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This paper presents the current status of the AR GO Pro ject, whose main target is the de-
velopment of an activ e safety system and an automatic pilot for a standard road vehicle.
First the ARGO project is brie’y described along with its main objectiv es, then the pro-
tot ype vehicle and its functionalities are presented. The perception of the environment is
performed through the processingof images acquired from the vehicle; details about the
detection of lane markings, generic obstacles and leading vehicles are given. The paper
describes the current implementation of the control system, based on a gain scheduled
controller, which allows the vehicle to follow the road and/or other vehicles, while future
control strategies (°atness approach) are presented with simulations results. The paper
ends with a description of the Mil leMiglia in Automatic o tour, a journey through Italy
performed in automatic driving, together with some concluding remarks.
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1. Intro duction

Automatic Vehicle Driving is a genericterm usedto addressa technique aimed at
automating {entirely or in part{ one or more driving tasks. The automation of
thesetasks carries a large number of bene ts, suc as: a higher exploitation of the
road network, lower fuel and energy consumption, and {of course{improved safety
conditions comparedto the current scenario.

The tasks that automatically driven vehiclesare able to perform include the
possibility to follow the road and keep within the right lane, maintaining a safe

°This research has been partially supported by the Italian MURST and CNR under the frame of
Progetto Madess 2 and under the contract n. 99.00619.CT12.
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distance betweenvehicles,regulating the vehicle's speedaccordingto traxc condi-
tions and road characteristics, moving acrosslanesin order to overtake vehiclesand
avoid obstacles,helping to nd the correct and shortest route to a destination, and
the movemert and parking within urban ervironments.

Two main cooperative solutions are possibleto achieve automatic driving func-
tionalities: they require to act on infrastructures or vehicles. Both scenarioshave
their own pros and cons, depending on the speci ¢ application?®; the researd doc-
umented in this paper is focusedexclusively on vehicles.

The following section preseris the ARGO project and the prototype vehicle
deweloped within this framework. The vehicle has visual and control capabilities:
section 3 describeshow the ARGO prototype vehicle can perceive the surrounding
ernvironment and the basicsof lane and vehicle detection functionalities, while sec-
tion 4 describesthe current control subsystemand a new method basedon a °atness
approach. Section 5 gives an overview of the extensiwe test, called Mil leMiglia in
Automatico, that took place in 1998 when the vehicle drove itself for more than
2000km in automatic mode on Italian highways, and section 6 presens somecon-
cluding remarks and possiblefuture researt directions.

2. The AR GO Pro ject

The main target of the ARGO Project! is the developmert of an active safety system
which can also act as an automatic pilot for a standard road vehicle.

In order to achieve an autonomous driving system which ts into the existing
road network with no needfor speci ¢ infrastructures, the capability of perceiving
the environment is essetial for the intelligent vehicle. Although very excient in
some elds of application, active sensorgb esidespolluting the ervironment{ feature
somespeci ¢ problemsin automotive applications due to inter-vehicle interference
amongstthe sametype of sensors,and due to the wide variation in re°ection ratios
causedby many di®eren reasons,such as obstacles'shape or material. Moreover,
the maximum signal level must comply with safety rules and must be lower than a
safety threshold. For this reasonin the implementation of the ARGO vehicle only
the useof passiwe sensors,such as cameras,has been considered.

A seconddesign choice was to keepthe system costslow. These costsinclude
both production costs(which must be minimized to allow a widespreaduseof these
devices) and operative costs, which must not exceeda certain threshold in order
not to interfere with the vehicle performance. Therefore low cost deviceshave been
preferred, both for the imageacquisition and the processing:the prototypeinstalled
on ARGO is basedon cheap camerasand a commercial PC.

2.1. The AR GO Vehicle Prototyp e

ARGO, shawn in "gure 1, is an experimental autonomous vehicle equipped with
vision systemsand an automatic steering capability.
It is ableto determine its position with respectto the lane, to compute the road
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Fig. 1. The ARGO protot ype vehicle.

geometry, to detect genericobstacleson the path, and to localize a leading vehicle.
The imagesacquired by a stereorig placed inside the windscreenare analyzed in

real-time by a computing systemlocatedinto the boot. The results of the processing
are usedto drive an actuator mounted onto the steering wheel and other driving

assistancedevices.

The systemwasinitially conceived asa safety enhancemen unit: in particular it
is able to supervisethe driver behavior and issueboth optic and acoustic warnings
or even take cortrol of the vehicle when dangeroussituations are detected. Further
dewvelopmerts have extendedthe system functionalities to automatic driving.

2.1.1. The Data Acquisition System

Only passiwe sensors(two camerasand a speedometer)are usedon ARGO to sense
the surrounding ervironment. In addition, a button-based control panel has been
installed enabling the driver to modify a few driving parameters, selectthe system
functionality, issuecommands,and interact with the system.

The stereoscopicvision systeminstalled on ARGO consistsof two low cost syn-
chronized camerasable to acquire pairs of grey level imagessimultaneously. The
cameraslie inside the vehicle at the top corners of the windscreen, so that the
longitudinal distance betweenthe two camerasis maximum.

The vehicle is also equipped with a speedometerto detect its velocity. A Hall
e®ect-basedlevice has beenchosendue to its simplicity and its reliability and has
beeninterfacedto the computing systemvia a digital I/O board with event courting
capabilities. The resolution of the measuring systemis about 9 cm/s.
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2.1.2. The Processing System

The architectural solution currently installed on the ARGO vehicle is basedon a
standard 450 MHz Pertium |l processor. Thanks to recert advancesin computer
technologies,commercial systemso®ernowadays sutcient computational power for
this application. All the processingneededfor the driving task (image feature
extraction and vehicle tra jectory cortrol) is performed in real-time: 50 single "eld
imagesare processedevery second.

2.1.3. The Output System

Seeral output deviceshave beeninstalled on ARGO (see gure 2).

Acoustical (stereo loudspeakers) and optical (led-based cortrol panel) devices
are usedto issuewarnings to the driver in casedangerousconditions are detected,
while a color monitor is mainly usedas a debuggingtool.

A singlemedanical devicehasbeenintegrated on ARGO to provide autonomous
steering capabilities. It is composedof an electric stepping motor coupled to the
steering column by meansof a belt. During automatic driving the output provided
by the vision systemis usedto turn the steering wheel soto maintain the vehicle
inside the lane or to follow the leading vehicle.

2.2. Automatic Driving Functionalities

Thanks to the control panel the driver can selectthe level of system intervertion.
The following three driving modesare integrated.

