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Visual Perception of Obstacles and Vehicles
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Abstract—This paper presents the methods for sensing obsta- ~ Following a more general definition, an obstacle is defined as
cles and vehicles implemented on the University of Parma exper- an object that can obstruct the vehicle’s driving path or, in other
imental vehicle (ARGO). The ARGO project is briefly described s anything rising out significantly from the road surface. In

along with its main objectives; the prototype vehicle and its func- . Lo . .
tionalities are presented. The perception of the environment is per- this case the problem of Obstacle Detection is dealt with using

formed through the processing of images acquired from the vehicle. More complex techniques, such as the analysis obgteal
Details about the stereo vision-based detection of generic obsta-flow field [5], [6] or the processing oftereoimages [7]-[9].
cles are given, along with a measurement of the performance of the As an example, the ASSET-2 [10], [11] is based on optical flow
method; then a new approach for leading vehicles detection is de- )y |ts main feature is that no restrictive assumptions are made
scribed, relying on symmetry detection in monocular images. This . . .
paper is concluded with a description of the current implementa- about the world, the mo.tlon or the calibration of the camera,
tion of the control system, based on a gain scheduled controller, OF other parameters. A different approach has been used for the
which allows the vehicle to follow the road or other vehicles. UTA demonstrator car; in this case a feature-based stereo vision
Index Terms—Automatic steering, image processing, obstacle system has been developed and is able to run in real-time even
detection, platooning, vehicle detection, vision-based autonomous©n & 200 MHz powerPC [7].
vehicles, visual servoing. Besides their intrinsic higher computational complexity,
caused by a significant increment in the amount of data to
be processed, these techniques must also be robust enough
to tolerate the noise caused by vehicle movements and drifts
MONG the many functionalities an intelligent vehiclein the calibration of the multiple cameras’ setup. Optical
must perform,Obstacle and Vehicle Detectionplay a flow-based techniques permit the computation of ego-motion
basic role. In fact, an autonomous vehicle must be able dad obstacle’s relative speed, but, as the presence of obstacles
detect vehicles and potential obstacles on its path in orderigoindirectly derived from the analysis of the velocity field,
perform Road Following namely, the automatic movementhey fail when both the vehicle and obstacle have small or
along a predefined path, &atooning namely, the automatic null speed. Conversely, from the analysis of stereo images,
following of a preceding vehicle. obstacles can be directly detected and a three-dimensional
A number of different vision-based techniques have been pi@-D) reconstruction of the environment can be performed.
posed in the literature and tested on prototype vehicles. S@¥ereover, to decrease the complexity of stereo vision, some
eral approaches to obstacle detection rely on the localizationdefmain specific constraints can be adopted.
specific patterns (possibly supported by features such as shap@n the ARGO autonomous vehicle, obstacle Detection is re-
symmetry, or edges) and are therefore based on the analysid@fed to the identification of thizee-spacedthe area in which
monocular images [1], [2]. They generally offer simple algothe vehicle can safely move). A geometrical transform is per-
rithmic solutions, allow fast processing and do not suffer frofdormed to detect the free space, using a pair of stereo images
vehicle movements. For example, the research group of the Igfithe portion of the road in front of ARGO. This functionality
tuto Elettrotecnico Nazionale “G. Ferraris” limits the processingas been thoroughly tested on different obstacles—with varying
to the image portion that is assumed to represent the road; keitape and size—displaced in front of the vehicle in different po-
ders that could represent a potential vehicle are looked for agilons. Results have been collected and analyzed highlighting
examined [3]. People at the Universitat der Bundeswehr ethe characteristics and deficiencies of this approach.
force an edge detection process with obstacle modelization; thgvhile Obstacle Detection has been proven to be robust
system is able to detect and track up to twelve objects arousitbwing ARGO to reliably detect generic obstacles close to
the vehicle [4]. the vehicle, the tests demonstrated that its sensitivity is too low
Manuscript received March 7, 2000; revised August 14, 2000. This work wH% the region far ahead of the vehicle. Therefore, a different ap-
supported in part by the Italian National Research Council (CNR) in the framproach is needed for finding and following a preceding vehicle.
work of the MADESS2 Project. The Associate Editor for this paper was Doy this reason, a Vehicle Detection functionality has been
Charles E. Thorpe. o Sistemistica. Universita di paviadeveloped. This functionality is aimed at detecting vehicles
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27100 Pavia, Italy (e-mail: alberto.broggi@unipv.it). only, therefore it is based on a search for specific patterns using
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steering control for the Platooning functionality is based c
a gain scheduled proportional controller whose error input
evaluated using the estimated position of the preceding vehic

This paper is organized as follows: the next section prese
the ARGO project and the prototype vehicle developed with
this framework. Section lll presents the Obstacle Detectic
functionality used in the last few years on ARGO as well as
critical analysis of this algorithm. The Vehicle Detection func
tionality is addressed in Section IV; Section V presents timing
issues, while Section VI describes the control subsystem tl
drives ARGO. Section VIl ends the paper with some remarks

