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This paper presents the current status of the AR GO Pro ject, whose main target is the de-
velopment of an activ e safety system and an automatic pilot for a standard road vehicle.
First the AR GO pro ject is brie°y described along with its main objectiv es, then the pro-
tot ype vehicle and its functionalities are presented. The perception of the environmen t is
performed through the processingof images acquired from the vehicle; details about the
detection of lane markings, generic obstacles and leading vehicles are given. The paper
describes the current implementation of the control system, based on a gain scheduled
controller, which allows the vehicle to follow the road and/or other vehicles, while future
control strategies (°atness approach) are presented with simulations results. The paper
ends with a description of the Mil leMiglia in Automatic o tour, a journey through Italy
performed in automatic driving, together with some concluding remarks.

Keywor ds: Vision-based autonomous vehicle, Image processing,Obstacle detection, Lane
detection, Vehicle detection, Visual servoing, Automatic steering, Flatness approach,
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1. In tro duction

Automatic Vehicle Driving is a generic term used to addressa technique aimed at
automating {entirely or in part{ one or more driving tasks. The automation of
thesetasks carries a large number of bene¯ts, such as: a higher exploitation of the
road network, lower fuel and energyconsumption, and {of course{ improved safety
conditions comparedto the current scenario.

The tasks that automatically driven vehicles are able to perform include the
possibility to follow the road and keep within the right lane, maintaining a safe
¤This research has been partially supported by the Italian MURST and CNR under the frame of
Progetto Madess 2 and under the contract n. 99.00619.CT12.

409



410 A. Br oggi et al.

distance betweenvehicles,regulating the vehicle's speedaccording to tra±c condi-
tions and road characteristics, moving acrosslanesin order to overtake vehiclesand
avoid obstacles,helping to ¯nd the correct and shortest route to a destination, and
the movement and parking within urban environments.

Two main cooperative solutions are possibleto achieve automatic driving func-
tionalities: they require to act on infrastructures or vehicles. Both scenarioshave
their own pros and cons, depending on the speci¯c application1; the research doc-
umented in this paper is focusedexclusively on vehicles.

The following section presents the ARGO project and the protot ype vehicle
developed within this framework. The vehicle has visual and control capabilities:
section 3 describeshow the ARGO protot ype vehicle can perceive the surrounding
environment and the basicsof lane and vehicle detection functionalities, while sec-
tion 4 describesthe current control subsystemand a new method basedon a °atness
approach. Section 5 gives an overview of the extensive test, called Mil leMiglia in
Automatico, that took place in 1998 when the vehicle drove itself for more than
2000km in automatic mode on Italian highways, and section 6 presents somecon-
cluding remarks and possiblefuture research directions.

2. The AR GO Pro ject

The main target of the ARGO Project1 is the development of an activesafety system
which can also act as an automatic pilot for a standard road vehicle.

In order to achieve an autonomous driving system which ¯ts into the existing
road network with no needfor speci¯c infrastructures, the capability of perceiving
the environment is essential for the intelligent vehicle. Although very e±cient in
some¯elds of application, activesensors{b esidespolluting the environment{ feature
somespeci¯c problems in automotive applications due to inter-vehicle interference
amongst the sametype of sensors,and due to the wide variation in re°ection ratios
causedby many di®erent reasons,such as obstacles'shape or material. Moreover,
the maximum signal level must comply with safety rules and must be lower than a
safety threshold. For this reasonin the implementation of the ARGO vehicle only
the useof passive sensors,such as cameras,has beenconsidered.

A seconddesign choice was to keep the system costs low. These costs include
both production costs(which must be minimized to allow a widespreaduseof these
devices) and operative costs, which must not exceeda certain threshold in order
not to interfere with the vehicleperformance. Therefore low cost deviceshave been
preferred,both for the imageacquisition and the processing:the protot ype installed
on ARGO is basedon cheap camerasand a commercial PC.

2.1. The AR GO Vehicle Pr ototyp e

ARGO, shown in ¯gure 1, is an experimental autonomous vehicle equipped with
vision systemsand an automatic steering capability.

It is able to determine its position with respect to the lane, to compute the road
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Fig. 1. The AR GO protot ype vehicle.

geometry, to detect genericobstacleson the path, and to localize a leading vehicle.
The imagesacquired by a stereo rig placed inside the windscreenare analyzed in
real-time by a computing systemlocated into the boot. The results of the processing
are used to drive an actuator mounted onto the steering wheel and other driving
assistancedevices.

The systemwasinitially conceived asa safety enhancement unit: in particular it
is able to supervise the driver behavior and issueboth optic and acoustic warnings
or even take control of the vehiclewhen dangeroussituations are detected. Further
developments have extended the system functionalities to automatic driving.

2.1.1. The Data Acquisition System

Only passive sensors(two camerasand a speedometer)are usedon ARGO to sense
the surrounding environment. In addition, a button-based control panel has been
installed enabling the driver to modify a few driving parameters,select the system
functionalit y, issuecommands,and interact with the system.

The stereoscopicvision systeminstalled on ARGO consistsof two low cost syn-
chronized camerasable to acquire pairs of grey level imagessimultaneously. The
cameras lie inside the vehicle at the top corners of the windscreen, so that the
longitudinal distance betweenthe two camerasis maximum.

The vehicle is also equipped with a speedometerto detect its velocity. A Hall
e®ect-baseddevicehas beenchosendue to its simplicit y and its reliabilit y and has
beeninterfacedto the computing systemvia a digital I/O board with event counting
capabilities. The resolution of the measuringsystem is about 9 cm/s.
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2.1.2. The ProcessingSystem

The architectural solution currently installed on the ARGO vehicle is basedon a
standard 450 MHz Pentium I I processor. Thanks to recent advancesin computer
technologies,commercialsystemso®ernowadays su±cient computational power for
this application. All the processingneeded for the driving task (image feature
extraction and vehicle tra jectory control) is performed in real-time: 50 single ¯eld
imagesare processedevery second.

2.1.3. The Output System

Several output deviceshave beeninstalled on ARGO (see¯gure 2).
Acoustical (stereo loudspeakers) and optical (led-based control panel) devices

are usedto issuewarnings to the driver in casedangerousconditions are detected,
while a color monitor is mainly usedas a debuggingtool.

A singlemechanical devicehasbeenintegrated on ARGO to provide autonomous
steering capabilities. It is composedof an electric stepping motor coupled to the
steering column by meansof a belt. During automatic driving the output provided
by the vision system is used to turn the steering wheel so to maintain the vehicle
inside the lane or to follow the leading vehicle.

2.2. A utomatic Driving Functionalities

Thanks to the control panel the driver can select the level of system intervention.
The following three driving modesare integrated.
Man ual Driving: the system simply monitors and logs the driver's activit y.
Sup ervised Driving: in caseof dangeroussituations the systemwarns the driver
with acoustic and optical signals.
Automatic Driving: the system fully controls of the vehicle's tra jectory.