Man ual Driving: the systemsimply monitors and logsthe driver's activity.
Supervised Driving: in caseof dangeroussituations the systemwarns the driver
with acoustic and optical signals.

Automatic Driving: the systemfully cortrols of the vehicle'strajectory.

In the automatic driving operative mode two di®ereri functionalities can be
selected: Road Following or Platooning.

The Road Following task, namely the automatic movemert of the vehicle along
the lane, is basedon Lane Detection which includesthe localization of the road, the
determination of the relative position betweenvehicle and road, and the analysis of
the vehicle's heading direction.

Conversely the Platooning functionalit y, namely the automatic following of the
precedingvehiclerequiresthe localization and tracking of the target vehicle (Vehicle
Detection), which relies on the recognition of speci ¢ vehicle's characteristics.

3. Visual Perception of the Environmen t

In this section the vision algorithms implemented on the ARGO vehicle are de-
scribed. Initially the extraction of the road geometry from monocular imagesis
preseried. Then, the algorithm for the recognition and localization of the preced-
ing vehicleis discussed.
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3.1. Lane Dete ction

The Lane Detection functionality is basedon the remaoval of the perspective e®ect

Left camera Right camera

Electric engine Control panel

TV monitor

Emergency pedal

Emergency buttons

Fig. 2. Internal view of the ARGO vehicle.
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Fig. 3. The sequenceof images produced by the low-level Lane Detection phase: (a) original;
(b) remapped; (c) Ttered; (d) binarized; (e) chains; (f) polylines.

obtained through the Inverse Perspective Mapping (IPM). ! The IPM allows to
remove the perspective e®ectfrom incoming imagesremapping ead pixel toward a
di®erert position. It exploits a knowledgeabout the acquisition parameters(camera
orientation, position, optics,...) and the assumption of a °at road in front of the
vehicle. The result is a new 2-dimensionalarray of pixels (the remapped image) that
represens a bird's eye view of the road region in front of the vehicle. Figures 3.a
and 3.b show an image acquired by the ARGO vision systemand the corresponding
remapped image respectively.
The following stepsare divided in low level and high level processing.

3.1.1. Low Level Processingfor Lane Detection

In the remapped image a road marking resenbles a semi-\ertical line of constart
width brighter than the dark road badground. Therefore, road marking's pixels
feature a higher brightness value than their horizontal left and right neighbors at
a given distance. Consequetly, the rst phaseof road markings detection is based
on the determination of horizontal black-white-black transitions, while the following
processis aimed at extracting information and reconstructing road geometry,

Feature Extraction
The brightnessvalue of a genericpixel belongingto the remappedimageis compared
to the two horizontal left and right neighbors at a given distance. A new image,
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whosevaluesencale the presenceof a road marking, is computed assigning:

1. zero to the pixels whose one or both of the two neighbors have a higher
brightnessvalue, or

2. the absolutedi®erencebetweenthe pixel's brightnessand their neighbors' ones
to the pixels whosebrightnessis higher than the onesof the two neighbors.

The resulting "Ttered imageis shown in "gure 3.c.

Due to di®erert light conditions (e.g. in presenceof shadaws), pixels represen-
ing road markings may have di®erernt brightness, yet maintaining their superiority
relationship with their horizontal neighbors. Therefore, sincea simple threshold sel-
dom givesa satisfactory binarization, the image is enhancedexploiting its vertical
correlation. The result is preseried in gure 3.d.

Road Geometry Reconstruction
The binary image is scannedrow by row in order to build chains of 8-connected
non-zeropixels (see gure 3.e).

Subsequetly, ead chain is approximated with a polyline composedby oneor few
segmets, by meansof an iterativ e process.Initially , a single segmei that joins the
two extrema of the chain is considered. The horizontal distance betweensegmeit's
mid point and the chain is usedto determine the quality of the approximation. In
caseit is larger than athreshold, two segmeits sharing an extremum are considered
for the approximation of the chain. Their common extremum is the intersection
betweenthe chain and the horizontal line that passesthrough the segmetis mid
point. The processis iterated until a satisfactory approximation hasbeenreacded.
At the end of the processingall chains are approximated by polylines (see gure 3.f).

3.1.2. High Level Processingfor Lane Detection

After the rst low level stage, in which the main features are localized, and after
the secondstage, in which the main features are extracted, the new data structure
(a list of polylines) is now processedin order to semartically group homologous
featuresand to produce a high level description of the scene.

This processin divided into: TTtering of noisy features and selection of the
feature that most likely belongto the line marking; joining of di®erent segmets in
order to 1l gapscausedby occlusions,dashedlines, or even worn lines; selectionof
the best represerativ e and reconstruction of the information that may have been
lost, on the basis of cortinuity constraints; then the result is kept for referencein
the next framesand displayed onto the original image.

Feature Ttering and selection

Each polyline is comparedagainst the result of the previous frame, sincecortinuity
constraints provide a strong and robust selection procedure. The distance between
the previousresult and ead extremum of the consideredpolyline is computed: if all
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Fig. 4. High level processing for Lane Detection, rst steps: (a) selection of polylines almost
matching the previous left result, (b) joining of similar polylines, (c) contin uation of short polylines.

the polyline extrema lay within a strip e certered onto the previous result then the
polyline is marked as useful for the following process.This strip e is shaped so that
it is small at the bottom of the image (namely closeto the vehicle, therefore short
movemerts are allowed) and larger at the top of the image (far from the vehicle,
where also curvesthat appear quickly must be tracked). This processis repeated
for both left and right lane markings.

Figure 4.a shaws the previousresult with a heavy solid line and the seard space
with a gridded pattern; it refersto the left lane marking.

Polylines joining

Once the polylines have been selected, all the possibilities are chedked for their
joining. In order to be joined, two polylines must have similar direction; must be
not too far away; their projection on the vertical axis must not overlap; the higher
polyline in the image must have its starting point within an elliptical portion of
the image; in casethe gap is large also the direction of the connecting segmen is
cheded for uniform behavior. Figure 4.b shawsthat polyline A cannot be connected
to: B due to high di®erenceof orientation; C due to high distance (does not lay
within the ellipse); D due to the overlapping of their vertical projections; E since
their connecting segmem would have a strongly mismatching orientation. It can
only be connectedto F.