Il. THE ARGO RROJECT

The main target of the ARGO Project [12] is the developme
of an active safety system which can also act as an autom:

pilot for a standard road vehicle. Internal camera

The capability of perceiving the environment is essential f Seolovtpeskess B
an intelligent vehicle which is expected to use the existing roi Tverter
network with no need for specific infrastructures, Although ver Hall effect speedormeter e Personal computer

efficient in some fields of application, active sensors—besid

polluting the environment—feature some specific problen

in automotive applications due to inter-vehicle interferenc

amongst the same type of sensors, and due to the wide varia

in reflection ratios caused by many different reasons, such / Monitor

obstacles’ shape or material. Moreover, the maximum sigr Control panel o

level must comply with safety rules, i.e., it must be lower tha Energeneypedal_ Fleoe motr e

ply y , 1.e.,
a safety threshold. For this reason, in the implementation of the
ARGO vehicle, the use of sensors has been restricted to passiv: _
Fig. 1. ARGO prototype vehicle.
ones, such as cameras.
A second design choice was to keep the system costs low.

These costs include both production costs (which must be mini- « A stereoscopic vision system consisting of two low-cost

mized to allow a widespread use of these devices) and operating synchronized cameras able to acquire pairs of grey level

costs, which must not exceed a certain threshold in order not images simultaneously. The cameras lie inside the vehicle

to alter vehicle performance. Therefore, low-cost devices have at the top corners of the windshield, so that the longitu-

been preferred, both for image acquisition and processing: the dinal distance between the two cameras is maximum.

prototype is based on cheap cameras and a commercial PC. ¢ A speedometer which is used to detect the vehicle’s ve-
locity. A Hall effect device has been chosen for its sim-

A. The ARGO Vehicle Prototype plicity and reliability and has been interfaced to the com-
puting system via a digital 1/0 board.

ARGO, shown in Fig. 1, is an experimental autonomous ve-
hicle equipped with vision systems and automatic steering da-addition, a button-based control panel has been installed en-
pability. abling the driver to modify a few driving parameters, select
It is able to determine its position with respect to the lan¢he system functionality, issue commands, and interact with the
to compute road geometry, to detect generic obstacles on #ystem.
path, and to localize a leading vehicle. The images acquired?) The Processing SystenThe architectural solution
by a stereo rig placed behind the windshield are analyzeddarrently installed on the ARGO vehicle is based on a standard
real-time by the computing system located in the boot. The 50 MHz Pentium Il processor. Thanks to recent advances in
sults of the processing are used to drive an actuator mountesnputer technologies, commercial systems offer nowadays
onto the steering wheel and other driving assistance devicessufficient computational power for this application. All the
The system was initially conceived as a safety enhancemenbcessing needed for the driving task (image feature extraction
unit: in particular it is able to supervise the driver behavior arehd vehicle trajectory control) is performed in real-time: 50
issue both optic and acoustic warnings or even take controlpirs of single field images are processed every second.
the vehicle when dangerous situations are detected. Further de&3) The Output SystemSeveral output devices have been in-
velopments have extended the system functionalities to a castalled on ARGO: acoustical (stereo loudspeakers) and optical
plete automatic steering. (LED-based control panel) devices are used to issue warnings
1) The Sensing Systen®nly passive sensors are used oto the driver in case dangerous conditions are detected, while a
ARGO to sense the surrounding environment; color monitor is mainly used as a debugging tool.
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A mechanical device provides autonomous steering capab
ties. It is composed of an electric stepping motor coupled to t
steering column by means of a belt. The output fed by the visi
system is used to turn the steering wheel to maintain the vehi
inside the lane or follow the leading vehicle.

B. System Functionalities

Thanks to a control panel, the driver can select the level @ ®)

system intervention. The following three driving modes are ir
tegrated.

1) Manual Driving: The system simply monitors and logs
the driver’'s activity.

2) Supervised Driving:In case of danger, the system warn:
the driver with acoustic and optical signals. A LED row on th
control panel encodes the vehicle position within the lane, whi
the right or left speakers warn in case the vehicle is approachi
too much to the right or left lane marking, respectively.

3) Automatic Steering:The system maintains the full con-
trol of the vehicle’s trajectory, and the two following function-
alities can be selected:

Road Following: the automatic movement of the vehicle
inside the lane. It is based obhane De-
tection (which includes the localization
of the road, the determination of the rela:
tive position between the vehicle and the
road, and the analysis of the vehicle’s
heading direction) an@®bstacle Detec-
tion (which is mainly based on local-
izing possible generic obstacles on the
vehicle’s path).