In the automatic driving operative mode two di®erent functionalities can be
selected:Road Following or Platooning.

The Road Following task, namely the automatic movement of the vehicle along
the lane, is basedon Lane Detection which includesthe localization of the road, the
determination of the relative position betweenvehicleand road, and the analysisof
the vehicle's heading direction.

Conversely, the Platooning functionalit y, namely the automatic following of the
precedingvehiclerequiresthe localization and tracking of the target vehicle(Vehicle
Detection) , which relies on the recognition of speci¯c vehicle's characteristics.

3. Visual Perception of the Environmen t

In this section the vision algorithms implemented on the ARGO vehicle are de-
scribed. Initially the extraction of the road geometry from monocular images is
presented. Then, the algorithm for the recognition and localization of the preced-
ing vehicle is discussed.
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3.1. Lane Dete ction

The Lane Detection functionalit y is basedon the removal of the perspective e®ect

Electric engine

TV monitor

Right cameraLeft camera

Control panel

Emergency buttons

Emergency pedal

Fig. 2. In ternal view of the AR GO vehicle.
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(a) (b)

(c) (d) (e) (f )

Fig. 3. The sequence of images produced by the low-level Lane Detection phase: (a) original;
(b) remapped; (c) ¯ltered; (d) binarized; (e) chains; (f ) polylines.

obtained through the Inverse Perspective Mapping (IPM). 1 The IPM allows to
remove the perspective e®ectfrom incoming imagesremapping each pixel toward a
di®erent position. It exploits a knowledgeabout the acquisition parameters(camera
orientation, position, optics,. . . ) and the assumption of a °at road in front of the
vehicle. The result is a new 2-dimensionalarray of pixels (the remapped image) that
represents a bird's eye view of the road region in front of the vehicle. Figures 3.a
and 3.b show an imageacquired by the ARGO vision systemand the corresponding
remapped image respectively.

The following stepsare divided in low level and high level processing.

3.1.1. Low Level Processingfor Lane Detection

In the remapped image a road marking resembles a semi-vertical line of constant
width brighter than the dark road background. Therefore, road marking's pixels
feature a higher brightness value than their horizontal left and right neighbors at
a given distance. Consequently , the ¯rst phaseof road markings detection is based
on the determination of horizontal black-white-black transitions, while the following
processis aimed at extracting information and reconstructing road geometry.

Feature Extraction
The brightnessvalueof a genericpixel belongingto the remapped imageis compared
to the two horizontal left and right neighbors at a given distance. A new image,
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whosevaluesencode the presenceof a road marking, is computed assigning:

1. zero to the pixels whose one or both of the two neighbors have a higher
brightnessvalue, or

2. the absolutedi®erencebetweenthe pixel's brightnessand their neighbors' ones
to the pixels whosebrightness is higher than the onesof the two neighbors.

The resulting ¯ltered image is shown in ¯gure 3.c.
Due to di®erent light conditions (e.g. in presenceof shadows), pixels represent-

ing road markings may have di®erent brightness,yet maintaining their superiorit y
relationship with their horizontal neighbors. Therefore, sincea simple threshold sel-
dom givesa satisfactory binarization, the image is enhancedexploiting its vertical
correlation. The result is presented in ¯gure 3.d.

Road Geometry Reconstruction
The binary image is scannedrow by row in order to build chains of 8-connected
non-zeropixels (see¯gure 3.e).

Subsequently , each chain is approximated with a polyline composedby oneor few
segments, by meansof an iterativ e process.Initially , a singlesegment that joins the
two extrema of the chain is considered.The horizontal distance betweensegment's
mid point and the chain is usedto determine the quality of the approximation. In
caseit is larger than a threshold, two segments sharing an extremum are considered
for the approximation of the chain. Their common extremum is the intersection
between the chain and the horizontal line that passesthrough the segment's mid
point. The processis iterated until a satisfactory approximation has beenreached.
At the endof the processingall chainsareapproximated by polylines (see¯gure 3.f).

3.1.2. High Level Processingfor Lane Detection

After the ¯rst low level stage, in which the main features are localized, and after
the secondstage, in which the main featuresare extracted, the new data structure
(a list of polylines) is now processedin order to semantically group homologous
features and to produce a high level description of the scene.

This processin divided into: ¯ltering of noisy features and selection of the
feature that most likely belong to the line marking; joining of di®erent segments in
order to ¯ll gapscausedby occlusions,dashedlines, or even worn lines; selectionof
the best representativ e and reconstruction of the information that may have been
lost, on the basis of continuit y constraints; then the result is kept for referencein
the next frames and displayed onto the original image.

Feature ¯ltering and selection
Each polyline is comparedagainst the result of the previous frame, sincecontinuit y
constraints provide a strong and robust selectionprocedure. The distance between
the previous result and each extremum of the consideredpolyline is computed: if all
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Fig. 4. High level processing for Lane Detection, ¯rst steps: (a) selection of polylines almost
matching the previous left result, (b) joining of similar polylines, (c) contin uation of short polylines.

the polyline extrema lay within a strip e centered onto the previous result then the
polyline is marked as useful for the following process.This strip e is shaped so that
it is small at the bottom of the image (namely closeto the vehicle, therefore short
movements are allowed) and larger at the top of the image (far from the vehicle,
where also curves that appear quickly must be tracked). This processis repeated
for both left and right lane markings.

Figure 4.a shows the previous result with a heavy solid line and the search space
with a gridded pattern; it refers to the left lane marking.

Polylines joining
Once the polylines have been selected, all the possibilities are checked for their
joining. In order to be joined, two polylines must have similar direction; must be
not too far away; their projection on the vertical axis must not overlap; the higher
polyline in the image must have its starting point within an elliptical portion of
the image; in casethe gap is large also the direction of the connecting segment is
checked for uniform behavior. Figure 4.b shows that polyline A cannot beconnected
to: B due to high di®erenceof orientation; C due to high distance (does not lay
within the ellipse); D due to the overlapping of their vertical projections; E since
their connecting segment would have a strongly mismatching orientation. It can
only be connectedto F.

Selection of the best represen tativ e
All the new polylines, formed by concatenationsof the original ones,are then evalu-
ated. Starting from a maximum score,each of the following rules providesa penalty.
First each polyline is segmented; in casethe polyline doesnot cover the whole im-
age, a penalty is given. Then, the polyline length is computed and a proportional
penalty is given to short ones,as well as to polylines with extremely varying angu-
lar coe±cients. Finally, the polyline with the highest scoreis selectedas the best
representativ e of the line marking.
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Reconstruction of lost information
The polyline that hasbeenselectedat the previous step may not be long enoughto
cover the whole image; therefore a further step is necessaryto extend the polyline.
In order to take into account road curves, a parabolic model has been selectedto
be used in the prolongation of the polyline in the area far from the vehicle. In the
nearby area, a linear approximation su±ces. Figure 4.c shows the parabolic and
linear prolongation.