Selection of the best represen tativ e

All the new polylines, formed by concatenationsof the original ones,are then evalu-
ated. Starting from a maximum score,ead of the following rules provides a penalty.
First ead polyline is segmeted; in casethe polyline doesnot cover the whole im-
age, a penalty is given. Then, the polyline length is computed and a proportional
penalty is givento short ones,aswell asto polylines with extremely varying angu-
lar coexcients. Finally, the polyline with the highest scoreis selectedas the best
represenativ e of the line marking.
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Reconstruction  of lost information

The polyline that hasbeenselectedat the previous step may not be long enoughto
cover the whole image; therefore a further step is necessaryto extend the polyline.
In order to take into accourt road curves, a parabolic model has been selectedto
be usedin the prolongation of the polyline in the areafar from the vehicle. In the
nearby area, a linear approximation sutces. Figure 4.c shows the parabolic and
linear prolongation.

Mo del “tting

The two reconstructed polylines (one represerting the left and one the right lane
markings) are now matched against a model that encades some more knowledge
about the absolute and relativ e positions of both lane markings on a standard road.
A model of a pair of parallel lines at a given distance (the lane width) and in a
speci ¢ position is initialized at the beginning of the process;a speci ¢ learning
phase allows to adapt the model to errors in camera calibration (lines may be
non perfectly parallel). Furthermore, this model can be slowly changedduring the
processingto adapt to new road conditions (lane width and lane position), thanks
to a learning processrunning in the badkground.

The model is kept for reference: the two resulting polylines are tted to this
model and the "nal result is obtained asfollows. First the two polylines are cheded
for non-parallel behavior; a small deviation is allowed since it may derive from
vehicle movemerts or deviations from the °at road assumption, that causethe
calibration to be temporarily incorrect (diverging of corverging lane markings).

wi ht right polyl
Left polyline Right Polyline " (welght ight polyine)

(high quality) (low quality)
)| owuaity) |

WI (weigth left polyline)
Quality = (Qright-Qleft)

| Model distance |
P 1 [ g
R I | .
) } Measured distance |
Al B -
’’’’’’’’’’ m . W]
} Final position }

\<—>Bd |
L Models—!
ode K=(Td-Bd)*h/H

A = (Model distance - Measured distance - K) * Wr
B = (Model distance - Measured distance - K) * WI

Fig. 5. Generation of the "nal result.
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Fig. 6. Filtered polylines, joined polylines, and model “tting for the left (upper row) and right
(bottom row) lane markings.

Then the quality of the two polylines, ascomputedin the previous steps,is matched:
the nal result will be attracted toward the polyline with the highest quality with
a higher strength. In this way, polylines with equal or similar quality will equally
cortribute to the nal result; on the other hand, in caseone polyline has been
heavily reconstructed, or is far from the original model, or is even missing, the
other polyline will be usedto generatethe nal result. The weights for the left and
right polylines are computed as shown in “gure 5. Then, ead horizontal line of the
two polylines is usedto compute the "nal results, as showvn in "gure 5.

Finally "gure 6 presers the resulting imagesreferring to the example preserned
in "gure 3. It shows the results of the selection,the joining, and the matching phase
phasesfor the left (upper row) and for the right (bottom row) lane markings.

Figure 7 preserts the nal result of the process.

(@) (b)
Fig. 7. The result of lane detection: (a) the acquired image, (b) the result of lane detection shown
onto a saturated copy of the original image; black markers represent e®ective lane markings, while
white markings represernt interp olations between them.
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Fig. 8. Lane Detection: the result is shown with black markings superimp osed onto a brighter
version of the original image.

3.1.3. Results of Lane Detection

Figure 8 preserts a few results of lane detection in di®erent conditions ranging from
ideal situations to road works, patches of non-painted roads, the ertry and exit
from a tunnel. Both highway and extraurban scenesare provided for comparison;
the systemsprovesto be robust with respect to di®eren illumination situations,
missing road signs, and overtaking vehicleswhich occlude the visibilit y of the left
lane marking. In casetwo lines are presen, the system selectsthe cortin uous one.

Concerning the guartitativ e performance, the algorithm requires an overall av-
eragetime of 4 ms for the processingof a frame.

3.2. Vehicle Detection

The platooning functionality is basedon the detection of the distance, speed, and



420 A. Broggi et al.

headingof the precedingvehicle,which is localizedand tracked using a singlemonoc-
ular image sequence.

The vehicle detection algorithm is basedon the following considerations: a ve-
hicle is generally symmetric, characterized by a rectangular bounding box which
satis es speci ¢ aspect ratio constraints, and placed in a particular region of the
image. These features are usedto identify vehiclesin the image in the following
way: rst an areaof interest is identi ed on the basisof road position and perspec-
tive constraints. This area is searted for possible vertical symmetries; not only
gray level symmetriesare considered,but vertical and horizontal edgessymmetries
aswell, in order to increasethe detection robustness. Once the symmetry position
and width has beendetected, a new seard begins,which is aimed at the detection
of the two bottom cornersof a rectangular bounding box. Finally, the top horizontal
limit of the vehicleis searded for, and the precedingvehicle localized.

The tracking phaseis performed through the maximization of the correlation
betweenthe portion of the image contained into the bounding box of the previous
frame (partially stretched and reducedto take into accourt small size variations
due to the incremert or reduction of the relative distance) and the new frame.

Symmetry detection

In order to searh for symmetrical features, the analysis of gray level imagesis
not suxcient. Figure 9 shows that strong re°ections causeirregularities in vehicle
symmetry, while uniform areasand badkground patterns presen highly correlated
symmetries. In order to cope with theseproblems, alsosymmetriesin other domains
are computed.

Fig. 9. Typical road scenes: in the leftmost image a strong sun re°ection reduces the vehicle
gray level symmetry; in the center image a uniform area can be regarded as a highly symmetrical
region; the rightmost image shows background symmetrical patterns.

To get rid of re°ections and uniform areas, vertical and horizontal edgesare
extracted and thresholded, and symmetries are computed into these domains as
well. Figure 10 shows that although a strong re°ection is presert on the left side
of the vehicle, edgesare anyway visible and can be used to extract symmetries;
moreover, in uniform areasno edgesare extracted and therefore no symmetries are
detected. Figure 11 shavstwo examplesin which gray level symmetriesalonecanbe
successfufor vehicle detection, while "gure 12 shows the result of edgesymmetry.
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Fig. 10. Edges enforce the detection of real symmetries: strong re°ections have lower e®ectswhile
uniform areas are discarded since they do not present edges.

Fig. 11. Grey level symmetries: the rightmost image for each caseshows a symmetry map encoding
high symmetries with bright points.

Fig. 12. Edge symmetries: the symmetries are computed on the binary images obtained after
thresholding the gradient image.