Platooning: The automatic following of the preceding ) :

. . . . Scanning angle i i
vehicle, that requires the localization anc @ M
tracking of a target vehiclevghicle De-

tection and Trackinp Fig. 2. Obstacle Detection: (a) the left stereo images; (b) the right stereo
image; (c) and (d) the remapped images; (e) the difference image; (f) the angles
of view overlapped with the difference image; (g) the polar histogram; and (h)
I1l. OBSTACLE DETECTION the result of Obstacle Detection using a black marker superimposed on the
original left image; the light-gray area represents the road region visible from

The Obstacle Detection functionality is aimed at tbeal- both cameras.
ization of genericobjects that can obstruct the vehicle’s path,
without their completddentification or recognition qu this 5 opstacle Detection Processing Steps
purpose a complete 3-D reconstruction is not required and a o .
match with a given model suffices: the model represents the en h€ application of IPM to stereo images [12], [13] plays a

vironment without obstacles, and any deviation from the modgifategic role for Obstacle Detection. _
represents a potential obstacle. Assuming dlat road, the IPM is performed on both stereo im-

agest The flat road model is checked through a pixel-wise dif-
ference between the two remapped images: in correspondence
to ageneric obstaclén front of the vehicle, namely anything
The Obstacle Detection fUnCtionality is based on the remO\f%ing up from the road Surface, the difference image features
of the perspective effect through the Inverse Perspective Magfficiently large clusters of nonzero pixels that possess a partic-
ping (IPM) [13]. The IPM allows to remove the perspective efg|ar shape. Due to the stereo cameras’ different angles of view,
fect from incoming images remapping each pixel toward a difn ideal homogeneous square obstacle produces two clusters of
ferent position. It exploits the knowledge about the acquisitigilxels with a triangular shape in the difference image, in corre-
parameters (camera orientation, position, optics, etc) and the@sondence to its vertical edges [13].
sumption of a flat road in front of the vehicle. The resultis a new
two-dimensional (2-D) array of pixels (themapped image  Analternative solution is to warp the left or right image to the domain of the

that represents a bird’s eye view of the road region in front &ther one. Nevertheless, the Lane Detection functionality [12], not described in
this work, relies on the image generated by the IPM. Moreover, the mapping of

the Ve.hiCle [Fig. 2.(C) ShOW.S the result of the application of IP th images onto the ground eases the computation of object’s distance as well
technique on the image Fig. 2(a)]. as other features.
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Fig. 3. Obstacle Detection. Result is shown with a black marking superimposed onto a brighter version of the image captured by the left caméig;lmélack t
limits the portion of the road seen by both cameras.

Unfortunately due to texture, irregular shape, and nonhomo- m
geneous brightness of generic obstacles, in real cases the de- 27.15 + ® o o o o o
tection of the triangles becomes difficult. Nevertheless, in the
difference image some clusters of pixels with a quasitriangular
shape are anyway recognizable, even if they are not clearly dis-
jointed. Moreover, in case two or more obstacles are present in
the scene at the same time, more than two triangles appear in 20.55 + o o .
the difference image. A further problem is caused by partially
visible obstacles which produce a single triangle.

The low-level portion of the process (see Fig. 2) is conse- 16701+ % e @ .
quently reduced to the computation of the difference between N
the two remapped images, a threshold, and a morphological N
opening aimed at removing small-sized details in the thresh- 1270+ L\ e
olded image. N

The following process is based on the localization of pairs of
triangles in the difference image by means of a quantitative mea-
surement of their shape and position [14]. Itis divided into: com-
puting a polar histogram for the detection of triangles, finding
and joining the polar histogram’s peaks to determine the angle
of view under which obstacles are seen, and estimating the ob-
stacle distance.

1) Polar Histogram: A polar histogramis used for the de- 0 N
tection of triangles: itis computed scanning the difference image
with respect to a point calletbcusand counting the number U
of over-threshold pixels for every straight line originating from
the focus. It is important to note that the image area consid- R B
ered when building the polar histogram is not uniform along 4128 '0-9(‘)09 28 41 7
the scanning angle: under small angles, the considered sector is
short, while for angles close to 90it gets longer. Therefore, Fig.4. Test-bed (black circles indicate the positions where obstacles have been
the polar histogram’s values are normalized applying a noncdifce?d:
stant threshold computed using the polar histogram of an image
where all pixels are set. Finally, a low-pass filter is applied isponding to each triangle [13]. Since the presence of an obstacle
order to decrease the influence of noise. produces two disjointed triangles (corresponding to its edges) in

The polar histogram’s focus is placed in the middle point béhe difference image, Obstacle Detection is limited to the search
tween the projection of the two cameras onto the road planejfar pairs of adjacent peaks. The position of a peak in fact deter-
this case the polar histogram presents an appreciable peak caniges the angle of view under which the obstacle edge is seen.
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Fig. 5. Measured sensitivity in a 0—100 scale for three different kind of obstacles: (a) small and short obstacle; (b) large and tall obstaclenandst@pe.

