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Abstract

This paper describes the image processing techniques de-
signed to localize tracks of snowcats for the Italian mission
in Antarctica within the ENEA R.A.S. (Surface Antarctic
Robot) project for the autonomous driving of intelligent
snowcats. The final goal is to enable snowcats to auto-
matically follow preceding ones.

A camera is used to acquire images of the scene in real-
time; the image sequence is analyzed by a computer vision
system which identifies the tracks and produces a high level
description of the scene. This data is forwarded to a fur-
ther software module in charge of the control of the snow-
cat movement. A further optional representation, in which
markers highlighting the tracks are superimposed onto the
acquired image, is transmitted to a human supervisor lo-
cated off-board.

1 Introduction

In this paper we present the results of a preliminary study
for the automatic driving of a snowcat. The main goal
of this system is to automate the following of a manu-
ally driven vehicle, during goods transportation between
two sites in the South Pole; it will be used in the next Ital-
ian scientific missions. The first vehicle will be manually
driven by an expert driver, while all the others will follow
in a train-like fashion. Moreover, since cracks in the ice
can put in serious danger both the driver and the snowcat
itself, it is imperative that the following vehicles ride on
the same precise path defined by the first vehicle. Since
even small drifts from the original driving path defined by
the human driver can be extremely dangerous, a precise de-
tection of the tracks left by the previous vehicle, a correct
measurement of their position, and a smooth control of the
actuators must be carefully designed, tested, and evaluated.

∗This work was supported by ENEA within the RAS Project.

A preliminary test phase showed that the most promising
sensor that should be able to deliver sufficiently precise
measurements is a vision sensor (camera). Many other
devices have been considered, even active ones since the
specific working site would not present any problem due to
interference or to environmental pollution [3]. Anyway, vi-
sion seems the only sensing capability that may deliver the
highest performance in terms of precision of the localiza-
tion. Data are acquired from a monocular camera installed
inside the driving cabin (see figure 1).

Fig. 1. The snowcat and its sensing capabilities.

Due to the extreme conditions of the working environment,
where temperatures can reach even -50 degrees Celsius,
the terrain is completely covered by snow or ice, strong
sun lighting and reflections may be present, and no spe-
cific ground references are available nor assumptions can
be made on the soil slope, this application is extremely
challenging and presents many additional problems with
respect to the driving of unmanned vehicles on traditional
(un)structured roads [4].

For this reason an extremely careful analysis and design of
the processing techniques is mandatory.

Several approaches have been considered due to the low
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Fig. 2. The many different conditions that must be considered; images come from either the Antarctica region or the Italian Alps

visibility of white tracks on a white background, and spe-
cific filters have been developed in order to cope with the
typical problems of this environment. The high problem
complexity is slightly reduced by the low speed of the ve-
hicle, which permits to focus on the localization of tracks
in a reduced close area only.

Moreover, in the automatic driving of road vehicles [1] a
special emphasis is generally given to the exploitation of
a-priori knowledge in order both to speed-up the compu-
tation and make the detection robust. In our case, only
a little knowledge about the environmental conditions can
be exploited: generally no other vehicle or building is seen
by the camera, and the only markings on the ice are due
to the preceding vehicle. On the other hand, no assump-
tions can be made with respect to a possible flatness of the
area ahead of the vehicle, nor to a given range of illumi-
nation of the scene. In other words, hilly conditions must
be considered as well, and therefore the camera orientation
generally used in road environments (low towards the road
ahead) cannot be replicated here. Besides the acquisition
of a large amount of insignificant data during driving in flat

areas, the framing of a large portion of the sky can raise an-
other important problem: since in the working site the sun
may be very low on the horizon, no specific camera ori-
entation can overcome the problem of direct sun-light into
the vision system. This is an extremely difficult issue that
must be carefully considered in the development of vision
algorithms.

This paper is organized as follows: section 2 discusses the
characteristics of the working environment which make the
application particularly challenging, section 3 describes
the details of the vision algorithm, and finally section 4
illustrates some results and presents future project devel-
opments.

2 Environmental Characteristics

The environmental characteristics of the Antarctica region
are very challenging and the automatic driving of a vehicle
in these conditions is extremely different from traditional
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Fig. 3. Block diagram for the complete processing.

highway or urban applications.