Mo del ¯tting
The two reconstructed polylines (one representing the left and one the right lane
markings) are now matched against a model that encodes some more knowledge
about the absoluteand relative positions of both lane markings on a standard road.
A model of a pair of parallel lines at a given distance (the lane width) and in a
speci¯c position is initialized at the beginning of the process;a speci¯c learning
phase allows to adapt the model to errors in camera calibration (lines may be
non perfectly parallel). Furthermore, this model can be slowly changedduring the
processingto adapt to new road conditions (lane width and lane position), thanks
to a learning processrunning in the background.

The model is kept for reference: the two resulting polylines are ¯tted to this
model and the ¯nal result is obtained asfollows. First the two polylines are checked
for non-parallel behavior; a small deviation is allowed since it may derive from
vehicle movements or deviations from the °at road assumption, that cause the
calibration to be temporarily incorrect (diverging of converging lane markings).

(high quality)
Left polyline

(low quality)
Right Polyline

Models

0.5

1

0

Weigth

Measured distance

Model distance

Final position

A B

Wr  (weight right polyline)

Wl (weigth left polyline)

Quality = (Qright-Qleft)

A = (Model distance - Measured distance - K) * Wr
B = (Model distance - Measured distance - K) * Wl

H

h

Bd

Td

K = (Td - Bd) * h / H

Fig. 5. Generation of the ¯nal result.
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Fig. 6. Filtered polylines, joined polylines, and model ¯tting for the left (upp er row) and righ t
(b ottom row) lane markings.

Then the quality of the two polylines, ascomputed in the previoussteps,is matched:
the ¯nal result will be attracted toward the polyline with the highest quality with
a higher strength. In this way, polylines with equal or similar quality will equally
contribute to the ¯nal result; on the other hand, in caseone polyline has been
heavily reconstructed, or is far from the original model, or is even missing, the
other polyline will be usedto generatethe ¯nal result. The weights for the left and
right polylines are computed asshown in ¯gure 5. Then, each horizontal line of the
two polylines is usedto compute the ¯nal results, as shown in ¯gure 5.

Finally ¯gure 6 presents the resulting imagesreferring to the examplepresented
in ¯gure 3. It shows the results of the selection,the joining, and the matching phase
phasesfor the left (upper row) and for the right (bottom row) lane markings.

Figure 7 presents the ¯nal result of the process.
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(a) (b)
Fig. 7. The result of lane detection: (a) the acquired image, (b) the result of lane detection shown
onto a saturated copy of the original image; black markers represent e®ective lane markings, while
white markings represent interp olations between them.
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Fig. 8. Lane Detection: the result is shown with black markings superimp osed onto a brigh ter
version of the original image.

3.1.3. Results of Lane Detection

Figure 8 presents a few results of lane detection in di®erent conditions ranging from
ideal situations to road works, patches of non-painted roads, the entry and exit
from a tunnel. Both highway and extraurban scenesare provided for comparison;
the systemsproves to be robust with respect to di®erent illumination situations,
missing road signs, and overtaking vehicleswhich occlude the visibilit y of the left
lane marking. In casetwo lines are present, the system selectsthe continuous one.

Concerning the quantitativ e performance,the algorithm requires an overall av-
eragetime of 4 ms for the processingof a frame.

3.2. Vehicle Dete ction

The platooning functionalit y is basedon the detection of the distance, speed, and
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headingof the precedingvehicle,which is localizedand trackedusinga singlemonoc-
ular image sequence.

The vehicle detection algorithm is basedon the following considerations: a ve-
hicle is generally symmetric, characterized by a rectangular bounding box which
satis¯es speci¯c aspect ratio constraints, and placed in a particular region of the
image. These features are used to identify vehicles in the image in the following
way: ¯rst an area of interest is identi¯ed on the basisof road position and perspec-
tiv e constraints. This area is searched for possible vertical symmetries; not only
gray level symmetriesare considered,but vertical and horizontal edgessymmetries
as well, in order to increasethe detection robustness.Once the symmetry position
and width has beendetected, a new search begins,which is aimed at the detection
of the two bottom cornersof a rectangular bounding box. Finally, the top horizontal
limit of the vehicle is searched for, and the precedingvehicle localized.

The tracking phase is performed through the maximization of the correlation
betweenthe portion of the image contained into the bounding box of the previous
frame (partially stretched and reduced to take into account small size variations
due to the increment or reduction of the relative distance) and the new frame.

Symmetry detection
In order to search for symmetrical features, the analysis of gray level images is
not su±cient. Figure 9 shows that strong re°ections causeirregularities in vehicle
symmetry, while uniform areasand background patterns present highly correlated
symmetries. In order to copewith theseproblems,alsosymmetriesin other domains
are computed.

Fig. 9. Typical road scenes: in the leftmost image a strong sun re°ection reduces the vehicle
gray level symmetry; in the center image a uniform area can be regarded as a highly symmetrical
region; the righ tmost image shows background symmetrical patterns.

To get rid of re°ections and uniform areas, vertical and horizontal edgesare
extracted and thresholded, and symmetries are computed into these domains as
well. Figure 10 shows that although a strong re°ection is present on the left side
of the vehicle, edgesare anyway visible and can be used to extract symmetries;
moreover, in uniform areasno edgesare extracted and therefore no symmetriesare
detected. Figure 11shows two examplesin which gray level symmetriesalonecanbe
successfulfor vehicle detection, while ¯gure 12 shows the result of edgesymmetry.
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Fig. 10. Edges enforce the detection of real symmetries: strong re°ections have lower e®ectswhile
uniform areas are discarded since they do not present edges.

Fig. 11. Grey level symmetries: the righ tmost image for each caseshows a symmetry map encoding
high symmetries with brigh t points.

Fig. 12. Edge symmetries: the symmetries are computed on the binary images obtained after
thresholding the gradient image.

For each image, the search area is shown in dark gray and the resulting vertical
axis is superimposed. For each image its symmetry map is alsodepicted both in its
original size and {on the right{ zoomed for better viewing. Bright points encode
the presenceof high symmetries. The 2D symmetry mapsare computed by varying
the axis' horizontal position within the grey area (shown in the original image) and
the symmetry horizontal size. The lower triangular shape is due to the limitation
in scanninglarge horizontal windows for peripheral vertical axes.
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Fig. 13. Computing the resulting symmetry: (a) grey-level symmetry; (b) edgesymmetry; (c) hor-
izontal edges symmetry; (d) vertical edges symmetry; (e) total symmetry . For each row the
resulting symmetry axis is superimp osed onto the leftmost original image.