Peaks may have different characteristics, such as amplituc
sharpness, or width. This depends on the obstacle distan
angle of view, and difference of brightness and texture betwee
the background and the obstacle itself.

2) Peaks Joining:Two or more peaks can be joined ac-
cording to different criteria. Starting from the analysis of a
large number of different situations a criterion has been fount
aimed to the grouping of peaks, that takes into account sevel
characteristics such as the peaks amplitude and width, tl
area they subtend, as well as their distance [15]. Obviously,
partially visible obstacle produces a single peak that cannot |
joined to any other.

The amplitude and width of peaks, as well as the interve
between joined peaks, are used to determine the angle of view
under which the whole obstacle is seen. Fig. 6. Average values of the sensitivity for Obstacle Detection.

3) Estimation of Obstacle Distancethe difference image
can also be used to estimate the obstacle distance. For each
of the polar histogram eadial histogramis computed scanning
a specific sector of the difference image. The width of this sectorpue to its fundamental importance, the Obstacle Detection
is determined from the width of the polar histogram peak [14fnodule must be extremely robust and must reliably detect
The number of over-threshold pixels in the sector is compute@jects in a given distance range (i.e., in 100% of all cases). In
as a function of the distance from the cameras and the ressfiiler to evaluate the performance of the algorithm implemented
is normalized. The radial histogram is analyzed to detect thf ARGO and determine possible enhancements, extensive
corners of triangles, which represent the contact points betweests have been carried out. Previous experiments [15] demon-
obstacles and road plane, therefore allowing the determinatigifated that Obstacle Detection is robust to errors in vision
of the obstacle distance through a simple threshold [13].  system calibration (i.e., vehicle movements or deviations from

the flat road hypothesis like the ones that should be expected
C. Results in a highway/freeway scenario).

Concerning qualitative outcomes, Fig. 3 shows the results ob-Neverthless, an extensive test has been carried out for deter-
tained in a number of different situations including multiple obmining the sensitivity of Obstacle Detection to dimensions and
stacles placed in different positions inside the stereo field pbsition of obstacles.
view. The resultis displayed with black markings superimposedl1) The Test-Bed:Obstacles with different size and shape
on a brighter version of the left image; markers encode both thave been positioned in front of the vehicle at given distances
obstacles’ distance and width. and the sensitivity of the algorithm has been measured. The

IEﬁa.aaserformance Analysis
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Obstacle
Image

Obstacle
Image

Obstacle Obstacle

1
mage Image

Fig. 7. Three-dimensional scene and projection of the obstacle on a linear profile of the image: (a) a small obstacle far from the camera; (bpelaifsgit obst
from the camera; (c) a small obstacle near the camera; and (d) a small obstacle near the camera but located on the right of the viewing region.

obstacle’s characteristics that have been varied during the tdstseach obstacle’s position on the grid shown in Fig. 4. In case
are the following: all the values were greater than the threshold their average was

« obstacle’s position: ahead distance and lateral offsé@mputed, otherwise a zero was taken.
ranging from 10 to 30 m for the distance perpendicular to Fig. 5 shows the results for three different obstacles: Fig. 5(a)
the camera’s stereo rig and fron# to 4 m for the lateral shows a small sized obstacle; Fig. 5(b) shows a large and talll
offset; obstacle; and Fig. 5(c)shows a human shape. For each single
« obstacle’s size: the tests included small obstacles (25 astacle, the values representing the sensitivity are scaled be-
wide x 60 cm high) and large ones (50 cm wigle90 cm tween 0 and 100, therefore they are not directly comparable.

high); However, in order to give an overview of the system’s be-
« obstacle’s height: the range varied from 60 to 180 cm imavior, Fig. 6 graphically summarizes all the measurements: it
height. has been computed as an average of all the tests performed on

Moreover, Sensitivity to human Shapes has been tested. the different obstacles. It is Clearly visible that the SenSitiVity

During the tests, the following set-up and assumptions welfethe presence of obstacles is high in the area right ahead of
used: the vehicle (the cameras’ angular aperture is nearhy,4nd

« The vehicle was standing still. Since noise is generaﬂpcreases—almost linearly—with the distance. The lateral re-

due to drifts in the cameras’ calibration (generated by v8ions have a lower sensitivity. _ _
hicle movements), this assumption permitted to remove3) Analysis of the ResultsThe results obtained during the
this kind of noise tests demonstrated that the sensitivity mainly depends on ob-

- The obstacle’s color has been selected to be homogenedi#<!e’s height and position. Conversely the obstacle’s width
and different from the background. barely impacts on the sensitivity, affecting only the distance be-

Although many experiments were performed, this section riveen the peaks of the polar histogram.

