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Abstract— This paper describes a vehicle detection
system fusing radar and vision data.

Radar data are used to locate areas of interest on im-
ages. Vehicle search in these areas is based on vertical
symmetry. All vehicles found in different image areas
are mixed together and a series of filters are applied in
order to delete false positives. The algorithm analyzes
images on a frame by frame basis, without any tem-
poral correlation. Two different statistics, frame-based
and event-based, are computed to evaluate the method
efficiency. Results and problems are discussed, and
some ideas for possible enhancements are provided.

I. INTRODUCTION

DIFFERENT preventive safety functions are now
introduced on road vehicles to assist the driver

and to reduce the risk of accidents. Key points for
improved operation are the effectiveness and the in-
formation content in the perception of the surround-
ing scenario, including road features and obstacles.
Radar-vision fusion is an interesting approach, based
on often complementary devices, which can provide
several advantages: in particular improved reliability
from multiple detections and the merging of position
measures with good longitudinal and lateral accura-
cies. Therefore a purpose of the present study has
been to investigate how different parameters can be
obtained according to the best performance of each
sensor.

The advantages and the problems of fusing radar
and camera data for vehicle detection are well known
[1]; methods differ mainly for the fusion level: low
level fusion, intermediate level fusion and high level
fusion have all proved to reach good results. Low
level fusion combines several sources of raw data to
produce new raw data that is expected to be more in-
formative and synthetic than the inputs [2]; in inter-
mediate level fusion various features such as edges,
corners, lines, texture parameters, etc are combined
into a feature map that is then used by further pro-
cessing stages; while in high level fusion each source

of input yields a decision and the decisions are fused
[3]. This work is developed using high level fusion
and focuses on validation of radar targets, as shown
by Sole [4].

Some methods use models to identify a vehicle;
many different models have been used, ranging from
trivial models to complex ones, like deformable mod-
els that add details of the car approaching the camera
[5], or 3D models that take into consideration vehicle
misalignment with the camera. [6]. All these methods
need models that match different vehicle types.

The search for vehicle features provides a simpli-
fied way of localizing vehicles. For example symme-
try is a characteristic that is common to most vehicles.
Some groups have already used symmetry to localize
vehicle [7] [8], they have tried out a lot of methods
to find symmetry on images: using edges, pixel inten-
sity, and other features.

The vehicle detection algorithm used in this work
is based on symmetry [9] and uses radar data in order
to localize areas of interest. Data fusion operates at
high level; the vision system is used to validate radar
data and to increase their accuracy.

In the current setup a progressive gray-scale cam-
era is mounted inside the cabin close to the rear-view
mirror; the camera aperture is 45 ◦, the image reso-
lution is 640×480 but only 640×300 pixels are used
by the vision system. A scanned radar with a 77 GHz
frequency is mounted above the front bumper: obsta-
cles up to 50 meters can be detected.

The next section presents the algorithm details, sec-
tion III shows some results obtained and presents two
different statistical method used in order to evaluate
the system efficiency, and finally in section IV con-
clusions and future developments are presented.

II. ALGORITHM

The first step of the algorithm converts radar ob-
jects into the image reference system, using a per-
spective mapping transformation: the radar point is



shown on the object base. This transformation is
performed using calibration data achieved by fine in-
trinsic and extrinsic camera parameters measurement.
Because the parameters measurement is performed
once, at system setup, and no stabilization is applied,
errors may occur when extrinsic parameters change
(mainly vehicle pitch) due to road roughness or vehi-
cle acceleration (see fig.1). Moreover radar may pro-
vide an incorrect lateral position: points my not be
centered onto the obstacle shape or even fall outside
it, as shown in figure 2. The definition of search area
building needs to take care of these possible errors.

Fig. 1. Camera miscalibration caused by pitch variation: the
radar point is not correctly represented on the vehicle base

Fig. 2. Lateral radar error

Wide margins are used both on the left and right
sides of the search area: values between 2.5 and 4 me-
ters have been tested. The area height is defined to be
half of its width; the bottom of the area is positioned
at a fixed percentage of height below the radar points
(30% of area height), in a way that the vehicle should
be included even in case of strong pitch variation.
Only radar data that refer to points inside the image
are considered; since the sensors have been chosen to
have approximately the same horizontal angular field
of view, almost all radar points can be remapped into
the image. Nonetheless a radar point can be remapped
to an image point very near to left or right margin:
in such a case a part of the search area can lay out-
side the image. In order to solve this problem two
different approaches have been tested. The first one
is based on moving the search area horizontally until

the whole area is inside the image: this solution is not
very efficient because this new search area contains
a part of the image very distant from the radar point;
this area is generally useless for the detection and can
also cause errors. The second approach is based on
the search area cropping: in this case only the useful
part (the visible) of the image is treated.