The main differences are due to the coverage of the driving
area with snow or ice, and the localization of other vehi-
cles’ tracks on different kinds of snow or ice requires spe-
cific algorithms able to adapt to different scenarios.

As shown in figure 2.a and 2.b, the tracks’ characteristics
can vary considerably: due to different sun positions, in the
first image the tracks are darker than the background, while
in the second image the tracks are brighter than the sur-
rounding area. Besides a weak brightness gradient, another
invariant that could be exploited is the brightness variance,
or –in other words– the texture. Unfortunately, due to the
high brightness of the environment, the snow texture pro-
vides very weak information. As can be seen in all the
images of figure 2 the difference of texture between tracks
and background is generally small.

In some cases the shadow of the vehicle itself or of the
mountains are captured by the camera (see figure 2.c). Due
to the very high contrast of these details, it is impossible to
detect weak brightness gradients in the region inside the
shadow, which therefore must be eliminated from the anal-
ysis. In particular, it is necessary to remove the high bright-
ness gradient generated by shadows, and keep and enhance
the weak tracks’ edges.

As mentioned, strong sun or light reflections can cause the
appearance of reflections patterns in the image, as shown
in figure 2.d and figure 2.e. This disturbing effect is also
caused by the inevitable presence of small icy particles on
the windshield in the region in front of the camera.

No assumptions on terrain slope can be made: in this ap-
plication domain, no a-priori knowledge on the flatness of
the region in front of the vehicle can be used to simplify
the localization algorithm. As can be clearly seen from fig-
ure 2.e and figure 2.f –acquired with only a few seconds of
distance,– the slope can change abruptly, making it difficult
even to define an area of interest in the image.

Furthermore, the change in terrain slope can also affect
the camera orientation with respect to the sun, and thus
can modify the quantity of light acquired from the sensor.
This is also visible in figure 2.e and figure 2.f, in which in
the former –due to strong sunlight– the snow brightness is
lower than in the latter.

The specific traveling conditions may also affect the tracks
shape and appearance: in case the ahead vehicle is towing a
sledge, the tracks will appear as two compact and uniform
stripes surrounded by background with a higher brightness
variance, as in figure 2.g and figure 2.h. On the contrary,
the tracks shape when no sledge is used are characterized
by a higher brightness variance than the background (see
all the other images of figure 2).

Finally, no ground references at all can be exploited, as
shown by figure 2.g and figure 2.h.

In this first version of the system, problems of divergence
from previous tracks as visible in figure 2.i are not con-
sidered. Furthermore, in some of the sequences acquired
for the first tests, the snowcat was equipped with a shovel
–visible in the bottom of figure 2.f– and a windscreen wiper
is present in almost all images. Both objects have been fil-
tered out through a specific filter, as discussed in the fol-
lowing section.

3 Tracks Detection

This section presents the complete processing steps for
tracks detection; figure 3 sketches the corresponding block
diagram.

In order to reduce the complexity of the detection of snow-
cat tracks in a snowy environment, some assumptions are
taken. In the first place, thanks to the low speed of the ve-
hicle, the localization of the tracks in a nearby area suffices
for the automatic driving of the vehicle. Secondly, focusing
on a close region ahead of the vehicle, the nearest portion
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Fig. 4. (a) Original image;(b) area of interest for left border;(c)
area of interest for right border.

of the tracks is supposed to be straight and their position is
assumed to be slowly varying from frame to frame.

Therefore, for each track border a specific area of interest
is defined and analyzed (see figure 4). In these two regions,
edges are extracted by means of a classical gradient based
approach (Sobel operator), followed by thresholding. In
order to reduce the sensitivity to both noise and the thresh-
old value itself, a preliminary clustering is applied as well
as a specific filter to mask the presence of shadows and/or
dark objects. The two edge images are then used to recover
the tracks position by means of the Hough transform.

Since the contrast between the track and the snowy or icy
ground is generally low, a clustering algorithm is needed
which is able to enhance also weak and isolated intensity
discontinuities. An iterative procedure proposed in [2] has
been used, which repeatedly substitutes each pixel’s bright-
ness with a weighted average computed over its neighbor-
hood. The definition of the weights comprises a function
of the neighborhood which enhances sharp edges and pre-
serves weak edges, while averaging uniform areas. Fig-
ure 5 shows the result of seven iterations of a 3×3 filter
applied to figure 4.a.