ports on the tests made with the following three obstacles: ~ First of all, itis important to note that tall obstacles lying far
- small obstacle: 25 cm wide 60 cm high; from the camera share the same characteristics of short ones:

« large obstacle: 50 cm wide 90 cm high: fchis is due to the redu_ced region analyzed by the system, as
« human shape: 40 cm wide 180 cm high. it can ’be seen comparing Fig. 7(a) and (b). Therefore, the op—
The obstacles have been positioned on a grid, shown in Figsaeicle s height only |mpact.s.on the result when the obstaclells
2) Obstacle Detection Sensitivitytn order to d,etermine the short enough to be fully visible by the cameras, as shown in
o ’ : Fig. 7(c). In this case, the sensitivity to obstacle’s height is linear
sensitivity (5) to obstacles, the height of the polar hISto“:’r"’“\vvith the distance. This is clearly shown in Fig. 5: the closer the

peak () is analyzed and compared to the threshdlyl ¢sed obstacle to the camera, the more reliable its detection.

for the decision whether the peak is due to an obstacle or n0|seD o th iable threshold al th lar hist ,
In addition, the sensitivity is normalized using the height value ué 1o the variable threshold along the polar histogram's

H....) of the highest peak, namel scanning angle, thel system is much more s'ens.itive to'small qb—
( ) g P y stacles when they lie on the sides of the viewing region. This

0 whereH < T behavior is explained by Fig. 7(d), which shows that in case of
g = lateral obstacles, the considered area (sector) of the image is
Ho whered > T shorter than for the in-front analysis. Therefore, since the image

profile is shorter, the projection of an obstacle covers a larger
When two or more peaks are localized in the polar histograpercentage of it, and thus the sensitivity to obstacles—and un-

the highest is considered. fortunately also to noise—is higher in the peripheral (lateral)
Since different illumination conditions can slightly affect theegion. Fig. 5(a) confirms this behavior: a small obstacle is de-

final result, several images have been acquired and proceswatied more reliably when it lies on the sides of the viewing area.
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@) (b) ©

Fig. 8. Typical road scenes: (a) a strong sun reflection reduces the vehicle gray level symmetry; (b) a uniform area can be regarded as a higbf symmetri
region; and (c) background symmetrical patterns.

(@ (b)

Fig. 9. Edges enforce the detection of real symmetries: (a) strong reflectic
have lower effects while (b) uniform areas are discarded since they do r
present edges.

Since this approach is characterized by a low sensitivity
obstacles (and therefore the presence of noise becomes sic |
icant) in some areas, such as the region far away ahead of |
vehicle, a new module is required to gain a better reliability ar
higher robustness in the detection in these areas. The next ¢
tion presents the solution currently implemented on ARGO:
different algorithm which is limited to Vehicle Detection. It can
be efficiently employed for Platooning due to its good sens
tivity in the area far in front of the vehicle.

IV. VEHICLE DETECTION Fig. 10. Grey level symmetries: the two rightmost images show the enlarged
' symmetry maps encoding high symmetries with bright points.
The platooning functionality depends on a robust detection of
the distance and speed of the preceding vehicle. Since Obstacle . . . -
. P prec g Ve . o?a rectangular bounding box. Finally, the top horizontal limit
Detection does not generate sufficiently reliable results—in par; SO . .
of the vehicle is searched for, and the preceding vehicle local-

ticular regarding obstacldistance—a new functionality (Ve- >

hicle Detection) has been considered; the vehicle is Iocalize&?ﬁe tracking phase is performed through the maximization

and tracked using a single monocular image sequence; the cqr: X . . .
rect distance is refined thanks to stereo vision. of the correlation between the portion of the image contained

The Vehicle Detection algorithm is based on the foIIowin'%n the bounding box Qf the previous frame_ (partla_llly_ stretched
) . . L . ._and reduced to take into account small size variations due to
considerations: a vehicle is generally symmetric, charactenz% . . . .
b . . - e t 2 increment or reduction of the relative distance) and the new
y a rectangular bounding box which satisfies specific asp?c
. . . . ; . rame.
ratio constraints, and placed in a specific region of the image:
First an area of interest is identified on the basis of road position . ) )
and perspective constraints. This area is searched for possfbie/ehicle Detection Processing Steps
vertical symmetries; not only gray level symmetries are con-1) Symmetry Detectionln order to search for symmetrical
sidered, but vertical and horizontal edges symmetries as wéatures, the analysis of gray level images is not sufficient. Fig.
in order to increase the detection robustness. Once the wiBtlshows that strong reflections cause irregularities in vehicle
and position of the symmetrical area have been detected, a rsggmmetry, while uniform areas and background patterns

search begins, aimed at the detection of the two bottom corneray present highly correlated symmetries. In order to cope
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Fig. 11. Edge symmetries: the symmetries are computed on the binary ima
obtained after thresholding the gradient image.

f

1
with these problems, also symmetries in other domains ¢ V
computed.