Similarly, the analysis of symmetries of horizontal and vertical edgesproduces
other symmetry maps, which {with speci¯c coe±cients detected experimentally{
can be combined with the previous onesto form a single symmetry map. Figure 13
shows all symmetry maps and the ¯nal one, that allows to detect the vehicle.

Bounding box detection
After the localization of the symmetry, the symmetrical region is checked for the
presenceof two corners representing the bottom of the bounding box around the
vehicle. Perspectiveconstraints aswell assizeconstraints areusedassearch criteria.
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Figure 14 presents the results of the lower cornersdetection.

Fig. 14. Detection of the lower part of the bounding box: (a) original image with symmetry axis;
(b) edges; (c) localization of the two lower corners.

This processis followed by the detection of the top part of the bounding box,
which is looked for in a speci¯c region whoselocation is again determined by per-
spective and sizeconstraints.

Backtrac king
Sometimesit may happen that in correspondenceto the symmetry maximum no
correct bounding boxes exist. Therefore, a backtracking approach is used: the
symmetry map is again scannedfor the next local maximum and a new search for a
bounding box is performed. Figure 15 shows a situation in which the ¯rst symmetry
maximum, generatedby a building, does not lead to a correct bounding box; on
the other hand, the secondmaximum leadsto the correct detection of the vehicle.

Fig. 15. A case in which the total background symmetry is higher than the vehicle symmetry .
Original image; ¯rst symmetry map; second symmetry map after the backtrac king process has
removed the peak near the maxim um; ¯nal bounding box detection.
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3.2.1. Results of Vehicle Detection

Figure 16 shows somequalitativ e results of vehicle detection in di®erent situations:
the precedingvehicle is correctly detected at di®erent distances,even when several
other vehiclesare present on the road.

The quantitativ e performance has also been assessed:the algorithm runs in
23 ms when no vehiclehasbeendetected in the previous frame and therefore a new
search is started. However, the time required for the processingdecreasesto 9 ms
when the target vehicle is being tracked.

Fig. 16. Vehicle Detection: the images show the search area and the detected vehicle with black
markings superimp osed onto a brigh ter version of the original image.

4. Vehicle Con trol

In recent years, the problem of automatic steering of an autonomous vehicle has
gainedconsiderableattention from both the theoretical2;3 and experimental side.4;5

Roughly speaking this problem is centered on ¯nding a satisfactory law for
the command of the steering wheel. Many works have beenreported in the litera-
ture6;7;8;9;10;11;12;13;14 and varioussteeringcontrol designswereproposedfor systems
in which the sensingis performedwith nonvisual devices(for example,guiding wire,
microwave radars, etc.).

On the other hand, a visual servoing paradigm wasproposedby Epiau et al.15 by
consideringa simple omnidirectional mobile robot. Neural networks were adopted
and subsequently developed in the RALPH project.16;17 A comparative survey on
various vision-basedcontrol strategiesfor autonomousvehiclescan be found in the
paper of Taylor et al.5

Subsection4.1 presents the gain scheduledproportional controller currently im-
plemented on the ARGO vehicle. By using a feedback supervisor this control law
can be adopted to perform both path following and platooning. A simple propor-
tional control law waspreviously examinedby ÄOzgÄuner et al.18 for the path following
functionalit y solely. Subsection4.2 exposesa di®erential °atness approach that will
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supervisor
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e vision
data
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vision
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±

Fig. 17. Control scheme with the gain scheduled prop ortional controller.

d

e

desired
path

L

Fig. 18. O®set from the desired path, estimated by the vision system.

be the baseof the future ARGO's control system. The main result (Proposition 1)
characterizes the path of a vehicle lateral dynamics as G2-path, i.e. a path with
secondorder geometric continuit y. Subsection4.3 presents the vehicle's tra jectory
planning with the quintic G2-splinesand a new recursive tra jectory control scheme
for path following. The new overall control approach can be regarded as a gener-
alization of the control strategy described by Tsugawa et al.19 Simulation results
regarding this new approach are reported in the last subsection.

4.1. Gain Scheduled Pr oportional Contr ol ler

The controller currently adopted for the ARGO vehicle was initially designedand
optimized for a road following task. Minor changeshave beenintro duced to imple-
ment also the platooning functionalit y.

The basic control schemeis visible in ¯gure 17. The command steering angle ±
is obtained with a variable gain proportional controller. The vision basedsystem
reconstructs the road environment and the supervisor usesthe results to select the
most appropriate gain for the proportional controller and estimate the error signal.
Initially , the o®set e existing between the vehicle heading and the desired path
is computed at the look-ahead distance L (see ¯gure 18). The estimated signal
e is inherently noisy so that it cannot be directly supplied to the proportional
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Table 1. Parameters for the evaluation of the look-ahead distance.

vmin = 8:33 ms¡ 1

(30 km/h)
vmax = 22:22 ms¡ 1

(80 km/h)
t l = 1:5 s
L min = 12:5 m
L max = 33:33 m

controller. To reduce the disturbances, e is preliminary ¯ltered with a moving
average ¯lter. The look-ahead distance is variable and depends on the vehicle
speed;more precisely, L is obtained according to the following expression

L(v) :=

8
<

:

L min if v < vmin

v t l if vmin · v · vmax

L max if v > vmax

(4.1)

where L min = vmin t l and L max = vmax t l indicate the minimum and the maximum
look-aheaddistance respectively, t l is the look-ahead time, v is the vehicle speed.
The choiceof L in°uencesthe behaviour of the controller. It hasbeendemonstrated5

that, as v increases,the damping factor of the closedloop system gets worse and
can be improved, under certain limits, by increasing the look-aheaddistance. For
the ARGO vehicle, the supervisor usesthe parametersreported in tab. 1.

To further improve the performancesof the closedloop systema gain scheduling
technique hasbeenadopted for the proportional controller. Speci¯cally K inversely
dependson the velocity v according to:

K (v) :=
½

K max if v < v¤

K A =v if v¤ · v :
(4.2)

If the velocity becomessmaller then v¤, the proportional gain is upper bounded by
K max (for ARGO v¤ = 2:777 ms¡ 1 = 10 km/h). K (v) is continuous becauseK A

must satisfy the equation K max = K A =v¤. The parameter K A (and consequently
K max ) has beenset by meansof a seriesof experiments on the ARGO vehicle.

The controller sampling time is imposedby the vision system(it is given by the
refreshrate of the cameras)and is equal to 0.02s (50 Hz). The averagecomputation
time that comprisesboth vision and control algorithm processingsis equalto 0.004s.