Subsequently, an histogram of the pixels intensity is com-
puted in the union of the two search regions, in order to
devise a brightness threshold which allows to discriminate
between the soil, which is generally bright, and shadows
or other dark objects. In this way strong edges deriving
from dark objects can be masked out, while leaving weak

edges generally representing the tracks position. Figure 6.a
shows the gray-level histogram computed in the search ar-
eas of the clusterized image: the contribution of dark ob-
jects (a small shadow in the right bottom corner and part
of the windscreen wiper on the left) can be clearly distin-
guished from the bright ground. The result of the threshold
(a binary image used as a mask) is then dilated with a 5×5
morphological structuring element to enlarge the masked
areas. In figure 6.b the result of masking is presented.

To separately detect the two tracks’ borders, the gradient
based filtering is followed by thresholding the edges’ phase
so to extract edges belonging to forward slanting oblique

Fig. 5. The result of the iterative clustering. The procedure is
actually applied to the areas of interest only; the whole clusterized
image is here presented for displaying purposes.

(a)

(b)

Fig. 6. (a) Histogram of gray-level values;(b) result of masking.



borders in the left area of interest, and edges belonging to
backward slanting oblique borders in the right area of inter-
est. Such filtering has been designed to rely on edges’ di-
rection only–and not on a complete 360o phase– in order to
work both with tracks brighter and darker than the ground
(see for example figure 2.a and 2.b). Oblique edges point
are then filtered with respect to their modulus by means
of an adaptive threshold which extracts a fixed number of
surviving edges. The value of this parameter was exper-
imentally computed from the analysis of several different
sequences. In this way the process is adjusted to the vari-
able contrast between tracks and ground: a constant num-
ber of edges is obtained by lowering the threshold when
the luminance difference is low and raising the threshold
when the contrast is high. The threshold value is easily
determined from a cumulative histogram of the gray-level
intensity values. Figure 7 shows the edges extracted from
figure 6.b in the two different areas of interest.

The Hough transform is then applied to localize the straight
line that best fits the edge points of each track border.
When selecting the line which gains the highest score, a
region centered on the average position of the track in the
previous few frames is considered, in order to exploit the
strong temporal/spatial correlation.

Once two lines approximating the nearest portion of the
track borders have been selected (see figure 8), the focus
of expansion (FOE) is determined by computing their in-
tersection. The position of the FOE is compared to the
previous ones: if it is too distant from previous results or
if it exits from a specific area whose size and position have

Fig. 7. Edges extracted in the two different areas of interest.

Fig. 8. Straight lines that approximate the track borders.

Fig. 9. Image representing the recurrence of the FOE position:
the darker the point, the higher the frequency of occurrence in
considered sequences; the dashed bounding box represents the
area used to validate the final result.

been determined from the analysis of several sequences
(see figure 9), the current result is discarded.

Moreover, the two search areas are dynamically resized:
their height and width are adapted to an average of the
FOE’s position in a few previous images; the FOE’s po-
sition encodes information on the terrain slope and the rel-
ative orientation between the vehicle and terrain (see fig-
ure 10).

Fig. 10. Different search areas are considered depending on the
FOE position, displayed with a black cross.
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Fig. 11. Results of snowcat track detection in different conditions.

4 Results and Future Research

Figure 11 shows some results of snowcat track detection in
different conditions.

Figures 11.a-d and 11.g-h present the result on the cor-
responding images of figure 2. The remaining images of
figure 2 represent very critical situations where the track
cannot be distinguished from background with the current
algorithm.

Conversely, figures 11.e-f and 11.i illustrate situations
where the detection is successful even if noisy or critical
conditions such as shadows, sun reflections, unknown ter-
rain slope, and dark objects are present.

Generally the tracks feature a quasi-linear behavior in the
region of interest. Anyway it can happen that when ap-
proaching a curve, the tracks begin to deviate from this
assumption and the Hough transform result is not precise.
To cope with this problem, a new method, based on the
Hough transform is being developed, which will allow a
fine tuning of the current result.

As a further development an extension will be imple-
mented which permits to recover the slope of the path
ahead from the FOE’s vertical position, when a correct cal-
ibration is available. On the other hand, the FOE’s horizon-
tal position, together with the measurement of the snow-

cat’s roll, will be used to assess the orientation of the path.
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