To get rid of reflections and uniform areas, vertical and hor
zontal edges are extracted and thresholded, and symmetries
computed in these domains as well. Fig. 9 shows that, althou
a strong reflection is present on the left side of the vehicle, edc §
are anyway visible and can be used to extract symmetries; mc |
over, in uniform areas no edges are extracted and therefore
symmetries are detected. Fig. 10 shows two examples in wh
gray level symmetries alone can be successful for vehicle det
tion, while Fig. 11 shows the result of edge symmetry.

For each mage, the search area s SO i1 dalk 0y B e gt v, o)
the resulting vertical axis is superimposed. For each imaget Isymryr'r‘1etry. For each rovg\]/, theyresultir% symmetry axisgis su);erimpc);éed onto
symmetry map is also depicted both in its original size and—ate leftmost original image.
the right—zoomed for better viewing. Bright points encode the
presence of high symmetries. The 2-D symmetry maps are com-
puted for different values of the axis’ horizontal position withir
the grey area in the original image (horizontal axis) and the hc
izontal width of the symmetry area (vertical axis). The lowe
triangular shape is due to the limitation in scanning large hoi
zontal windows for peripheral vertical axes.

Similarly, the analysis of symmetries of horizontal and vel
tical edges produces other symmetry maps, which, with speci
coefficients detected experimentally which depend on the visiui
system set-up, can be combined with the previous ones to fOIE@'. 13. Detection of the lower part of the bounding box. (a) Correct position
a single symmetry map. Fig. 12 shows all symmetry maps aadl size, taking into consideration perspective constraints and knowledge on
the final one, that allows to detect the vehicle. the acquisition system setup, as well as typical vehicles’ (b) Incorrect bounding

2) Bounding Box DetectionAfter the localization of the boxes.
symmetry, the symmetrical region in the edge image is checked
for the presence of two corners representing the bottom of floeation is again determined by perspective and size constraints.
bounding box around the vehicle. A traditional pattern matchirigg. 15 shows the search area.
technique is used. Moreover, perspective constraints as well a8) Backtracking: Sometimes it may happen that in corre-
size constraints are used to speed-up the search. Fig. 13 shgpendence to the symmetry maximum no correct bounding
possible and impossible bottom parts of the bounding box, whidexes exist. Therefore, a backtracking approach is used: the
Fig. 14 presents the results of the lower corners detection. symmetry map is again scanned for the next local maximum

This process is followed by the detection of the top part @nd a new search for a bounding box is performed. Fig. 16
the bounding box, which is looked for in a specific region whosghows a situation in which the first symmetry maximum,

(d)

(14 ] ihi
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@ ® ©

(@) (b) (©

Fig. 14. Detection of the lower part of the bounding box: (a) original image
with superimposed results; (b) edges; and (c) localization of the two lowe
corners.

First maximum

Second maxmum

Fig. 15. Search area for the upper part of the bounding box is shown in dark

gray. It takes into account knowledge about the typical vehicles’ aspect ratioFig. 16. Case in which the background symmetry is higher than the vehicle
symmetry: (a) original image; (b) first symmetry map; (c) second symmetry
map after the backtracking process has removed the peak near the maximum;

generated by a building, does not lead to a correct boundigit! (d) final bounding box detection.

box; on the other hand, the second maximum leads to the

correct detection of the vehicle. « errors are reduced to a minimum since the triangulation
4) Distance RefinementThe distance to the leading vehicle refers to a large and complex pattern whose identification

is computed with the knowledge of the camera calibration. Un- s fairly easy;

fortunately, it may assume wrong values since it may happen « since not only the search pattern is known, but an estimate

that the lower part of the vehicle is not correctly detected. Some-  of the vehicle distance as well, the search is performed

times, in fact, the luminance gradient of the region between the  only in a reduced region of the image and therefore this

rear bumper and the chassis is so high to be misinterpreted as step is not as computation intensive as traditional stereo

the lower part of the vehicle. In order to refine this measure-  techniques.

ment, which is ofimportance for the platooning functionality, an Fig. 17 shows the steps used for distance refinement:

adjustment step is mandatory: it is performed taking advantaggy. 17(b) shows the incorrect result of the detection step,

of stereo techniques. Starting from the distance value estimajgg. 17(c) shows that using a null offset the vehicle in the two

from the left image, a portion of the right image is searched fgfages does not overlap, while figure Fig. 17(d) shows that a

a pattern similar to the one enclosed into the bounding box. specific offset brings the two rears to a perfect correspondence.
This step relies on the following assumptions:

« the rear side of the vehicle is approximated as a vertidal Results
plane; Fig. 18 shows some qualitative results of Vehicle Detection in
+ luminance differences in the vehicle pattern, caused hbijfferent situations: the preceding vehicle is correctly detected
light reflections, are negligible in the two stereo views. at different distances, even on complex scenes.
Since the stereo set-up is known, once the same pattern en-
closed into the bounding box is detected on the right image, a V. COMPUTATIONAL PERFORMANCE
simple triangulation allows to measure the vehicle distance: theT

offset of the bounding boxes containing the vehicle, measur, able | shows the timing performance; since Obstacle and
. . . 9 g the o Egne Detection (the latter is not described in this work) share
in both images, is used to compute the vehicle distance.

