis-
ters Reallocation, are currently under test. The future integration of these rules will hopefully lead to a
higher degree of optimization.

7. An example

A number of different programs has been developed, tested, and optimized using the PAPRICA-3
operating environment; nevertheless, hereinafter we will refer to a specific example: an image processing
algorithm for the detection of road markings in images acquired from a moving vehicle [5].

In this case the execution time plays a basic role, and thus code optimization becomes mandatory. The
algorithm is based on a morphological filter which enhances the road markings, and on an adaptive
threshold which discards pixels not belonging to a continuous line. The algorithm was written in C++ using
the classes offered by the code generator; in this way the spatial parallelism intrinsic to the SIMD imple-
mentation of the algorithm and the virtualization of the processor array are completely handled by the code
generator, leaving to the programmer only the task of specifying the vertical size of the image.

The C++ source code consists of about 90 lines, which, thanks to the code generator, are automatically
converted into about 970 Assembly instructions. This non-optimized program runs in 2398 clock cycles,
while after the optimization the new Assembly code runs in 1961 clock cycles. The improvement is about
18%. The time required for the optimization of this code on a cluster of 4 Pentium 100 with 32 Mbytes of
RAM running Linux is about 25 min.
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Fig. 7. Speedup as a function of the number of nodes.

The Code Generator and PiPE demonstrated to be effective and underwent a number of improvements
which led to the current stable version. On the contrary, although the current version of the Code Optimizer
produces satisfactory results, a number of improvements are planned, ranging from the introduction of new
optimization rules to the study of new solutions for a different parallelization of the tool. For example the
timing performance of the optimization has been evaluated on a different number of computing nodes in
two different configurations: (a) one processor is exclusively allocated to the master process, while the
others perform the evaluation step; (b) all processors perform the evaluation step, while one of them
handles also the master process. Fig. 7 shows an average behavior of the Code Optimizer in these two
situations. In the second case the performance is lower than in the former because of the high number of
context-switching required by the simultaneous execution of two processes, one of which (the master) is
extremely memory-consuming.

Table 3 shows a segment of the original code, its optimized version, and the resources used by each
single instruction, where ‘R’, “‘W’, and ‘RW’ mean that the resource is accessed for reading, writing, or both
respectively. The analysis of this example shows that the deterministic optimization moved the TEM-
PLATE instruction out of the block and that the two instructions referring to I1 and 12 have been swapped
with their previous and following ones respectively. This simple rescheduling of the instructions allows to
eliminate consecutive accesses (in ‘W’ and ‘R’ respectively) to the same resource, thus decreasing hazards.

8. Conclusions
In this paper the operating environment of the PAPRICA-3 system has been described.

The programming environment, based on C++, has proven to be very effective, since the user does not
have to learn a new language, but programming becomes an easy task thanks to the use of overloaded
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Table 3
Analysis of the result of the optimization of a short segement of code

I1 12 M R(15) R(60) Templ. Memory

Original Code TMOOOOOL:
LD I1 (0), R (15) R R R

H
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=
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I
>
=]
&=

Il
'
©
N
~ £

R (60) =MATCH R (15) EXOR R (15) R
ST 12 (0), R (60) R

ADD I1, A RW

ADD I2, A RW

INC M RW

oN M <= 31 R

BRC LMOOOOOL

=

Optimized Code

TEMPLATE = -y, | == ym sy w
LMOOOOOL:

LD I1 (0), R (15) R R R
R (60) =MATCHR (15) EXORR (15) R w R

ADD 11, A RW

ST 12 (0), R(60) R R w
INCM RW

ADD 12, A RW

ONM <= 31 R

BRC LMOOOOOL

operators acting on new C++ classes. Moreover since the system-level simulator delivers remarkable
performance, an extremely efficient prototyping, testing, and tuning of applications becomes possible. On
the other hand the tuning of the hardware system can be efficiently performed acting only on the config-
uration of the PiPE tool. Finally the use of The Code Optimizer allows to reach an excellent performance
improvement (up to 35%) of the code previously generated, but, due to its high computational load it is
particularly suited for the final optimization of programs whose computing time is a key parameter (i.e.
real-time applications). The problem of the slowness of the stochastic process has been resolved with a
parallel implementation of the optimizer on a cluster of PCs connected by Fast Ethernet; the speedup
demonstrated to be almost linear with the number of computing nodes; nevertheless further experiments are
now planned on a larger number of nodes. Although the current version of the Code Optimizer produces
satisfactory results, a number of improvements are planned, ranging from the introduction of new opti-
mization rules to the study of new solutions for its parallelization.
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