For ead image, the seard areais shavn in dark gray and the resulting vertical
axis is superimposed. For eat imageits symmetry map is also depicted both in its
original size and {on the right{ zoomed for better viewing. Bright points encale
the presenceof high symmetries. The 2D symmetry maps are computed by varying
the axis' horizontal position within the grey area(shown in the original image) and
the symmetry horizontal size. The lower triangular shape is due to the limitation
in scanninglarge horizontal windows for peripheral vertical axes.
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Fig. 13. Computing the resulting symmetry: (a) grey-level symmetry; (b) edgesymmetry; (c) hor-
izontal edges symmetry; (d) vertical edges symmetry; (e) total symmetry. For each row the
resulting symmetry axis is superimp osed onto the leftmost original image.

Similarly, the analysis of symmetries of horizontal and vertical edgesproduces
other symmetry maps, which {with speci ¢ coezcients detected experimentally{
can be combined with the previous onesto form a single symmetry map. Figure 13
shaws all symmetry maps and the "nal one,that allows to detect the vehicle.

Bounding box detection

After the localization of the symmetry, the symmetrical region is cheded for the
presenceof two corners represeiing the bottom of the bounding box around the
vehicle. Perspective constraints aswell assizeconstraints are usedasseard criteria.



The ARGO Autonomous Vehicle's Vision and Contr ol Systems 423

Figure 14 preseris the results of the lower cornersdetection.

Fig. 14. Detection of the lower part of the bounding box: (a) original image with symmetry axis;
(b) edges;(c) localization of the two lower corners.

This processis followed by the detection of the top part of the bounding box,
which is looked for in a speci ¢ region whoselocation is again determined by per-
spective and size constraints.

Backtrac king

Sometimesit may happen that in corresppndenceto the symmetry maximum no
correct bounding boxes exist. Therefore, a badktracking approad is used: the
symmetry map is again scannedfor the next local maximum and a new seard for a
bounding box is performed. Figure 15 shaws a situation in which the rst symmetry
maximum, generatedby a building, doesnot lead to a correct bounding box; on
the other hand, the secondmaximum leadsto the correct detection of the vehicle.

Fig. 15. A casein which the total background symmetry is higher than the vehicle symmetry.
Original image; Tst symmetry map; second symmetry map after the backtrac king process has
removed the peak near the maximum; "nal bounding box detection.
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3.2.1. Results of Vehicle Detection

Figure 16 shows somequalitativ e results of vehicle detection in di®erern situations:
the precedingvehicleis correctly detected at di®eren distances,even when seweral
other vehiclesare presen on the road.

The quartitativ e performance has also been assessed:the algorithm runs in
23 ms when no vehicle has beendetectedin the previous frame and therefore a new
seard is started. Howewer, the time required for the processingdecreasedo 9 ms
when the target vehicleis being tracked.

Fig. 16. Vehicle Detection: the images show the search area and the detected vehicle with black
markings superimp osed onto a brighter version of the original image.

4. Vehicle Control

In recert years, the problem of automatic steering of an autonomous vehicle has
gained considerableattention from both the theoretical®>3 and experimental side*°

Roughly speaking this problem is certered on "nding a satisfactory law for
the command of the steering wheel. Many works have beenreported in the litera-
ture®7:8:9:10:11,12:13:14 and various steeringcortrol designswere proposedfor systems
in which the sensingis performedwith nonvisual devices(for example,guiding wire,
microwave radars, etc.).

On the other hand, a visual serwing paradigm was proposedby Epiau et al.*® by
consideringa simple omnidirectional mobile robot. Neural networks were adopted
and subsequetly developed in the RALPH project.'®1” A comparative survey on
various vision-basedcortrol strategiesfor autonomousvehiclescan be found in the
paper of Taylor et al.®

Subsection4.1 preseris the gain scheduled proportional cortroller currently im-
plemerted on the ARGO vehicle. By using a feedba& supervisor this control law
can be adopted to perform both path following and platooning. A simple propor-
tional control law waspreviously examinedby &zgéner et al.18 for the path following
functionality solely. Subsection4.2 exposesa di®ererial °atness approac that will
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Fig. 18. O®set from the desired path, estimated by the vision system.

be the baseof the future ARGO's control system. The main result (Proposition 1)
characterizesthe path of a vehicle lateral dynamics as G2-path, i.e. a path with
secondorder geometric cortinuity. Subsection4.3 presents the vehicle'strajectory
planning with the quintic G?-splinesand a new recursive trajectory cortrol scheme
for path following. The new overall control approac can be regarded as a gener-
alization of the cortrol strategy described by Tsugawa et al.'® Simulation results
regarding this new approac are reported in the last subsection.

4.1. Gain Scheduled Proportional Contr oller

The cortroller currently adopted for the ARGO vehicle was initially designedand
optimized for a road following task. Minor changeshave beenintroducedto imple-
ment alsothe platooning functionalit y.

The basic corntrol schemeis visible in "gure 17. The command steering angle +
is obtained with a variable gain proportional cortroller. The vision basedsystem
reconstructs the road environment and the supervisor usesthe results to selectthe
most appropriate gain for the proportional cortroller and estimate the error signal.
Initially , the o®sete existing between the vehicle heading and the desired path
is computed at the look-ahead distance L (see gure 18). The estimated signal
e is inherertly noisy so that it cannot be directly supplied to the proportional
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Table 1. Parameters for the evaluation of the look-ahead distance.

Vimin = 833ms!?
(30 km/h)

Vmax = 2222ms T
(80 km/h)

1 = 15s

L min = 125m

Lmax = 3333m

cortroller.  To reduce the disturbances, e is preliminary Ttered with a moving
average Iter. The look-ahead distance is variable and depends on the vehicle
speed; more precisely L is obtained accordingto the following expression

< Lmin if V< Vmin
L(v):=_ vt if Vmin © V* Vmax (4.2)
" Lmax i V> Ve

whereLmin = Vmin t| @and Lmax = Vmax 11 indicate the minimum and the maximum
look-ahead distance respectively, t; is the look-aheadtime, v is the vehicle speed.
The choiceof L in°uencesthe behaviour of the cortroller. It hasbeendemonstrated®
that, asv increases,the damping factor of the closedloop system gets worse and
can be improved, under certain limits, by increasingthe look-aheaddistance. For
the ARGO vehicle, the supervisor usesthe parametersreported in tab. 1.