In order to simplify and speed up the following
steps of the algorithm and to delete details of too close
vehicles, all the areas are resampled to a fixed size.
The reduced search areas do not have the same aspect
ratio of the original ones, resampling them to a fixed
size causes image deformations and altered informa-
tion; in order to avoid this problem, these areas are
reduced preserving their aspect ratio, in such a way
these search areas are smaller than the normal ones.

The binarized vertical edges image of the area is
used to compute the symmetry. The symmetry is
computed considering every column of the image as
a possible symmetry axis, on different sized bound-
ing boxes whose height matches the image height and
with a variable width ranging from 1 to a predeter-
mined maximum value. Symmetry χ is computed as
the ratio between the square of symmetric edges (s)
versus all edges present in the considered area(n).

χ =

s
2

n

Two vertical edges are considered symmetrical if
their orientation is opposite.

χ values are stored into a matrix whose columns
match to the symmetry axis and whose rows refer to
the bounding box width. A possible vehicle is local-
ized if χ is low for narrow area widths and becomes
high over a certain value. The width of the symmetry
search area over which χ becomes higher than a fixed
threshold represents the actual vehicle width (fig. 3).

To be sure that a vehicle is present, its bottom
is searched, looking for horizontal edges. The bot-
tom search is based on the idea that a dark area (the
shadow) is often present just beneath the vehicle. The
vehicle top is searched too, but the the box is validated
even if the top is not found because sometimes it can
be very hard, or actually impossible, to find it: truck
tops are often outside the search area or even outside
the image. If the top can not be found a box with a
fixed ratio between width and height is used (see fig.
7.b). This search is not very refined: sometimes im-
age scaling problems can cause a false top (see fig.
7.d).

The algorithm is designed to return only one ve-
hicle for each radar point, but more than one possi-



Fig. 3. Vertical edges and symmetry matrix. In the symmetry
matrix, two columns are very bright: the first one refers to the
vehicle left border, the second one refers to the vehicle center.
The first column is entirely bright because symmetry is due to
edges close to each others; the second column is only partially
bright, the upper rows are dark because they correspond to narrow
symmetry areas, where no symmetric edges are present. Lower
rows, that correspond to large symmetry areas, are bright.

ble vehicles can be detected in a single area: a filter
that determines which vehicle has to be validated is
mandatory. This filter simply choses the most central
box (see fig.4).

Fig. 4. The most central box (the green one) is chosen.

When all radar data have been examined, all the
vehicles found are resampled to the original size and
mixed together; overlapping vehicles are also man-
aged.

Using an inverse perspective mapping transforma-
tion, real width and position of vehicles can be com-
puted. In the computation of these values, radar
provides distance while vision provides position and
width so that the radar precision on distance measure-
ment and the vision refinement ability are capitalised
together.

Unfortunately not all detected boxes are correct:
some false positives caused by road signs or other ob-
jects in the scene can be present as well. A filter is
used to discard some false positives: it removes too

large or too small boxes that probably do not identify
a vehicle.

It is also possible that a car is detected in more
than one search area (it happens when a single ob-
ject returns multiple radar points), so overlapping re-
sults may be present. Only one box per vehicle is ex-
pected, so a further step is required to merge similar
boxes and eliminate redundant ones: the largest box
is preferred, since often the smallest box is generated
by vehicle parts. Furthermore when two rectangles
with similar size have their base at the same height an
average is computed, and this new box is considered.

Figure 5 shows intermediate results: the red cross
represents the radar point, the blue rectangle repre-
sents the interest area, the green rectangle represents
the vehicle that was detected and cyan crosses repre-
sent border points provided by radar.

Fig. 5. Intermediate results

III. RESULTS

The system was tested in extraurban and highway
environments with good results. To evaluate the sys-
tem performance, ground truth was manually col-
lected by annotating the presence of each vehicle in
more than 12000 images. The annotated sequences
represent a mix of all possible scenarios: high and
low traffic, extraurban and highway, fast, slow, and
stopped vehicles, sunshine, cloudy and rain.

