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Abstract— This work presents an implementation of a
vision-based system for recognizing pedestrians in different
environments and precisely localizing them with the use of a
Kalman filter estimator configured as a tracker. Pedestrians,
in various poses and with different kinds of clothing, are
first recognized by the vision subsystem through the use of
algorithms based on edge density and symmetry maps. The
information produced in this way is then passed on to the
tracker module which reconstructs an interpretation of the
pedestrians positions in the scene. An appropriately configured
indoor system setup with an accurate measurement of the
imposed human trajectory has been realized. This setup has
permitted an accurate evaluation of the accuracy of the results,
when the new auxiliary tracker is activated.

I. INTRODUCTION

Vehicles that automatically perform safety tasks like
detection of pedestrians will have an important role in the
future of an intelligent transportation system. The possibility
to appropriately equip an high number of vehicles will allow
to reduce the casualties derived from accidents, specially in
the urban environment. Pedestrian localization in outdoor
scenes is a challenging task because of the variety of the
environments and of the clothes. A moving vehicle has to
deal with a lot of problems: noise produced by the presence
of buildings and human artifacts, different illumination
conditions, obstacles and so on.

Widely used approaches for addressing vision-based
pedestrian detection are: the search of specific patterns or
textures [1], shape detection [2], [3], [4], [5], [6], [7] and
neural nets-based methods [8].

This work presents the system introduced in [9] that is
aimed at the localization of pedestrians by means of vision.
This system has been designed to be installed on board
of moving vehicles in order to provide the driver with
warning signals. In particular, the implementation of a new
tracking layer based on Kalman filtering [10], [11], [12] for
this system is examined and the article mainly deals with
performance measurements of the system activity.

This paper is composed of the following sections:

• section II presents the system scheme,
• section III introduces the new tracking functionality of

the system,
• section IV summarizes the most valuable numerical

results obtained,

• section V discusses the results and outlines the possi-
bilities for future improvements of the system.

II. SYSTEM STRUCTURE

In this section the components of the pedestrian local-
ization system are briefly explained. Fig. 1 depicts the
relationships between the system components that perform
the following tasks:

• “Preattentive Phase” - low level vision elaboration,
• “Symmetry Detection” - symmetry maps evaluation,
• “Bounding Boxes Generation” - pedestrians outlining,
• “Bounding Boxes Filtering” - pedestrian boxes selec-

tion,
• “Pedestrian Localization” - spatial position estimation

for pedestrian boxes,
• “Bounding Boxes Tracking” - state variables and as-

sociated accuracy evaluation.

A. Preattentive phase

The knowledge of the vision system’s extrinsic param-
eters and the flat scene assumption allows to reduce the
search for candidates to one limited part of the image, and
reasonable ranges and steps are considered for dealing with
different pedestrian dimensions.

Fig. 2 (a) presents the image clustering and edge extrac-
tion performed at this stage of the processing. Besides the
obvious advantage of avoiding false detections in wrong
areas, this technique, combined with an undersampling
procedure, strongly reduces the computational time needed
for frame elaboration and shows excellent temporal results.

B. Symmetry detection

After the low level preprocessing and the analysis of
vertical symmetry maps derived from gray-level and hor-
izontal gradient image values, the identification of regions
that can be characterized as human shapes takes place. Since
pedestrians evidence an high symmetry, especially vertical,
image columns can be considered as possible symmetry
axes and edges can be used as a discriminant in a pre-
attentive filtering stage (see fig. 2 (b)).

Approaches based onto this kind of maps have already
been illustrated with the Generalized Symmetry Transform
(GST) [13].



Fig. 1. The system architecture.
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Fig. 2. The vision algorithm processing stages for an example outdoor
image acquired from a moving vehicle: (a) low level horizontal, vertical
and combined edges; (b) preattentive filtering; (c) search range for the
homologous box; (d) stereo refinement for the base of the box; (e) result
(the stereo search area is surrounded with a border).

C. Bounding boxes generation

The axis-based approach is followed by maps analysis
for the extraction of the boxes and after this a particular
stereo refinement technique is used to improve the accuracy
of the identification of the boxes’ bases (see fig. 2 (c,d)).
Fig. 2 (e) presents the box generation result for an image
acquired from a moving vehicle.

This processing level produces boxes with an high proba-
bility to fit one pedestrian, and candidates are characterized
by problem specific dimensions in pixels and symmetry

Fig. 3. Bounding boxes filtering: the discarded pedestrian candidates are
marked with a black “x”, each example shows the original and the edges
inside the candidate bounding box.

axes placed nearby the peaks of relative maximums in the
axial weighted symmetry sum.