The control strategy adopted for platooning takes advantage of the previously
de¯ned control scheme(see¯gure 17). The main and crucial di®erencewith respect
to the path-following functionalit y is on the supervisor estimation of the o®seterror
e. When the platooning functionalit y is activated, the target point is centered on the
precedingvehicle so that the target look-aheaddistance L 0 is nor constant neither
the most appropriate for the current velocity (see¯gure 19). Obviously, using this
look-aheaddistance L 0 and the corresponding target o®seterror e0 could degrade
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Fig. 19. Evaluation of the prop er error signal for a plato oning application.

the performance of the platooning functionalit y. The e±ciency of the platooning
control algorithm is recovered by scaling the tracking error e0 measuredat L 0 to
an estimated o®seterror e(v) given through a \virtual" target point placed at the
appropriate look-aheaddistance L(v) (cf. (4.1)):

e(v) :=
L(v)
L 0 e0: (4.3)

This approach has revealedto be e®ective for highway driving tasks.

4.2. The Flatness Appr oach

The previousgain scheduling proportional controller hasbeendesignedwith a visual
servoing approach regardlessof a quantitativ e model of the vehicle lateral motion
dynamics. A possibleimprovement in the designof the vehicle'sautomatic steering
can start by consideringthe following simpli¯ed nonholonomic model of the lateral
motion dynamics: 8

<

:

_x = v cosµ
_y = v sinµ
_µ = v

l tan ±
(4.4)

The state variables x, y, and µ are the planar coordinates of the rear axle midpoint
and the vehicle's heading angle respectively (see¯gure 20). The vehicle's velocity
is v, the inter-axle distance is l and ± is the front wheel steering angle.

Flatness is a di®erential property of a broad class of dynamic systems.20;21

Roughly stating, a system is °at when it is possible to determine, at any given
time t, system's state and input from the sole knowledge of the output and its
derivatives (till a ¯nite order) at the sameinstant t. As a consequence,open-loop
control problems relative to °at systems can be addressedby posing an output
tra jectory planning and then computing the corresponding input via a dynamic
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Fig. 20. Vehicle's variables of the model (4.4).

inversion that exploits the °atness property. Subsequently , the resulting system's
state and output tra jectoriesarestabilized againstdisturbancesand modeling errors
by designinga suitable feedback controller. 22

Focusingon trailer systems,that are nonholonomic, it is possibleto use°atness
for deriving the motion planning.23;24 Pursuing a similar aim regarding the nonholo-
nomic system(4.4), we exploit its °atness by studying the di®erential properties of
the vehicle's cartesian tra jectory. Before presenting the proposition summarizing
the main ¯ndings, we intro duce the following terminology and de¯nitions.

A curve on the f x; yg-plane can be described by a parameterization p(u) =
[x(u) y(u)]T with real parameter u 2 [u0; u1]. The associated \path" is the image
of [u0; u1] under the vectorial function p(u). We say that the curve p(u) is regular
if there exists _p(u) over [u0; u1] and _p(u) 6= 0 8u 2 [u0; u1]. A curve p(u) has ¯rst
order geometric continuit y, i.e. p(u) 2 G1, if p(u) is regular and its unit tangent
vector is a continuous function over [u0; u1]. In turn, a curve p(u) hassecondorder
geometric continuit y, i.e. p(u) 2 G2, if p(u) 2 G1 and its curvature vector is
continuousover [u0; u1].25 By natural extensionwe say that a f x; yg-path, i.e. a set
of points in the f x; yg-plane, belongsto Gi ; i 2 f 1; 2g if there exists a parametric
curve p(u) 2 Gi such that its image is the f x; yg-path. The Euclidean norm of a
vector p is denoted with kpk.

Prop osition 1. A path on plane f x; yg is generatedby vehicle model (4.4) via a
continuous control input ±(t) if and only if the f x; yg-path is a G2-path.

Pro of.

Necessity

Consider a f x; yg-path generatedby model (4.4) with a continuous ±(t). A natural
parameterization over this path is given by the explicit solution p(t) = [x(t) y(t)]T

of the model (4.4) when t belongs, say, to the interval [t0; t1]. The unit tangent
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vector can be expressedas

_p
k _pk

=
[ _x(t) _y(t)]T

p
_x(t)2 + _y(t)2

=
v[cosµ(t) sinµ(t)]T

q
v2 cos2 µ(t) + v2 sin2 µ(t)

= [cosµ(t) sinµ(t)]T : (4.5)

Consideringthat ±(t) is continuouswehave, from model (4.4) that µ(t) is continuous
and then, by (4.5), _p=k _pk is continuous too. With a similar reasoningwe observe
that Äp is a continuous function. Indeed, from model (4.4) we infer that

(
Äx = ¡ v _µsinµ = ¡ v2

l tan ±(t) sinµ(t)
Äy = v _µcosµ = v2

l tan ±(t) cosµ(t)
(4.6)

Therefore, the curvature vector, that can be expressedas (£ denotes the vector
crossproduct)

( _p £ Äp) £ _p

k _pk4 ; (4.7)

is a continuous function too. In conclusionthis provesthat p(t) is a G2-curve.

Su±ciency
Let be given, on the f x; yg-plane, a G2-curve p(u) = [x(u) y(u)]T with parameter
u 2 [u0; u1]. We want to show that there exist initial conditions and a continuous
control ±(t) such that the f x; yg-path generatedby the vehicle'smodel (4.4) exactly
matchesthe path of p(u). First, intro duce the arc length function

s(u) :=
Z u

u0

p
_x(v)2 + _y(v)2dv (4.8)

and denote by s¡ 1 : [0; s(u1)] ! [u0; u1] its inversefunction. Associated with every
point of p(u) we consider the orthonormal frame f e1(u); e2(u)g that is oriented
in the same way of axes f x; yg and where e1(u) coincides with the unit tangent
vector of the curve p(u). As known from Frenet formulae, the curvature vector is
· (u)e2(u) where · (u) is the scalar curvature with well de¯ned sign. From (4.7) it
can be deducedthat

· (u) =
_x(u)Äy(u) ¡ Äx(u) _y(u)

( _x(u)2 + _y(u)2)3=2
: (4.9)

Considering that p(u) is a G2-curve, the function · (u) is continuous. For model
(4.4) consider, at time t0, the initial conditions x(u0), y(u0), arg(e1(u0)) and the
continuous input function

±(t) = arctan[l · (s¡ 1(v(t ¡ t0)))] : (4.10)

In the following it is proved that the explicit solution to model (4.4) is given by the
time functions

x(s¡ 1(v(t ¡ t0))) ; (4.11)

y(s¡ 1(v(t ¡ t0))) ; (4.12)

arg[e1(s¡ 1(v(t ¡ t0)))] : (4.13)
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From standard derivation rules we obtain

d
dt

[x(s¡ 1(v(t ¡ t0)))] = v
_x(u)

k _p(u)k

¯
¯
¯
¯
u= s¡ 1 (v( t ¡ t 0 ))

=

= v cos
h
arg[k _p(u)k¡ 1 _p(u)]

i ¯
¯
¯
u= s¡ 1 (v( t ¡ t 0 ))

(4.14)

and analogously

d
dt

[y(s¡ 1(v(t ¡ t0)))] = v
_y(u)

k _p(u)k

¯
¯
¯
¯
u= s¡ 1 (v( t ¡ t 0 ))