) i ) . the removal of the perspective effect, the timings for IPM are
_Be5|des_ being simpler than trad_monal stereo-based te%lé'parated from the others. In addition, due to the different com-
niques, this approach has the following advantages: putational burden of Vehicle Detection when looking for a ve-
« it only requires one triangulation since the computation diicle or tracking an already found one, two distinct timings for
the vehicle distance is the only final goal; Vehicle Detection and Tracking are shown.
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sensing is performed with nonvisual devices (e.g., guiding wire,
microwave radars, etc.).

On the other hand, a visual servoing paradigm was proposed
by Epiauet al. [22] by considering a simple omnidirectional

{a} mobile robot. Neural networks were adopted and subsequently
developed at CMU [23], [24]. A comparative survey on various
vision-based control strategies for autonomous vehicles can be
found in the paper by Taylaet al.[19].

The following paragraph presents a gain scheduled propor-
tional controller currently implemented on the ARGO vehicle.
By using a feedback supervisor this control law can be adopted
to perform both Path Following and Platooning. A simple pro-
portional control law was previously examined by Ozgiieer
al. [25] for the Road Following functionality solely.

(b}
A. Gain Scheduled Proportional Controller

The controller currently adopted for the ARGO vehicle was
initially designed and optimized for the Road Following task
[12]. Minor changes have been introduced to implement also
the Platooning functionality.

The basic control scheme is visible in Fig. 20. The command
steering angle is obtained with a variable gain proportional
controller. The vision based system reconstructs the road envi-
ronment and the supervisor uses the results to select the most
appropriate gain for the proportional controller and estimate the
error signal. Initially, the offset existing between the vehicle
heading and the desired path is computed at the look-ahead dis-
tanceL (see Fig. 21). The estimated sigaas inherently noisy
so that it cannot be directly supplied to the proportional con-
troller. To reduce the disturbancess preliminary filtered with
a moving average filter. The look-ahead distance is variable and
depends on the vehicle speed; more precidelg,obtained ac-
cording to the following expression:

L(U) = Utl if VUmin S v S VUmax (1)

{ Lmin if v < Umin
LHIH.X If U > UII]H.X

Fig. 17. Distance refinement: (a) left and right stereo images; (b) incorrect
result of the detection step (the lower part of the bounding box indicatespthere L, ;, = Uminti 8Nd Lipax = vmaxt: indicate the min-

wrong distance); (c) superimposition of stereo images with a null offset; a . . .

(d) superimposition of correctly shifted stereo images. ﬂ%um and m?‘XImum IO_Ok'ahead_dIStance' respgcnvaly,the
look-ahead time, and is the vehicle speed.(v) is a contin-
uous function becauseg,;, andv,,,, are chosen according to

The acquisition adapter installed on the ARGO system is alige relationSLuin /tmin = Lmax/Vmax = ti. Basically, L is

to continuously capture images into a circular buffer in maigroportional to the vehicle speed but it is saturated not to ex-

memory, therefore, notrequiring a synchronization with the pregeed the bounds imposed by the vision system, Lév) €

cessing (see Fig. 19). o [Linin, Lmax]- The choice ofL influences the behavior of the
When all the three functionalities are turned on, the systegBntroller. It has been demonstrated [19] thatydacreases,
can work up to a 45 Hz rate. the damping factor of the closed loop system gets worse and can

be improved, under certain limits, by increasing the look-ahead
distance. For the ARGO vehicle, the supervisor uses the param-
eters reported in Table II.

This section addresses the problem of automatic steeringlo further improve the performances of the closed loop
which has recently gained considerable attention from both tegstem a gain scheduling technique has been adopted for
theoretical [16], [17] and experimental side [18], [19]. the proportional controller. Specifically, controller ga#d

Roughly speaking this problem is centered on finding a satwersely depends on the velocityaccording to
isfactory law for the command of the steering wheel. Many
works have been reported in the literature [20], [21], and various K(v) — Kipax fo <o’
steering control designs were proposed for systems in which the (v) = { Ky/v ifv* <w.

VI. VEHICLE CONTROL

)
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Fig. 18. \ehicle Detection: the images show the search area and the detected vehicle with black markings superimposed onto a brighter vergjorabf the or
image.