To further improve the performancesof the closedloop systema gain scheduling
technique has beenadopted for the proportional controller. Speci cally K inversely
dependson the velocity v according to:

1/2K if v<v®
K(v) = max V<V

Ka=v if v v: (4-2)

If the velocity becomessmaller then v®, the proportional gain is upper bounded by
Kmax (for ARGO v® = 2:777ms 1 = 10 km/h). K (v) is cortinuous becauseK
must satisfy the equation Knax = Ka=V". The parameter K (and consequetly
Kmax ) has beenset by meansof a seriesof experiments on the ARGO vehicle.
The cortroller sampling time is imposedby the vision system (it is given by the
refreshrate of the cameras)and is equalto 0.02s (50 Hz). The averagecomputation
time that comprisesboth vision and control algorithm processingss equalto 0.004s.
The control strategy adopted for platooning takes advantage of the previously
de ned control scheme(see gure 17). The main and crucial di®erencewith respect
to the path-following functionalit y is on the supervisor estimation of the o®seterror
e. When the platooning functionalit y is activated, the target point is certered on the
preceding vehicle so that the target look-aheaddistance L°is nor constart neither
the most appropriate for the current velocity (see gure 19). Obviously, using this
look-ahead distance L° and the corresponding target o®seterror €° could degrade
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Fig. 19. Evaluation of the proper error signal for a plato oning application.

the performance of the platooning functionality. The ezciency of the platooning
cortrol algorithm is recovered by scaling the tracking error €® measuredat L° to
an estimated o®seterror e(v) given through a \virtual" target point placed at the
appropriate look-aheaddistance L (v) (cf. (4.1)):

e(v) = —2 & (4.3)
This approac hasrevealedto be e®ecti\e for highway driving tasks.

4.2. The Flatness Appr oach

The previousgain scheduling proportional cortroller hasbeendesignedwith a visual
sernwing approadc regardlessof a quartitativ e model of the vehicle lateral motion
dynamics. A possibleimprovemert in the designof the vehicle'sautomatic steering
can start by consideringthe following simplied nonholonomic model of the lateral

motion dynamics: 8
< X = VCOosu
y = vsiny (4.4
B = ftanz

The state variablesx, y, and p are the planar coordinates of the rear axle midpoint
and the vehicle's heading angle respectively (see gure 20). The vehicle's velocity
is v, the inter-axle distanceis | and % is the front wheel steering angle.

Flatness is a di®erenial property of a broad class of dynamic systems2%:21
Roughly stating, a systemis °at when it is possibleto determine, at any given
time t, system's state and input from the sole knowledge of the output and its
derivatives (till a "nite order) at the sameinstant t. As a consequenceppen-loop
cortrol problems relative to °at systemscan be addressedby posing an output
trajectory planning and then computing the corresponding input via a dynamic
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Fig. 20. Vehicle's variables of the model (4.4).

inversion that exploits the °atness property. Subsequetly, the resulting system'’s
state and output tra jectoriesare stabilized against disturbancesand modeling errors
by designinga suitable feedbad cortroller. 22

Focusing on trailer systems,that are nonholonomic, it is possibleto use°atness
for deriving the motion planning.2%24 Pursuing a similar aim regarding the nonholo-
nomic system (4.4), we exploit its °atness by studying the di®ererial properties of
the vehicle's cartesian trajectory. Before preseriing the proposition summarizing
the main "ndings, we intro duce the following terminology and de nitions.

A curve on the fx; yg-plane can be described by a parameterization p(u) =
[x(u) y(u)]" with real parameter u 2 [up; u;]. The assaiated \path" is the image
of [up; u1] under the vectorial function p(u). We say that the curve p(u) is regular
if there exists p(u) over [up;us] and p(u) 6 0 8u 2 [ug; us]. A curve p(u) has rst
order geometric cortinuity, i.e. p(u) 2 G, if p(u) is regular and its unit tangert
vector is a contin uous function over [ug; u7]. In turn, a curve p(u) has secondorder
geometric cortinuity, i.e. p(u) 2 G2, if p(u) 2 G! and its curvature vector is
cortinuous over [up; u1].2° By natural extensionwe say that a fx; yg-path, i.e. a set
of points in the fx; yg-plane, belongsto G'; i 2 f1;2g if there exists a parametric
curve p(u) 2 G' sudh that its image is the fx; yg-path. The Euclidean norm of a
vector p is denoted with kpk.

Prop osition 1. A path on plane f x; yg is generatedby vehicle model (4.4) via a
corntinuous cortrol input (t) if and only if the fx; yg-path is a G2-path.

Pro of.
Necessity

Consider a f x; yg-path generatedby model (4.4) with a cortinuous £(t). A natural
parameterization over this path is given by the explicit solution p(t) = [x(t) y(t)]"
of the model (4.4) when t belongs, say, to the interval [to;t;]. The unit tangent
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vector can be expressedas

o _ Xy
knk 7 x()2+ y(t)2

_ ., VIcos(t) sin TOIN
; v2 co2 p(t) + v2sin? p(t)

= [cosu(t) sinu(t)]": (4.5)

Consideringthat +(t) is cortin uouswe have, from model (4.4) that p(t) is continuous
and then, by (4.5), p=kpk is continuous too. With a similar reasoningwe obsene
that @ is a cortinuous function. Indeed, from model (4.4) we infer that

A= | vpusinp= "I—ztan *(t) sinp(t)

) ) (4.6)
A= Vv pcosp = Y- tan (t) cosu(t)

Therefore, the curvature vector, that can be expressedas (E denotesthe vector
crossproduct) )

(PEWED,

kpk*

is a cortinuous function too. In conclusionthis provesthat p(t) is a G2-curve.

4.7)

Suzciency
Let be given, on the fx; yg-plane, a G?-curve p(u) = [x(u) y(u)]" with parameter
u 2 [ug;uz]. We want to shaw that there exist initial conditions and a cortinuous
cortrol #(t) such that the f x; yg-path generatedby the vehicle'smodel (4.4) exactly
matchesthe path of p(u). First, introduce the arc length function

u

s(u) := P X(Vv)2 + y(v)2dv (4.8)

Uo
and denoteby si 1 : [0;s(uq)] ! [uo;u4] its inversefunction. Asscciated with every
point of p(u) we consider the orthonormal frame fe;(u);e,(u)g that is oriented
in the sameway of axesfx;yg and where e;(u) coincideswith the unit tangent
vector of the curve p(u). As known from Frenet formulae, the curvature vector is
- (u)ez(u) where - (u) is the scalar curvature with well de ned sign. From (4.7) it

can be deducedthat . N
Doy = X(U)AU) i Au)y(u) |
(U) - 3=2
(x(u)? + y(u)?)