=

= v sin
h
arg[k _p(u)k¡ 1 _p(u)]

i ¯
¯
¯
u= s¡ 1 (v( t ¡ t 0 ))

: (4.15)

Considering that e1(u) ´ k _p(u)k¡ 1 _p(u), identities (4.14) and (4.15) verify the ¯rst
two equationsof model (4.4). De¯ne as µ(t) the time function appearing in (4.13).
Hence,we have

µ(t) =

8
><

>:

arctan [ _y(u)=_x(u)]
¯
¯
¯
u= s¡ 1 (v( t ¡ t 0 ))

if _x(u) ¸ 0

¼+ arctan [ _y(u)=_x(u)]
¯
¯
¯
u= s¡ 1 (v( t ¡ t 0 ))

if _x(u) < 0
(4.16)

and, by derivation, obtain

_µ(t) =
d
dt [ _y(u)] _x(u) ¡ _y(u) d

dt [ _x(u)]
_x(u)2 + _y(u)2

¯
¯
¯
¯
¯
u= s¡ 1 (v( t ¡ t 0 ))

=

= v
_x(u)Äy(u) ¡ Äx(u) _y(u)

( _x(u)2 + _y(u)2)3=2

¯
¯
¯
¯
¯
u= s¡ 1 (v( t ¡ t 0 ))

: (4.17)

Note that, in the de¯nition (4.16) of µ(t) we have assumed

arctan [ _y(u)=_x(u)]
¯
¯
¯

_x (u)=0
:=

½
+ ¼=2 if _y(u) > 0
¡ ¼=2 if _y(u) < 0

(4.18)

By virtue of (4.9) it is then proved that

_µ(t) = v · (s¡ 1(v(t ¡ t0))) : (4.19)

On the other hand relation (4.10) implies

v
l

tan ±(t) = v · (s¡ 1(v(t ¡ t0))) (4.20)

so that (4.19) and (4.20) verify the third equation of model (4.4).
From (4.11) and (4.12) we ¯nally note that the f x; yg-path generatedby input

(4.10) exactly matchesthe path of p(u). 2
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Fig. 21. The new recursive tra jectory control scheme.
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4.3. Quintic G2-splines and Recursive Trajectory Contr ol

The su±ciency proof of Proposition 1 givesthe explicit dynamic inversion formulae
(4.8){(4.10) for the open-loop steering control of vehicle (4.4) provided that the
desiredpath to follow is assignedas a given parametric curve. Therefore, consider
the following interpolating path problem. Let be given on plane f x; yg two distinct
points pA = [xA yA ]T and pB = [xB yB ]T with assignedunit tangent vectors
de¯ned by µA and µB and scalar curvatures · A and · B (see¯gure 22). The signs
of · A and · B are given according to the Frenet formulae; cf. the intro duction to
(4.9) in the proof of Proposition 1. The data pA , µA , and · A represent the vehicle's
current status at a given time t0, i.e. the coordinates xA and yA of the rear axle
midpoint, the heading angle, and the curvature · A given by

· A = (1=l) tan ±(t0) (4.21)

where ±(t0) is the current steering angle. The data pB , µB , and · B are the desired
future status of the vehicle.

The parametric curve to consideris a quintic polynomial vector function p(u) =
[x(u) y(u)]T , u 2 [0; 1] where

x(u) := x0 + x1u + x2u2 + x3u3 + x4u4 + x5u5 (4.22)
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y(u) := y0 + y1u + y2u2 + y3u3 + y4u4 + y5u5: (4.23)

with interpolating conditions (cf. (4.5) and (4.9)):

p(0) = pA ; p(1) = pB ; (4.24)
_p(0)

k _p(0)k
=

·
cosµA

sinµA

¸
;

_p(1)
k _p(1)k

=
·

cosµB

sinµB

¸
; (4.25)

· (0) = · A ; · (1) = · B : (4.26)

Focusingon polynomial parametric curvesand working with arbitrary interpolating
data, it is necessaryto use,at least, quintic polynomials asin (4.22), (4.23), in order
to satisfy conditions (4.24){(4.26).26 Nevertheless, conditions (4.24){(4.26) leave
four degreesof freedomthat are exploited by the following closed-formsolution:

x0 = xA (4.27)

x1 = ´ 1 cosµA (4.28)

x2 =
1
2

¡
´ 3 cosµA ¡ ´ 2

1 · A sinµA
¢

(4.29)

x3 = 10(xB ¡ xA ) ¡ (6´ 1 +
3
2

´ 3) cosµA ¡ (4´ 2 ¡
1
2

´ 4) cosµB

+
3
2

´ 2
1 · A sinµA ¡

1
2

´ 2
2 · B sinµB (4.30)

x4 = ¡ 15(xB ¡ xA ) + (8´ 1 +
3
2

´ 3) cosµA + (7´ 2 ¡ ´ 4) cosµB

¡
3
2

´ 2
1 · A sinµA + ´ 2

2 · B sinµB (4.31)

x5 = 6(xB ¡ xA ) ¡ (3´ 1 +
1
2

´ 3) cosµA ¡ (3´ 2 ¡
1
2

´ 4) cosµB

+
1
2

´ 2
1 · A sinµA ¡

1
2

´ 2
2 · B sinµB (4.32)

y0 = yA (4.33)

y1 = ´ 1 sinµA (4.34)

y2 =
1
2

¡
´ 3 sinµA + ´ 2

1 · A cosµA
¢

(4.35)

y3 = 10(yB ¡ yA ) ¡ (6´ 1 +
3
2

´ 3) sinµA ¡ (4´ 2 ¡
1
2

´ 4) sinµB

¡
3
2

´ 2
1 · A cosµA +

1
2

´ 2
2 · B cosµB (4.36)

y4 = ¡ 15(yB ¡ yA ) + (8´ 1 +
3
2

´ 3) sinµA + (7´ 2 ¡ ´ 4) sinµB

+
3
2

´ 2
1 · A cosµA ¡ ´ 2

2 · B cosµB (4.37)

y5 = 6(yB ¡ yA ) ¡ (3´ 1 +
1
2

´ 3) sinµA ¡ (3´ 2 ¡
1
2

´ 4) sinµB

¡
1
2

´ 2
1 · A cosµA +

1
2

´ 2
2 · B cosµB (4.38)
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The real parameters´ i , i = 1; : : : ; 4, appearing in the above relations, can be packed
together to form the four-dimensional parameter vector ´ := [´ 1´ 2´ 3´ 4]T so that
the resulting parametric curve be conciselydenoted as p(u; ´ ).