D. Bounding box filtering

Unfortunately symmetrical objects other than pedestrians
may happen to be detected as well. In order to get rid of
such false positives a number of filters based on regional-
ization have been devised and are still under development.
Fig. 3 illustrates some examples of how the filters check
the eligible candidates and eliminate some of them that
do not actually represent a human shape. These filters
evidence promising results with artifacts such poles, road
infrastructures, traffic signs and buildings that cause the box
generation to fail.

E. Pedestrian localization

This module estimates the position of the pedestrians in
the scene in the chosen coordinate reference system. The
contact point (Xp,Yp) of each pedestrian vertical axis with
the ground assumed flat is associated with opportune state
variables for this purpose. The height from the ground Zc,
the tilt angle α of the camera observing the scene and a
set of intrinsic calibration parameters represented by eu and
ev must be known. Fig. 4 (a) shows the coordinate system
in which the contact point is defined according to the road
plane and also the position of the camera.

The estimation uses an original modeling that takes
explicitely into account the unavoidable difference of the
vision-detected bounding box of a pedestrian with the
real ideal one, defined by a height H and by a width
W with fixed average and standard deviation values, re-
alistic enough to represent a human shape (H = 1.65 m,
σH = 0.1 m, W = kH with k = 0.3 a realistic width/height
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Fig. 4. Setup scheme and problem variables: (a) world coordinate
reference system; (b) image coordinates of the scene bounding box.

ratio, σW = 0.1 m). Z0 represents half of the difference
between the scene bounding box height and the real pedes-
trian height, with average value zero and standard deviation
σZ0 = 0.1 m.

Considering a perspective projection of the scene onto
the image, the relationship between the coordinates of the
corners P1 = (X1,Y1,Z1)t and P2 = (X2,Y2,Z2)t of a pedes-
trian bounding box in the camera coordinate system can be
linked in a linear way, thanks to small angle approximation
for α , to the planar position coordinates Xp and Yp (1). The
correspondent image coordinates p1 = (u1,v1), p2 = (u2,v2)
and the observation system Y = H ·X+v (2) are then easily
deduced.
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The contribution of all the parameters subject to error is

also taken into account with the use of the covariance matrix
of the noise vector v, in order to improve the estimation of
the positions of the pedestrians, concretely realized with a
Kalman filter.

More details on how this modeling deals with the pedes-
trian spatial positioning are available in [9]. A new bounding
box tracking stage now completes the approach.

III. BOUNDING BOXES TRACKING

In this section the implementation of the tracker is
explained in terms of design choices, box management
queues, tracking politics and Kalman filtering integration.

Each new pedestrian identified by the localization is
provided with an unique id. This is used to drop the box if
the timeout for joining with an appropriately new detected
pedestrian expires, to log the history of the pedestrian path,

to differentiate it from the others and also to render clearly
all the graphical information (see fig. 6).

The tracker presents a flexible politic for data logging,
box processing, matrixes allocation and an efficient method
encapsulation for complex procedural sections; the sub-
system presents two possible working modalities: single
tracking and multi tracking mode; these discriminates the
way in which the rejoining of lost traces is managed.

The main tasks of the tracker are: the merge of vi-
sual localizations with the internal state representation, the
calculations relating to the evolution of the state of each
pedestrian (through Kalman filtering), and the prediction
projection for the triggering of the elaboration. Input and
output buffering queues are used for filtering purposes too,
in order to implement insertion and removal politics that
enhance the reliability of noisy sensor data.

Graphics are used to illustrate the state variables history
of the pedestrian boxes. This is done for sake of an efficient
and constant system check by the human supervisor, both
in the perspective image (fig. 6 (a)) and in the road top view
plane (fig. 6 (b)). The current box position and the position
prediction, in the form of probability-blended image pro-
jection areas, are drawn in the perspective representation.
Moreover the error ellipsis for each box is represented on
the experimental road plane image.

The merge function performs one feedback task related
to the association of newly detected pedestrians with the
set of spatially localized and tracked ones. This approach
solves problems related to wrong estimations and temporal
mismatches. It is based on box areal overlapping and Maha-
lanobis distance estimation, and is responsible for updating
the tracked set of pedestrians. The overlapping criterion is
based on probability image areas after Kalman prediction
and the metric criterion exploits the state of each tracked
pedestrian. Instead of a Mahalanobis distance classification
tout-court, the product H ·X is used as observations for the
evaluation of the metric r.