Considering that p(u) is a G?-curve, the function - (u) is cortinuous. For model
(4.4) consider, at time tg, the initial conditions x(up), y(up), arg(ei(ug)) and the
continuous input function

+(t) = arctan[l- (s' 2(v(t| to)))]: (4.10)

(4.9)

In the following it is proved that the explicit solution to model (4.4) is given by the
time functions

(s H(v(ti to)); (4.11)
(s H(v(ti to)); (4.12)
argley(s' (v(ti to))]: (4.13)
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From standard derivation rules we obtain

x(u) é

d .
—[x(s" *(v(ti to)))] v =
dt kp—ﬂf)k u=s LVt o) =
= v cos arglkp(u)k' *p(u)] . o ) (4.14)
= 1 i 0
and analogously
y(u) —

9 (s Tt = B
p [y(s' “(v(ti to))] kgﬁ-‘u)k u=si L(v(ti to)) i~

= vsin argkp(u)k' *p(u)] ~ : (4.15)
u=si 1(v(ti to))

Consideringthat e;(u) = kp(u)k’ ! p(u), identities (4.14) and (4.15) verify the “rst
two equations of model (4.4). De ne as (t) the time function appearing in (4.13).
Hence,we have

8 —
2 arctan [y(u)=x(u)] ~ S o) if x(u), O 16
t) = u=st *(v(ti to ]
HD > Y+ arctan [y(u)=x(u)] if x(u)<O0 (4-16)

u=si 1(v(ti to))

and, by derivation, obtain

PR (0 OISO 1O _

2 4+ 2
x(u)? + y(u) u=si 1(v(ti to))

RO OIR. N

(x(U)2 + y(u)2)*2 —u:Si ot : (4.17)
Note that, in the de nition (4.16) of y(t) we have assumed
- L)
Z Yo
arctan [(w)=x()] = le;; :I i((ﬂg g 8 (4.18)
By virtue of (4.9) it is then proved that
Ht) = v - (s" Y(v(ti to)): (4.19)
On the other hand relation (4.10) implies
Vian#(t) = v - (st J(v(t| to) (4.20)

sothat (4.19) and (4.20) verify the third equation of model (4.4).
From (4.11) and (4.12) we nally note that the fx; yg-path generatedby input
(4.10) exactly matchesthe path of p(u). 2



The ARGO Autonomous Vehicle's Vision and Contr ol Systems 431

G’-spline dynamic +
geneprator > inversion » ARGO
ﬁ vision
data
flow
vision
supervisor K — data
processing

Fig. 21. The new recursive tra jectory control scheme.
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Fig. 22. The GZ2-interpolating problem on the fx; yg-plane.

4.3. Quintic GZ?-splines and Recursive Trajectory Contr ol

The suzciency proof of Proposition 1 givesthe explicit dynamic inversionformulae
(4.8){(4.10) for the open-loop steering control of vehicle (4.4) provided that the
desired path to follow is assignedas a given parametric curve. Therefore, consider
the following interpolating path problem. Let be given on plane f x; yg two distinct
points pa = [Xa yal” and pg = [xg ys]" with assignedunit tangent vectors
de ned by pa and pg and scalar curvatures - o and - g (see gure 22). The signs
of - o and - g are given according to the Frenet formulae; cf. the introduction to
(4.9) in the proof of Proposition 1. The data pa, Ua, and - o represen the vehicle's
current status at a given time to, i.e. the coordinates x5 and y of the rear axle
midpoint, the heading angle, and the curvature - o given by

<A = (1=1) tan %(to) (4.21)

where £(tg) is the current steeringangle. The data pg, s, and - g are the desired
future status of the vehicle.

The parametric curve to consideris a quintic polynomial vector function p(u) =
[x(u) y(u]", u 2 [0; 1] where

X(U) = Xg+ XU+ Xou? + x3u® + xaut + xsU° (4.22)
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y(u) = Yo+ yiu+ you? + yaud + yaut + ysu®: (4.23)

with interpolating conditions (cf. (4.5) and (4.9)):

pO) = pa; p(1)=ps; (4.24)
RO) _  cospp © . p(1) _ cospg
kp(O)k ~  sinpa ' kp()k _ sinpg (4.25)
(0) = A Q)= -5 (4.26)

Focusingon polynomial parametric curvesand working with arbitrary interpolating
data, it is necessaryto use,at least, quintic polynomials asin (4.22), (4.23), in order
to satisfy conditions (4.24){(4.26).26 Nevertheless, conditions (4.24){(4.26) leave
four degreesof freedomthat are exploited by the following closed-formsolution:

Xo = Xa (4.27)
X1 = " 1COSHa (4.28)
_ 1i . o2 —
Xo = > 3COSHa | ~1-A SINpA (4.29)
, 3. , 1,
X3 = 10X i Xa)i (6'1+ > 3)CoSt i (4721 > 4) COS|i
3. . 1, .
+5Easinm i 573 e singe (4.30)
. 3, , ,
Xe = j15Xg | Xa)+ (8 1+§ 3)COSPa + (772 “4)COSps
i g’f-AsinuA+’§-Bsian (4.31)
. 1, , 1,
Xs = 6(Xgi Xa)i (3 1+§3)cospAi (32 54)cospB
1, . 1, .
+5 Fasinm i 55 e sine (4.32)
Yo = Ya (4.33)
yr = “1sinpa (4.34)
I P .2 ¢
Yo = > 3SiNpA + "7+ A COSHA (4.35)
. 3, . , 1, .
ys = 10(ys i ya)i (6 1+§3)3|nHAi 4 2i EA)SmIJB
3, 1,
i 5 2. A COSpa + 5 2. B COSg (4.36)
, 3, | . . P
ya = i15(ysi ya)t (8 1+§3)5"WA+(7 2i “4)Sinps
+ g'f- ACOSIa i "3 5 COSH (4.37)
. 1 . , 1, .
ys = 6(ysi ya)i (3 1+§3)SlnHAi (B 2i 54)SlnHB

1, 1,
i 5 2.\ cospa + > 2. 5 cosps (4.38)
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together to form the four-dimensional parameter vector ~ := [ 1 2 3" 4]" sothat
the resulting parametric curve be conciselydenotedasp(u;” ).

Prop osition 2 (Guarino Lo Bianco and Piazzi ?®). Given any interpolating
data pa, Ha, A and pg, Us, - B, the parametric curve p(u;” ) satis es condi-
tions (4.24){(4.26) for all "1; >, 2 IR™ and all "3; 4 2 IR. Conversely given any
quintic polynomial curve p(u) with p(0) 6 0, p(1) 6 O satisfying (4.24){(4.26)
there exists parameters” 1; > 2 IR* and "3; 4 2 IR sud that it can be expressed
asp(u;”).