Prop osition 2 (Guarino Lo Bianco and Piazzi 26). Given any interpolating
data pA , µA , · A and pB , µB , · B , the parametric curve p(u; ´ ) satis¯es condi-
tions (4.24){(4.26) for all ´ 1; ´ 2 2 IR+ and all ´ 3; ´ 4 2 IR. Conversely, given any
quintic polynomial curve p(u) with _p(0) 6= 0, _p(1) 6= 0 satisfying (4.24){(4.26)
there exists parameters ´ 1; ´ 2 2 IR+ and ´ 3; ´ 4 2 IR such that it can be expressed
as p(u; ´ ).

Note that ´ 1 = _p(0; ´ ), ´ 2 = _p(1; ´ ) are \v elocity" parameters whereas´ 3, ´ 4

can be denotedas\t wist" parametersof the curve. Theseparameterscan be chosen
in order to appropriately shape the tra jectory, for exampleminimizing the curvature
in a lane changing maneuver or minimizing the variations of curvature following a
road arc with constant curvature.

The recursive useof the parametric curve p(u; ´ ) permits to exactly interpolate
any given sequenceof cartesian points with arbitrarily assignedunit tangent and
curvature vectors. In such a way it results an overall G2-curve, i.e. a curve with
secondorder geometriccontinuit y. In the following we refer to p(u; ´ ) asthe quintic
G2-spline.

Figures 21 and 23 help describing the new overall feedforward/feedback control
of the ARGO vehicle on the path following functionalit y. A new quintic G2-spline
is planned at the chosentra jectory updating rate. The vision data systemwith the
IPM can give, on a planar f x; yg-coordinate system, the road scenewith known
car's position and path to follow. Hence pA and µA are known and the current
curvature · A of the vehicle path can be computed with relation (4.21).

The interpolating point pB is determined on the path to follow at the interpolat-
ing distanceI D from vehicle'srear axle midpoint. The vision data processingshould
also provide the tangent angle µB with respect to axis x and the path curvature
· B at pB . The supervisor (see¯gure 21), collect the interpolating data, assignthe
shapingvector parameter ´ , and passall the data to the G2-spline generator. From
the knowledgeof p(u; ´ ) a dynamic inversionbasedon model (4.4) is performed via
formulae (4.8){(4.10) for obtaining the steering angle function

±(t) = arctan[l · (u; ´ )]ju= s¡ 1 (v( t ¡ t 0 )) : (4.39)

In (4.39), · (u; ´ ) denotesthe curvature of the G2-spline p(u; ´ ) and v is the vehicle
velocity that is consideredconstant during the tra jectory updating time, i.e. the
time slot where the steering action (4.39) is basedon the updated G2-spline.

The feedback action is issuedby the supervisor by planning a new G2-spline, so
that the steeringcontrol (4.39) is updated, when the vehiclehascovereda relatively
small fraction of the current G2-spline. This mechanism is recursively applied to
the new G2-spline resulting in an overall continuoussteeringcontrol that makesthe
vehicle converging on the desiredpath.
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Fig. 23. Vision-based planning of the G2 -spline.

4.4. Simulation Results

The new °atness-basedrecursive tra jectory control scheme,shown in ¯gure 21, has
been simulated. To obtain realistic results, the Wong car lateral model has been
adopted.27 It takes into account the geometric and dynamic characteristics of the
vehicle as well as the tires characteristics. A summary of the model parameters
is reported in tab. 2. In that table m indicates the vehicle mass, J the inertia
with respect to the center of gravit y, l f and l r indicate the distance of the center
gravit y with respect to the front and the rear wheelsrespectively, Cf and Cr are
the cornering sti®nessof the front and the rear wheelsand ¹ is the coe±cient of
road adhesion (¹ = 1 for dry roads). It has been supposed that the frame rate
of the visual system is the same of the proportional controller currently used in
the ARGO vehicle: 50 Hz. The delay time from the image acquisition to the
control actuation has been consideredin the simulations. A reasonablevalue of
0.008s, deducedfrom the gain scheduledproportional controller usedby real ARGO
vehicle, has beenadopted. The supervisory controller renewsthe spline coe±cients
with a rate that is a fraction of the frame rate. The reason for this choice is
intrinsic to the selectedcontrol strategy. In fact, to correctly approach the desired
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Table 2. Parameters for the simulated car.

m = 1300 kg
J = 2900 kg m2

l f = 1:15 m
l r = 1:52 m
Cf = Cr = 45000 N rad ¡ 1

¹ = 1

road path, a proper percentage of the spline path must be covered before it is
updated. Practically, we have a spline updating rate equal to 50=º with º being
a positive integer. The parameter º is selectableand is chosento obtain the best
performance from the controlled system. Normally, the spline updating rate have
to be increasedproportionally with the car speed. Also the interpolating distance
I D , i.e. the aheaddistance used to plan the spline, is proportional to the vehicle's
velocity in a way similar to (4.1). Vector ´ has been chosen to guarantee the
generation of optimal tra jectories in the casesof lane change, straight roads or
curveswith small curvatures (the curvature range consideredpractically covers all
the standard highways curvatures). \Optimal" meansthat the error between the
generatedspline and the road path is minimum and, at the sametime, this result is
obtained with minimum variations of the steering command ±.26 Roads with very
large curvatures requires di®erent values for ´ . A suboptimal behaviour must be
expected for sharp curvesbecausein this simulations ´ is supposedto be constant
(´ = [25 25 ¡ 45 45]T ) .

The simulation results reported in the following refer to the road shown in
¯gure 24. It is composedby a sequenceof line segments and circular arcs joined to
obtain an overall G1-path (cf. subsection4.2). The road shape, that is discontinuous
at segment/arc joints, complicates the control task becausethe controller always
plans tra jectories with continuous curvatures. Road curvatures are chosen inside
the interval [0; 0:005] m¡ 1. The maximum curvature (corresponding to 200 m of
radius) is bigger than standard highway curvatures: the purpose is to test the
control strategy in critical situations, i.e. when the chosen value of ´ is not the
most appropriate.

Two di®erent car speedshave beenused for the simulations. In the ¯rst run a
constant velocity of 10 m/s (36 km/h) hasbeenchosen,while in the secondrun the
velocity has been increasedto 30 m/s (108 km/h). In the ¯rst simulation º was
¯xed equal to 30 (which corresponds to a spline update time of 0:6 s) while in the
secondone it wasdecreasedto 10 (spline update time equal to 0:2 s). Owing to the
Wong's model used to describe the car, the actual car paths are di®erent for the
two cases,but in both situations the maximum tracking error is smaller than 20 cm
and it occurs when the curvature radius of the road becomesequal to 200 meters.
On the straight stretchesthe error is very closeto zero.