The most effective formula for the extraction of r at the
iteration κ for the vision observation n and the consequent
classification has been found to be the match criterion in (3),

r(k,)
n (i) = ∆� ·C(k−1,i)−1 ·∆

∆ � [H(k,)
n ·X(k,)

n −H(k−1,i) ·X(k−1,i)]
match � i | min{r(k,)

n (i)} ≤ t∗
(3)

where a generic matrix denoted as A(h,p) refers to the
tracked pedestrian p at the h-th iteration of the tracker and
t∗ is an opportunely chosen threshold.
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Fig. 5. Comparison between the estimated paths and the trajectory: (a) Planar estimation for the slowly forward walking experiment; (b) normalized
histogram of the error in the Xp coordinate for the slowly forward walking experiment; (c) histogram of the error in the Yp coordinate; (d,e,f ) analog
data representation for the regular speed forward walking experiment; (g,h,i) data for the backwards running experiment.
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Fig. 6. Pedestrian path and reference trajectory for the indoor acquisition
as reported by the tracker when the single-tracking mode is selected:
(a) perspective projection; (b) top view of the ground plane, the predefined
trajectory is shown in black and the measured trajectory is shown in green.

Fig. 7. Indoor test setup.

IV. PRECISION EVALUATION

Indoor experiments have been realized in order to verify
the correctness of the estimated coordinates of the pedes-
trian path with the use of the tracker.
A reference trajectory has been set up simply by defining
a set of way-points on the ground sufficiently close one
to the next. The X and Y coordinates of all these points
have been measured with classical measurement instruments
in the chosen reference system. A calibrated camera has
been positioned to look at this trajectory, with height and
orientation as if it was installed inside a car. The position of
the camera observing the reference points in the coordinate
reference axes has been determined. Fig. 6 (a) shows a cam-
era view of the pedestrian trajectory including perspective
and fig. 6 (b) shows the associated bird-eye view.

The test includes the movement of a pedestrian along
the predefined trajectory and the acquisition of the corre-
sponding images in order to post-process them with the

TABLE I

MEAN AND MAXIMUM COORDINATE ERRORS (m)

Sequence eXp Max eXp eYp Max eYp

forward slowly 0.12 0.38 0.53 1.35
forward regular 0.15 0.34 0.37 1.16
forward running 0.47 1.48 0.47 2.04
forward natural 0.17 0.44 0.39 1.98

backwards slowly 0.66 1.54 4.07 6.89
backwards regular 0.65 1.38 4.19 6.98
backwards running 0.98 1.87 4.47 6.46
backwards natural 0.76 1.67 2.66 5.38

vision algorithm. An example of image acquired in this
way is provided in fig. 7. For convenience the experiments
have been realized indoor; due to this the images presented
many vertical edges that lead to the generation of additional
noise caused by the indoor structure. To solve this problem,
a simple background subtraction has been applied in the
middle of the processing; of course this is not needed in
outdoor scenes: it is only used to make the localization
verification possible.

Fig. 6 (b) shows a superposition example of the reference
trajectory and of the trajectory estimated by the system. The
current pedestrian position and its covariance ellipsis are
also drawn together with the estimated trajectory.

Thanks to the use of a digital camera, the experiments
have been characterized by a known intraframe temporal
gap, so that the temporal synchronization of the estimated
and of the reference trajectories has been made possible
through a parameterization. Since the estimator provides
the values of Xp and Yp separately, it has been possible
to compare the X and the Y coordinates independently. The
maximal and average errors measured for the Xp and Yp pla-
nar pedestrian coordinates of the experiments are reported
in table I; one time plot example of the euclidean error is in
fig. 8. Fig. 5 shows plots and error composition histograms
regarding the resulting estimated paths for various ways of
covering the trajectory. Considering that the Y coordinate
is the one related to the depth of the scene relatively to the
camera, the fact that the error on Yp is greater than the one
on Xp is not surprising and is a rather obvious conclusion in
the field of computer vision; however, the overall precision
is remarkable.

Another significant result obtained with these experi-
ments is that the average errors on Xp and Yp obtained by
measurements coincide with the a priori error estimated
at the output of the Kalman filter. This has the important
meaning that the errors provided by the estimator can be
considered reliable.

V. CONCLUSIONS

The high-level tracking module for environmental un-
derstanding has evidenced with its filtering capabilities
a good accuracy in the spatial localization of a walking
pedestrian. The maximum errors from the measured path
and the maximum variances along the axes that have been



Fig. 8. Temporal comparison example of ground plane coordinates
between the imposed trajectory and the evaluated pedestrian path.

observed during the system activity on the indoor prere-
corded image sequences, have proved a high reliability of
the new approach. It has been possible therefore to adopt
the new tracker module for the outdoor vehicular system
activity and the multi trace results so obtained are illustrated
in fig. 9. Integration of observations obtained from other
different types of sensors can be easily achieved with the
current system structure and can lead to more significant
results in the form of the data fusion paradigm.
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