Note that "1 = p(0;" ), "2 = p(1;”) are \velocity" parameterswhereas” 3, "4
can be denotedas\t wist" parametersof the curve. Theseparameterscan be chosen
in order to appropriately shapethe trajectory, for exampleminimizing the curvature
in a lane changing maneuwer or minimizing the variations of curvature following a
road arc with constart curvature.

The recursive useof the parametric curve p(u;” ) permits to exactly interpolate
any given sequenceof cartesian points with arbitrarily assignedunit tangent and
curvature vectors. In suc a way it results an overall G2-curve, i.e. a curve with
secondorder geometriccortinuity. In the following we referto p(u;” ) asthe quintic
G2-spline.

Figures 21 and 23 help describing the new overall feedforward/feedbacdk cortrol
of the ARGO vehicle on the path following functionality. A new quintic G2-spline
is planned at the chosentrajectory updating rate. The vision data systemwith the
IPM can give, on a planar fx; yg-coordinate system, the road scenewith known
car's position and path to follow. Hencepa and pa are known and the current
curvature - o of the vehicle path can be computed with relation (4.21).

The interpolating point pg is determined on the path to follow at the interpolat-
ing distancelp from vehicle'srear axle midpoint. The vision data processingshould
also provide the tangent angle pg with respect to axis x and the path curvature
g at pg. The supervisor (see gure 21), collect the interpolating data, assignthe
shaping vector parameter ", and passall the data to the G2-spline generator. From
the knowledgeof p(u;” ) a dynamic inversionbasedon model (4.4) is performed via
formulae (4.8){(4.10) for obtaining the steering angle function

H(t) = arctan(l- (U;" Miy=si 1(u(t; to)) (4.39)

In (4.39), - (u;”) denotesthe curvature of the G?-spline p(u;” ) and v is the vehicle
velocity that is consideredconstart during the trajectory updating time, i.e. the
time slot where the steering action (4.39) is basedon the updated G2-spline.

The feedbadk action is issuedby the supervisor by planning a new G2-spline, so
that the steeringcontrol (4.39) is updated, when the vehicle has covereda relatively
small fraction of the current G2-spline. This medanism is recursively applied to
the new G2-spline resulting in an overall cortin uous steering control that makesthe
vehicle converging on the desired path.
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Fig. 23. Vision-based planning of the G2-spline.

4.4. Simulation Results

The new °atness-basedrecursive tra jectory cortrol scheme,shown in ‘gure 21, has
been simulated. To obtain realistic results, the Wong car lateral model has been
adopted?’ It takesinto accourt the geometric and dynamic characteristics of the
vehicle as well as the tires characteristics. A summary of the model parameters
is reported in tab. 2. In that table m indicates the vehicle mass, J the inertia
with respect to the certer of gravity, I and I, indicate the distance of the certer
gravity with respect to the front and the rear wheelsrespectively, C; and C, are
the cornering sti®nessof the front and the rear wheelsand * is the coe+cient of
road adhesion(* = 1 for dry roads). It has been supposedthat the frame rate
of the visual system is the same of the proportional cortroller currently usedin
the ARGO vehicle: 50 Hz. The delay time from the image acquisition to the
cortrol actuation has been consideredin the simulations. A reasonablevalue of
0.008s, deducedfrom the gain scheduledproportional controller usedby real ARGO
vehicle, hasbeenadopted. The supervisory cortroller renewsthe spline coexcients
with a rate that is a fraction of the frame rate. The reason for this choice is
intrinsic to the selectedcortrol strategy. In fact, to correctly approac the desired
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Table 2. Parameters for the simulated car.

m = 1300 kg

J = 2900 kg m?

It = 115m

Iy = 1:52 m

Ci =C; = 45000N radi !
1 = 1

road path, a proper percertage of the spline path must be covered before it is
updated. Practically, we have a spline updating rate equal to 50=° with °© being
a positive integer. The parameter © is selectableand is chosento obtain the best
performance from the controlled system. Normally, the spline updating rate have
to be increasedproportionally with the car speed. Also the interpolating distance
Ip, i.e. the aheaddistance usedto plan the spline, is proportional to the vehicle's
velocity in a way similar to (4.1). Vector © has been chosento guarartee the
generation of optimal trajectories in the casesof lane change, straight roads or
curveswith small curvatures (the curvature range consideredpractically covers all
the standard highways curvatures). \Optimal" meansthat the error betweenthe
generatedspline and the road path is minimum and, at the sametime, this result is
obtained with minimum variations of the steering command +.26 Roads with very
large curvatures requires di®erert valuesfor “ . A suboptimal behaviour must be
expected for sharp curvesbecausein this simulations ~ is supposedto be constart
(" =[2525 4545]") .

The simulation results reported in the following refer to the road shown in
“gure 24. It is composedby a sequenceof line segmers and circular arcs joined to
obtain an overall G!-path (cf. subsection4.2). The road shape, that is discortin uous
at segmem/arc joints, complicatesthe control task becausethe cortroller always
plans trajectories with continuous curvatures. Road curvatures are choseninside
the interval [0;0:005] mi 1. The maximum curvature (corresponding to 200 m of
radius) is bigger than standard highway curvatures: the purposeis to test the
cortrol strategy in critical situations, i.e. when the chosenvalue of * is not the
most appropriate.

Two di®erent car speedshave beenusedfor the simulations. In the “rst run a
constart velocity of 10 m/s (36 km/h) hasbeenchosen,while in the secondrun the
velocity has beenincreasedto 30 m/s (108 km/h). In the “rst simulation °© was
“xed equalto 30 (which correspondsto a spline update time of 0:6 s) while in the
secondoneit was decreasedo 10 (spline update time equalto 0:2 s). Owing to the
Wong's model usedto describe the car, the actual car paths are di®erert for the
two casesbut in both situations the maximum tracking error is smaller than 20 cm
and it occurs when the curvature radius of the road becomesequal to 200 meters.
On the straight stretchesthe error is very closeto zero.

At the beginning, if the vehicle is not on the correct path, it convergestoward
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Fig. 26. Command steering angle + for a car speed equal to 10 m/s (36 km/h) (left) and 30 m/s
(108 km/h) (right).

the desiredpath. Figure 25 shows how the road is approaced in the two cases:the
behavior is similar even if, asexpected, at low speedsthe car hasto cover a smaller
distance to approadc the road.