At the beginning, if the vehicle is not on the correct path, it convergestoward



436 A. Br oggi et al.

0 200 400 600 800 1000120014001600 18002000
0

200

400

600

800

1000

1200

m

m

Fig. 24. The test road.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80
m

mVehicle path
Road

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80
m

mVehicle path
Road

Fig. 25. Low speed (left) and high speed (righ t) road approaches.
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Fig. 26. Command steering angle ± for a car speed equal to 10 m/s (36 km/h) (left) and 30 m/s
(108 km/h) (righ t).

the desiredpath. Figure 25 shows how the road is approached in the two cases:the
behavior is similar even if, asexpected,at low speedsthe car has to cover a smaller
distance to approach the road.

Figure 26 shows the steering angle ± for the whole road path. The largest
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steeringangle is detectedat the beginning of the simulation when the vehiclehasto
approach the road, but even in that caseit is smaller than 0:1 rad (closeto 5o). As
expected, the worst situation for the control algorithm is detectedwhen the vehicle
approaches curves with the biggest curvature (0.005 m¡ 1). Nevertheless, in the
worst case(i.e at low speed) the steeringcommand± hasa peak-to-peak amplitude
equal to 0:02 rad (1o). In future works, the performanceswill be further improved
by consideringa variable ´ , chosendepending on the road curvature.

5. Results

The following paragraphs present a 2000 km test on the road. For each system
component a detailed analysisof the main problems encountered during the test is
presented and the overall system performanceis discussed.

5.1. The MilleMiglia in Automatico Tour

In order to extensively test the Road Following functionalit y under di®erent tra±c
situations, road environments, and weather conditions, a 2000km journey was car-
ried out in June 1998along the Italian highway network. The Italian road network
is particularly suited for such an extensive test since it is characterized by quickly
varying road scenariosincluding di®erent weather conditions and a generally large
amount of tra±c. During the journey, besidesthe usual tasks of data acquisition
and processingfor automatic driving, the system loggedthe most signi¯cant data,
such as speed, position of the steering wheel, lane changes,user interventions and
commands,and dumped the whole status of the system (images included) in cor-
respondenceto situations in which the system had di±culties in reliably detecting
the road lane.

After the end of the tour, the collected logs have been processedin order to
compute the overall systemperformance,such as the percentage of automatic driv-
ing, and to analyze unexpected situations. At the end of the tour, the system logs
contained more than 1200Mbyte of raw data.

5.2. Performanc e A nalysis

5.2.1. The Vision System

The low-cost camerasinstalled on the ARGO vehicledemonstrated to be the weak-
est component of the whole system. Although they have a high sensitivity even in
low light conditions (e.g. the twilight), a quick change in the illumination of the
scenecausesa degradation in the image quality. In particular, in correspondence
to a tunnel exit imagesare completely saturated for about 100¥ 200 ms therefore
nullifying the processing.The useof camerasfeaturing automatic gain control and
higher dynamics is now under evaluation.
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5.2.2. The ProcessingSystem

The processingsystem installed on ARGO during the tour was a a commercial
PC with a 200 MHz Pentium processorand 32 Mbyte of memory. It was able to
processup to 25 pairs of stereoframesper secondand provide the control signalsfor
autonomoussteeringevery 40 ms (e.g. onere¯nement on the steeringwheelposition
for every meter at 100 km/h), proving to be powerful enough for the automatic
driving of the vehicle.

5.2.3. The Visual Processing

The IPM approach used for Lane Detection, proved to be e®ective for the whole
trip. Even if on Italian highways the °at road assumption is not always valid,
anyway, the approximation of the road surfacewith a planar surfacewasacceptable.
The wrong calibration, in fact, generatesa lateral o®setin the vehicle tra jectory.
Nevertheless, since the highway lanes' width is su±ciently large, this o®set has
never causedseriousproblems. Anyway, an enhancement to the IPM transform is
currently under development. 28

5.2.4. The Control System

The control systemtested during the tour was basedon the gain scheduledpropor-
tional controller previously discussed.With this kind of control, for speedsreaching
around 90¥ 95 km/h there was no noticeable di®erencein comparisonto a human
driver, while for higher speeds(up to 123 km/h) the vehicle tended to oscillate
inside the lane.

Regarding the mechanical part, an electric stepping motor allows the rotation
of the steering wheel with a high resolution and a reducedpower consumption.

5.2.5. Environmental Conditions

During the tour, the system'sbehavior wasevaluated in various environmental con-
ditions. The route waschosenin order to include areaswith di®erent morphological
characteristics: from °at areasto sloping territories of the Appenninesregion and
heavy tra±c zones,inevitably encountering stretches of highway with road works,
absent or worn horizontal road signs, and diversions, and various weather condi-
tions. The di®erent environmental conditions demonstrated the robustnessof the
image processingalgorithms.

5.2.6. Statistical analysis of the tour

The analysis of the data collected during the tour 29 allowed the computation of a
number of statistics regarding system performance (see table 3). The automatic
driving percentage and the maximum distance automatically driven show high val-
uesdespitethe presenceof many tunnels and of several stretchesof road with absent
or worn lane markings or even no lane markings at all.
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Table 3. Statistical data regarding the system performance during the tour.

Maxim um distance in automatic [km]
Percen tage of automatic driving
Maxim um speed [km/h]
Av erage speed [km/h]
km

Stage Departure Arriv al
1 Parma ! Turin 245 86.6 109 93.3 23.4
2 Turin ! Pavia 175 80.2 95 85.1 42.2
3 Pavia ! Ferrara 340 89.8 115 86.4 54.3
4 Ferrara ! Ancona 260 89.8 111 91.1 15.1
5 Ancona ! Rome 365 88.4 108 91.1 20.8
6 Rome ! Florence 280 87.5 110 95.4 30.6
7 Florence ! Parma 195 89.0 123 95.1 25.9

It is important to note that somestagesincluded passingthrough toll stations
and transiting in by-passeswith heavy tra±c and frequent queuesduring which the
system had to be switched o®.

6. Conclusions and Future W ork

The experiencegainedduring theseyearsof work within the ARGO project clearly
highlighted someof the main problems of automatic driving, whilst the extensive
useof the ARGO protot ype helped to ¯nd their most promising solutions.

The main aims establishedat the beginningof the project wereachieved, namely
the development of a protot ype vehicle and its useas a test-bed for both the hard-
ware and software aspects of the project.

The critical analysis of the results of the Mil leMiglia in Automatico tour, as
well as the experiencegainedduring the last few years,will be helpful for the future
research within the ARGO project, namely the development of a new vehiclewhich
will include the automatic control of both the steering wheel and the speed. New
and more robust algorithms for Vehicle Detection are currently under development
as well as a new module for Pedestrian Detection.

Also the control subsystem will derive bene¯t from the new strategies high-
lighted in this work: the expected advantages of the new °atness-basedrecursive
tra jectory control over the previous proportional control are basically: (i) superior
road following with smooth cruising and (ii) highly-°exible functionalit y. In par-
ticular °exibilit y can be simply obtained by modifying the supervisor strategy in
order to perform, for example, lane changing, lane inserting, platooning and even
car parking maneuvers.
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