The percentage of refined detection is near 50%.
This number must not be considered as low, because
it represents the percentage of vehicles, whose po-
sition and size are detected with an extremely high
precision (with an error lower than 40 centimeters)
independently in every frame. This number also re-
flects the sensors problems, such as radar misses and
vision misses due to bad environmental conditions
(such as rain or darkness). Five different performance
indexes were defined for these statistics: refined de-
tections (RD), false negatives (FN), radar false nega-
tives (RFN), false positives (FP), not-vehicle obstacle
(NVO).



SEQUENCE EVENTS RADAR MISS NOT REFINED REFINED BY VISION
highway 5 0 1 4

highway with traffic 9 3 1 5
highway with shadow problems 10 0 3 7

trucks on highway 2 0 0 2
highway junction 14 5 4 5

extraurban with curves 1 0 0 1
extraurban with approaching vehicles 8 1 2 5

extraurban with strong shadows 10 0 2 8
complex environment 10 0 3 7

total 69 9 (13%) 16 (23%) 44 (64%)
TABLE I

RESULTS ON DIFFERENT SEQUENCES.

RD vehicles detected by radar and validated and
refined by vision;

FN vehicles detected by radar but not validated
or not correctly refined by vision;

RFN vehicles not detected by radar or detected
with a too low precision;

FP not-vehicle obstacle detected by radar and
validated by vision;

NVO not-vehicle obstacle detected by radar and
not validated by vision;

Altought the definition of refined detections is straight
forward, the other values need an explanation. Radar
false negatives are defined as vehicles not contained,
or not entirely contained, in any search area: this
value obviously depends on search area size. The
chosen interest area width is 2.5 meters; and the RFN
is 39% of framed vehicles; this value can be decreased
by raising the area width, but this change will increase
false positives. More than the half of radar false pos-
itives refer to vehicles partially contained in a search
areas. The same consideration can be made for false
negatives: the false negatives density is about 13% but
only 5% is due to actually missed vehicles, remaining
8% is due to vehicles detected with a low precision.
The number of false positives is low: in all the test
sequences only one persistent false positive is present
(see fig.6).

Radar supplies not only vehicles, but also others
obstacles; about 15 not-vehicle obstacles are detected
every 100 frames. Vision is not able to differentiate 4
obstacles, out of these 15, every 100 frames.

Event-based statistics were computed as well, con-
sidering an event as a vehicle present in more than 10
frames. Radar completely misses 13% of the events
(mainly due to traffic), while vision is not able to re-

Fig. 6. Persistent false positives in complex scenario

fine 23% of the events at all. According to this data
64% of events are correctly detected and refined, 73%
of object supplied to vision are correctly refined.

Figures 7 and 8 show respectively good results and
errors obtained in different scenarios. Figures 8.a and
8.b show traffic cases; in the first image a single radar
point is generated by vehicles close to each other: its
position is not suitable to detect any vehicle. The sec-
ond image shows a delivery van individuated by two
radar points and some other vehicles not detected.

In table I event based statistics obtained on differ-
ent sequences are proposed. Radar misses are present
only in traffic or complex scenarios. The main issue
are traffic and environment complexity together with
shadow or general illumination problems.

As already mentioned, not-precise detections , due
to traffic or low visibility conditions, are unfortu-
nately frequent; these cases in our performance analy-
sis are classified as false negatives, since the final goal
of this system is to estimate the vehicle shape with a
high accuracy.



(a) (b)

(c) (d)

(e) (f)
Fig. 7. Examples of correct results: the algorithm works reliably in simple cases (a); it detects both vehicles moving away and
approaching (b); it works even in hard cases, such as rain (c) and noisy scenario (note the double radar detection) (d); it can detect cars
(e) and truck (f ).

IV. CONCLUSIONS

In this paper a method to fuse radar data and vi-
sion has been described. This method reaches good
results both in extraurban and highway environments.
Even if not all vehicles are detected in all images, the
system is promising to be used for safety application,
because all the closest and most dangerous vehicles
are anyway detected.

A tracking algorithm might be very helpful to in-
crease the robustness of the system and the detection
persistence.

The use of other methods to generate areas of in-
terest and the search for more than one vehicle in an
interest area may solve some radar sensor problems,
such as its inability to detect all vehicles and to dis-
tinguish vehicles close to each other.
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