)
Aepaion e s K(v ARGO
@] & | = ] | [ 0
(b) %HM e IH b %fg&r‘" ey B | S Lf o vision
data
flow
e vision
ﬂ supervisor K(———  data
processing
Image _ ) ) )
Acquisition Fig. 20. Control scheme with the gain scheduled proportional controller.
20 ms
h
desired
IPM Lane Obstacle Vehicle path
Detect,  Detection Detection €
34ms| 3.5ms 6.3 ms 8.8 ms — —@/
S [ N Y._.__
Fig. 19. Image acquisition (a) and processing (b) performance. L
TABLE |

TIMINGS OF PROCESSINGSTEPS

Fig. 21. Offset from the desired path, estimated by the vision system.
Pentium | Pentium I
200MMX | 450MMX | Speedup TABLE I
IPM 9.9 ms 3.4 ms 2.9 LOOK-AHEAD DISTANCE PARAMETERS
Lane Detection 14.4 ms 3.5 ms 4.1 - — 833 ma—T
Obstacle Detection | 17.5 ms 6.3 ms 2.7 Ymin - .
- - (30 km/h)
Vehicle Tracking 24.8 ms 8.8 ms 2.8 |
Vehicle Detection | 47.6 19.9 24 Umaz = 2222 s
ehnicle etection . ms . ms . (80 km/h)
t = 15s
If the velocity becomes smaller theri, the proportional gain Linin = 125m
is upper bounded bi ... (for ARGOv* =2.777 ms! = 10 Lingz = 3333m

km/h). K (v) is continuous becaud€ 4 must satisfy the equa-

tion Kuax = K.a/v*. The parametef(, (and consequently The control strategy adopted for Platooning takes advantage

Kax) has been set by means of a series of experiments afithe previously defined control scheme (see Fig. 20). The main

ARGO. and crucial difference with respect to the path-following func-
The controller sampling time is imposed by the vision systetionality is on the supervisor estimation of the offset ergor

(it is given by the refresh rate of the cameras) and is equal\¢hen the Platooning functionality is activated, the target point

0.02 s (50 Hz). is centered on the preceding vehicle so that the target look-ahead
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Fig. 22. Evaluation of the proper error signal for a Platooning application.

Fig. 23. Knowledge of the offset is not enough: the offset measurement
distancel. is neither constant nor the most appropriate for tH&@own in (&) may correspond to the two following situations: (b) overtaking on
loci . bvi Iv. th f this | a straight road and and (c) driving on a curved road, requiring the generation
current velocity (see Fig. 22). Obviously, the use of this 100Ky, different trajectories.
ahead distancé’ and the corresponding target offset erebr
could degrade the performance of the Platooning functionali etween the two vehicles must be reduced to zero according to
The efficiency of the Platooning control algorithm is recovere 9

by scaling the tracking errad’ measured al’ to an estimated ifferent rules depend_lng on the _S|tuat|or_1.
. . . New control strategies and the integration of the results of the
offset errore(v) given through avirtual target point placed at

: ) . Lane Detection module are now under study and will be dis-
the appropriate look-ahead distance) [cf. (1)] cussed in a future paper. Their integration on the ARGO vehicle
I will lead to:
e(v) := I(j’}) .

1) superior road following with smooth cruising and
Indeed, (3) provides the suitabiév) regardless of the actual

(3
2) highly-flexible functionality.
distance of the target vehicle, i.&/, can be greater or less than'n particular, flexibility can be simply obtained by modifying

L(v) indifferently. the supervisor strategy in order to perform, e.g., lane changing,

lane inserting, Platooning, and even car parking maneuvers.

VII. CONCLUSIONS ANDFUTURE WORK

In this paper, the Obstacle Detection module of the ARGO

prototype was discussed. Since the robust localization of ob-[l]
stacles and other vehicles is a basic prerequisite for Rotd
Following andPlatooningfunctionalities, also an experimental (2]

performance evaluation test was performed with the aim of de-
termining the main bottlenecks and devising possible enhance-
ments. (3]

The test results indicate that the Obstacle Detection function-
ality is weak in some areas, such as the lateral or far ones. Thig]
result suggested the development of the Vehicle Detection func-
tionality, that relies on shape information and is now integrated[S]
on ARGO.

Preliminary experimental results demonstrated that pre—[G]
ceding vehicles are correctly detected at different distances,
even on complex scenes. Therefore, the simple control al-
gorithm described in Section VI, which had proved to be [7]
sufficiently robust for Lane Detection [26], has been applied
to Platooning. However, the higher complexity of this task [g]
requires a more sophisticated approach. In fact, the leading
vehicle position is used by the Platooning functionality to [9]
automaticallyfollow the vehicle ahead, but it is not enough to
thoroughlyreproduce its trajectoryAs Fig. 23 shows, not only
the current position of the leading vehicle is required, but itélo]
trajectory must be reconstructed as well, since the lateral offset
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