Figure 26 shaws the steering angle = for the whole road path. The largest
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steeringangleis detected at the beginning of the simulation when the vehicle hasto
approac the road, but evenin that caseit is smaller than 0:1 rad (closeto 5°). As
expected, the worst situation for the cortrol algorithm is detected when the vehicle
approades curves with the biggest curvature (0.005 mi ). Nevertheless,in the
worst case(i.e at low speed)the steeringcommand £ has a peak-to-peak amplitude
equalto 0:02 rad (1°). In future works, the performanceswill be further improved
by consideringa variable “ , chosendepending on the road curvature.

5. Results

The following paragraphs presert a 2000 km test on the road. For ead system
componert a detailed analysis of the main problems encourtered during the test is
preseried and the overall system performanceis discussed.

5.1. The MilleMiglia in Automatico Tour

In order to extensiwely test the Road Following functionality under di®eren tratc
situations, road environments, and weather conditions, a 2000km journey was car-
ried out in June 1998along the Italian highway network. The lItalian road network
is particularly suited for such an extensiwe test sinceit is characterized by quickly
varying road scenariosincluding di®erent weather conditions and a generally large
amount of tratc. During the journey, besidesthe usual tasks of data acquisition
and processingfor automatic driving, the systemloggedthe most signi cant data,
such as speed, position of the steering wheel, lane changes,user intervertions and
commands,and dumped the whole status of the system (imagesincluded) in cor-
respondenceto situations in which the systemhad dixculties in reliably detecting
the road lane.

After the end of the tour, the collected logs have been processedin order to
compute the overall systemperformance,suc asthe percertage of automatic driv-
ing, and to analyze unexpected situations. At the end of the tour, the systemlogs
cortained more than 1200Mbyte of raw data.

5.2. Performanc e Analysis

5.2.1. The Vision System

The low-cost camerasinstalled on the ARGO vehicle demonstratedto be the weak-
est componernt of the whole system. Although they have a high sensitivity even in
low light conditions (e.g. the twilight), a quick changein the illumination of the
scenecausesa degradation in the image quality. In particular, in corresppndence
to a tunnel exit imagesare completely saturated for about 100¢ 200 ms therefore
nullifying the processing.The use of camerasfeaturing automatic gain cortrol and
higher dynamics is now under evaluation.
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5.2.2. The Processing System

The processingsystem installed on ARGO during the tour was a a commercial
PC with a 200 MHz Pertium processorand 32 Mbyte of memory. It was able to
processup to 25 pairs of stereoframesper secondand provide the control signalsfor
autonomoussteeringevery 40 ms (e.g. onere nement on the steeringwheelposition
for every meter at 100 km/h), proving to be powerful enough for the automatic
driving of the vehicle.

5.2.3. The Visual Processing

The IPM approad usedfor Lane Detection, proved to be e®ectiwe for the whole
trip. Even if on ltalian highways the °at road assumption is not always valid,
anyway, the approximation of the road surfacewith a planar surfacewasacceptable.
The wrong calibration, in fact, generatesa lateral o®setin the vehicle trajectory.
Nevertheless, since the highway lanes' width is suzciently large, this o®sethas
never causedseriousproblems. Anyway, an enhancemen to the IPM transform is
currently under developmert. 28

5.2.4. The Control System

The cortrol systemtested during the tour was basedon the gain scheduled propor-
tional cortroller previously discussed.With this kind of control, for speedsreacing
around 90¥ 95 km/h there was no noticeable di®erencein comparisonto a human
driver, while for higher speeds(up to 123 km/h) the vehicle tended to oscillate
inside the lane.

Regarding the mechanical part, an electric stepping motor allows the rotation
of the steering wheelwith a high resolution and a reduced power consumption.

5.2.5. Environmental Conditions

During the tour, the system'sbehavior was evaluated in various environmental con-
ditions. The route waschosenin order to include areaswith di®erert morphological
characteristics: from °at areasto sloping territories of the Appenninesregion and
heavy tratc zones,inevitably encourtering stretches of highway with road works,
absent or worn horizontal road signs, and diversions, and various weather condi-
tions. The di®eren environmental conditions demonstrated the robustnessof the
image processingalgorithms.

5.2.6. Statistical analysis of the tour

The analysis of the data collected during the tour?® allowed the computation of a
number of statistics regarding system performance (seetable 3). The automatic
driving percertage and the maximum distance automatically driven show high val-
uesdespitethe presenceof many tunnels and of seeral stretchesof road with absert
or worn lane markings or even no lane markings at all.
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Table 3. Statistical data regarding the system performance during the tour.

Maxim um distance in automatic [km]

Percentage of automatic driving

Maxim um speed [km/h]

Av erage speed [km/h]

km

Stage | Departure Arriv al

1 Parma ! Turin 245 86.6 109 | 93.3 | 234
2 Turin ! Pavia 175 80.2 95 | 85.1 | 42.2
3 Pavia ! Ferrara 340 89.8 115 | 86.4 | 54.3
4 Ferrara ! Ancona 260 89.8 111|911 | 15.1
5 Ancona ! Rome 365 88.4 108 | 91.1 | 20.8
6 Rome ! Florence | 280 87.5 110 | 95.4 | 30.6
7 Florence ! Parma 195 89.0 123 | 95.1 | 25.9

It is important to note that somestagesincluded passingthrough toll stations
and transiting in by-passeswith heavy tratc and frequert queuesduring which the
systemhad to be switched o®.

6. Conclusions and Future Work

The experiencegained during theseyearsof work within the ARGO project clearly
highlighted some of the main problems of automatic driving, whilst the extensive
useof the ARGO prototype helpedto nd their most promising solutions.

The main aims establishedat the beginning of the project wereachieved, namely
the dewvelopmert of a prototype vehicle and its useas a test-bed for both the hard-
ware and software aspects of the project.

The critical analysis of the results of the Mil leMiglia in Automatico tour, as
well asthe experiencegainedduring the last few years, will be helpful for the future
researt within the ARGO project, namely the developmen of a new vehicle which
will include the automatic cortrol of both the steering wheel and the speed. New
and more robust algorithms for Vehicle Detection are currently under developmert
aswell asa new module for Pedestrian Detection.

Also the cortrol subsystemwill derive benet from the new strategies high-
lighted in this work: the expected advantages of the new °atness-basedrecursive
trajectory cortrol over the previous proportional cortrol are basically: (i) superior
road following with smooth cruising and (ii) highly-°exible functionality. In par-
ticular °exibilit y can be simply obtained by modifying the supervisor strategy in
order to perform, for example, lane changing, lane inserting, platooning and even
car parking maneu\ers.
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